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1 Introduction
For a,b ∈ Z with a < b, let [a,b]Z = {a,a + ,a + , . . . ,b – ,b}. In this paper, we consider
the following discrete φ-Laplacian eigenvalue problem

{
�(φ(�u(k – ))) + λp(k)g(u(k)) = , k ∈ [,T]Z,
u() = u(T + ) = ,

()

where T >  is a given positive integer, �u(k) = u(k + ) – u(k), λ is a positive parameter,
p : [,T]Z → (,∞) and g : R+ → (,∞) is continuous. We assume that
(A) φ : R→ R is an odd and strictly increasing homeomorphism;
(A) limu→∞ g(u)

φ(u) = ∞.
The function φ(u) covers two important cases: φ(u) = u and φ(u) = |u|p–u (p > ). If

φ(u) = u, then problem () is the classical second order difference Dirichlet boundary
value problem. For the case that φ(u) = |u|p–u, problem () is the well-known discrete
p-Laplacian problem. The two cases have been widely studied. To name a few, see [–]
and the references therein.
Problem () can be viewed as the discrete analogue of the following differential φ-

Laplacian problem

{
(φ(u′))′ + λp(t)g(u(t)) = ,  < t < ,
u() = u() = ,

()

which rises from the study of radial solutions for p-Laplacian equations (φ(u) = |u|p–u) on
an annular domain (see [], and references therein). Recently, the differential φ-Laplacian
problems have been widely studied in many different papers. We refer the readers to [–
] and the references therein.
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For discrete φ-Laplacian problems, there are less study results than differential φ-
Laplacian problems. See Cabada [], Cabada and Espinar [] and Bondar []. In [,
], some existence results were established by the upper and lower solutions method. In
[], the existence and uniqueness of solutions were discussed for mixed and Dirichlet
boundary value problems by the fixed point theory of contraction mapping. To the best of
our knowledge, there are no results on the existence and multiplicity of positive solutions
for difference φ-Laplacian problems. Therefore, the purpose of this paper is to establish a
global result of positive solutions of (). We state our main result as follows.

Theorem . Let (A) and (A) hold. Then there exists λ∗ >  such that problem () has
at least two positive solutions for λ ∈ (,λ∗), at least one positive solution for λ = λ∗ and no
solution for λ > λ∗.

The result is motivated mainly by the ideas in [, ], in which some global results of
positive solutions were established for boundary value problems of p-Laplacian differen-
tial systems and φ-Laplacian differential systems, respectively.
Generally, in order to make priori estimations on possible positive solutions of φ-

Laplacian problems, the function φ satisfies not only condition (A), but also other ad-
ditional conditions. For example, Wang [] used the following condition.

(A∗) There exist two increasing homeomorphisms ψ,ψ : (,∞)→ (,∞) such that for
all x and y > ,

ψ(x)φ(y)≤ φ(xy) ≤ ψ(x)φ(y).

In [], a more general condition was given.

(A∗∗) For σ > , there exists a constant Cσ >  such that for all s ∈ R, φ(σ s)
φ(s) < Cσ .

In our discussion for the single discrete problem (), we only assume that φ satisfies
condition (A). In addition, in the discussion of nonlinear differential systems in [, ],
monotonicity conditions were imposed on nonlinear terms. In this paper g does not have
to satisfy monotonicity conditions.
The remaining part of this paper is organized as follows. In Section , we show some

lemmas for the later use. In Section , we show the proof of Theorem .. Our proofs are
mainly based on the upper and lower solutions technique arguments and the fixed-point
index theory for cones.

2 Some lemmas
First, we introduce an existence result of solutions based on lower and upper solutions
method for discrete φ-Laplacian boundary value problems, which has been proved by
Cabada [].
Consider the following boundary value problem

{
�(φ(�u(k – ))) + f (k,u(k)) = , k ∈ [,T]Z,
u() = u(T + ) = ,

()

where
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(B) φ : R → R is an odd and strictly increasing function;
(B) f : [,T]Z ×R→ R is continuous.
Let E = {u : [,T + ]Z → RT+} with the norm ‖u‖ =maxt∈[,T+]Z |u(t)|. Given u, v ∈ E,

we say that u≤ v if u(k) ≤ v(k) holds for all k ∈ [,T + ]Z.

Definition . α ∈ E is called a lower solution of problem () if
{

�(φ(�α(k – ))) + f (k,α(k))≥ , k ∈ [,T]Z,
α()≤ , α(T + ) ≤ .

In a same way, we define the upper solution of () by reversing the above inequalities.

Lemma. [] Let (B) and (B) hold.Assume that there exist α and β , respectively lower
and upper solutions of () such that α ≤ β . Then problem () has at least one solution u
with α ≤ u≤ β .

A function u of integer variable is said to be concave if �u(k – ) ≤ . This is the same
as saying that the first difference �u(k – ) is non-increasing. If �u(k – ) < , then u is
said to be strictly concave.

Lemma . Let u(k) be concave on [,  + T]Z, and u() ≥ , u(T + ) ≥ . Then:
(i) u(k)≥  for all k ∈ [,T]Z, and �u(k – ) ≥  for k ∈ [,k∗]Z, �u(k)≤  for

k ∈ [k∗,T]Z, where k∗ ∈ [,  + T]Z satisfies u(k∗) =maxk∈[,+T]Z u(k).
(ii) For each k ∈ [, 
T+

 � – ]Z (
T+
 � denotes the integer part of T+

 ),

u(k) ≥ k
T + 

‖u‖, u ∈ [k,  + T – k]Z.

Specially, u(k) ≥ 
T+‖u‖, u ∈ [,T]Z.

Proof (i) If k∗ =  or T + , the result is clear. Now we assume that k∗ ∈ [,T]Z. Since

�u
(
k∗ – 

)
= u

(
k∗) – u

(
k∗ – 

) ≥ , �u
(
k∗) = u

(
k∗ + 

)
– u

(
k∗) ≤ .

We have by themonotonicity of�u(·) that�u(k–)≥  for k ∈ [,k∗]Z,�u(k) ≤  for k ∈
[k∗,T]Z, which implies that u(k) ≥  holds for all k ∈ [,T]Z by the boundary conditions
u() ≥ , u(T + ) ≥ .
(ii) For a,b ∈ R with a < b, let [a,b]R and (a,b)R denote the closed and open interval on

R, respectively. For any given k ∈ [,T + ]Z, define

ũ(t) =
(
u(k) – u(k – )

)
(t – k) + u(k), t ∈ [k – ,k]R.

Clearly, ũ(k) = u(k) for k ∈ [,T + ]Z and ũ(t) is continuous concave on [,T + ]R. Let
‖ · ‖C[,T+]R denote the super norm in the space C[,T + ]R. It is easy to see that ‖u‖ =
‖u‖C[,T+]R . By the concavity of ũ(t) on [,T + ]R, we have that for any δ ∈ (, T+ )R,

ũ(t) ≥ δ

T + 
‖u‖C[,T+]R , t ∈ [δ,T +  – δ]R.

which implies the expected results. �
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Remark If u(k) is strictly concave on [, +T]Z, and u() ≥ , u(T +) ≥ . Then u(k) > 
for k ∈ [,T]Z, and there exists k∗ ∈ [,  + T]Z such that u(k∗) = ‖u‖, �u(k – ) >  for
k ∈ [,k∗ – ]Z, �u(k∗ – ) ≥ , and �u(k) <  for k ∈ [k∗,T]Z.

Lemma . Let (B) hold and u satisfy the following difference inequality

–�
(
φ
(
�u(k – )

)) ≥ , k ∈ [,T]Z, ()

with u() ≥ , u(T + ) ≥ . Then u(k) is nonnegative concave on [,T + ]Z. Specially, if
inequality () is strict, then u(k) is strictly concave on [,T + ]Z.

Proof Since �[φ(�u(k – ))] = φ(�u(k)) – φ(�u(k – )) ≤ , k ∈ [,T]Z, we have by the
monotonicity of φ that �u(k) ≤ �u(k – ), k ∈ [,T]Z, which implies that u(k) is concave
on [,T + ]Z and u(k) ≥  for [,T + ]Z by Lemma .(i). �

Lemmas . and . yield the following result.

Lemma . Let (B) hold. Then each solution u of () is strictly concave and u(k) >  for
all k ∈ [,T]Z.

Consider the following boundary value problem

{
�(φ(�u(k – ))) + h(k) = , k ∈ [,T]Z,
u() = u(T + ) = ,

()

where h(k) >  for all k ∈ [,T]Z and φ satisfies (A). It is easy to check that u ∈ E is a
solution of () if and only if

u(k) =
k∑
s=

φ–

(
C +

T∑
l=s

h(l)

)
, k ∈ [,T + ]Z, ()

where C satisfies u(T + ) = , i.e.,

T+∑
k=

φ–

(
C +

T∑
l=k

h(l)

)
= . ()

Since φ– is a homeomorphism from R onto itself, the solution C of () is unique. Let

C = –C – λ

T∑
l=

h(l). ()

Then () can be rewritten as follows

u(k) =
T∑
s=k

φ–

(
C +

s∑
l=

h(l)

)
, k ∈ [,T + ]Z, ()
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where C satisfies u() = , i.e.,

T∑
k=

φ–

(
C +

k∑
l=

h(l)

)
= . ()

By Lemmas . and ., the following result holds.

Lemma . Let (A) hold. Assume that u solves () and ‖u‖ = u(k∗). Then

C +
T∑

l≤k∗
h(l)≥ , C +

T∑
l≥k∗+

h(l)≤ .

Equivalently,

C +
k≤k∗–∑

l=

h(l)≤ , C +
k≥k∗∑
l=

h(l)≥ .

Define K = {u ∈ E : u is nonnegative concave on [,T + ]Z}. Then K is a cone in E. De-
fine Tλ : K → E by

(Tλu)(k) =
k∑
s=

φ–

(
C + λ

T∑
l=s

p(l)g
(
u(l)

))
, k ∈ [,T + ]Z,

where C is the unique solution of the following equation

T+∑
k=

φ–

(
C + λ

T∑
l=k

p(l)g
(
u(l)

))
= .

Then Tλ(K) ⊂ K and Tλ is continuous. We know that u is a positive solution of () if and
only if Tλu = u on E.

Lemma . Let (A) and (A) hold,  be a compact subset in (,∞). Then there exists a
constant b >  such that for all λ ∈  and all possible positive solutions u of () at λ, one
has ‖u‖ ≤ b.

Proof Suppose that the conclusion is not true. Then there exists a sequence {λn} ⊂  and
un corresponding positive solutions of () at λn such that ‖un‖ → ∞ as n → ∞. Let λ =
inf{λn}, p = mink∈[,T]Z p(k) and ε = 

λp . Since  /∈ , we know λ > . By (A), there exists
R >  such that g(u) > εφ(u) for all u > R. By the concavity of un and Lemma ., we know
that

un(k) ≥ 
T + 

‖un‖ > R, k ∈ [,T]Z,

holds for n sufficiently large. It follows that

g
(
un(k)

)
> εφ

(
un(k)

)
, k ∈ [,T]Z.
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Let ‖un‖ = un(k∗). If k∗ > , then by Lemma ., we have a contradiction that

un() = φ–

(
C(n)
 + λn

T∑
l=

p(l)g
(
un(l)

))

= φ–

(
C(n)
 + λn

(k∗–∑
k=

+
T∑

k=k∗

)
p(k)g

(
un(k)

))

≥ φ–

(
λn

k∗–∑
k=

p(k)g
(
un(k)

))

> φ–(λpεφ(
un()

))
= un(),

where C(n)
 satisfies un(T + ) = . If k∗ = , then we also have a contradiction that

un(T) = φ–

(
C(n)
 + λn

T∑
l=

p(l)g
(
un(l)

))

= φ–

(
C(n)
 + λnp()g

(
un()

)
+ λn

T∑
k=

p(k)g
(
un(k)

))

≥ φ–

(
λn

T∑
k=

p(k)g
(
un(k)

))

> φ–(λpεφ(
un(T)

))
= un(T),

where C(n)
 satisfies un() = . The proof is completed. �

Lemma . Let (B) hold. Then there exists λ∗ >  such that () has a positive solution
at λ∗.

Proof Take α ≡ . Then α is a lower solution of (). Let β solve the following boundary
value problem

{
�(φ(�u(k – ))) + p(k) = , k ∈ [,T]Z,
u() = u(T + ) = .

TakeM =maxk∈[,T]Z f (β(k)), λ∗ = 
M . Then

�
(
φ
(
�β(k – )

))
+ λ∗p(k)f

(
β(k)

)
= p(k)

(
λ∗f

(
β(k)

)
– 

) ≤ , k ∈ [,T]Z.

Therefore, β is an upper solution of () at λ∗. By Lemma ., () has a positive solution u
at λ∗, and the proof is done. �

Lemma . Let (B) hold. If the problem () has a positive solution at λ̄, then () also has
a positive solution at λ for all  < λ < λ̄.

Proof Let ū be a positive solution of () at λ̄ and λ satisfy  < λ < λ̄. Then ū is an upper
solution of () at λ and α =  is a lower solution. Thus, Lemma . implies that () has a
positive solution at λ∗. �
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Let � = {λ ∈ (,∞) : the problem () has at least one positive solution at λ}.

Lemma . Let (A) and (A) hold. Then � is bounded.

Proof Suppose, on the contrary, that there exists a sequence {λn} ⊂ � and un correspond-
ing positive solutions of () at λn such that λn → ∞ as n → ∞. By (A), there exists ε > 
such that for all u ≥ , g(u) ≥ εφ(u). Since λn → ∞ as n → ∞, there exists δ >  satisfy-
ing δpε >  such that λn > δ holds for n sufficiently large. Let ‖un‖ = un(k∗). Similar to the
arguments in the proof of Lemma ., if k∗ > , we have the following contradiction

un() > φ–(δpεφ(
un()

))
> un(),

and if k∗ = , we also have a contradiction that

un(T) > φ–(δpεφ(
un(T)

))
> un(T). �

Lemma . Let (A) and (A) hold. Then there exists λ∗ >  such that � = (,λ∗].

Proof By Lemmas .-., � is a nonempty bounded interval open at the left with the left
endpoint  /∈ �. We only need to show that it is closed at the right. Let sup� = λ∗. Then
there exists a sequence {λn} ⊂ � satisfying λn < λn+ such that λn → λ∗ as n → ∞. Since
{λn} is bounded, Lemma . implies that there exists a constant ℵ such that for all n and
all possible positive solutions un of () at λn, ‖un‖ ≤ ℵ. It follows that {un} has a convergent
subsequence, say again {un}, which converges to u∗. Since (λn,un) solves problem (), we
know that

{
�(φ(�un(k – ))) + λnp(k)g(un(k)) = , k ∈ [,T]Z,
un() = un(T + ) = .

Let n→ ∞, we have by the continuity of g as well as φ that

{
�(φ(�u∗(k – ))) + λ∗p(k)g(u∗(k)) = , k ∈ [,T]Z,
u∗() = u∗(T + ) = ,

which implies that (λ∗,u∗) solves problem (). By Lemma ., u∗ is positive on [,T]Z and
λ∗ ∈ �. The proof is completed. �

In the succeeding arguments, we need the following well-known fixed point index the-
orem on cones. For proof and details, see Guo [].

Lemma . Let E be a Banach space, let P be a cone in E, and let � be a bounded open
set in E with  ∈ �. Let T : P ∩ �̄ → P be a complete continuous operator satisfying that

Tx = μx, x ∈ P ∩ ∂� ⇒ μ < .

Then i(T ,P ∩ �,P) = .

http://www.advancesindifferenceequations.com/content/2013/1/264
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3 The proof of Theorem 1.1
By Lemma ., there exists λ∗ >  such that problem () has at least one positive solution
for λ ∈ (,λ∗], and no solution for λ > λ∗. So we only need to show the existence of the
second positive solution for λ ∈ (,λ∗). Let u∗ be the positive solution of () at λ∗, and
λ :  < λ < λ∗ be given. Choose a constantM > such that g(u∗(k)) >M for k ∈ [,T]Z. Since
g is uniformly continuous on [,‖u∗‖ + ], there exits a sufficiently small number ε > 
such that for all u ∈ E : ‖u – u∗‖ ≤ ε,

∣∣g(u(k)) – g
(
u∗(k)

)∣∣ < λ∗ – λ

λ
M, k ∈ [,T + ]Z.

Let u∗
ε (k) = u∗(k) + ε, k ∈ [,T + ]Z. We claim that

�
(
φ
(
�u∗

ε (k – )
))
+ λp(k)g

(
u∗

ε (k)
)
< , k ∈ [,T]Z. ()

In fact, for k ∈ [,T]Z,

�
(
φ
(
�u∗

ε (k – )
))
+ λp(k)g

(
u∗

ε (k)
)

= �
(
φ
(
�u∗(k – )

))
+ λp(k)g

(
u∗

ε (k)
)

= –λ∗p(k)g
(
u∗(k)

)
+ λp(k)g

(
u∗

ε (k)
)

= λp(k)
[
g
(
u∗

ε (k)
)
– g

(
u∗(k)

)]
–

(
λ∗ – λ

)
p(k)g

(
u∗(k)

)
<

(
λ∗ – λ

)
p(k)

(
M – g

(
u∗(k)

))
< .

Define � = {u ∈ E : –ε < u(k) < u∗
ε (k),k ∈ [,T]Z}. Then � is bounded and open in E.

Consider the following problem

{
�(φ(�u(k – ))) + λp(k)g∗(u(k)) = , k ∈ [,T]Z,
u() = u(T + ) = ,

()

where

g∗(u) =

⎧⎪⎨
⎪⎩
g(u∗

ε (k)) –
u–u∗

ε (k)
+u–u∗

ε (k)
, u > u∗

ε (k),
g(u),  ≤ u≤ u∗

ε (k),
g(), u < .

Then g∗ : R→ R is continuous and bounded function.We show that all solutions u of ()
satisfy u(k) < u∗

ε (k), k ∈ [,T + ]Z. If it is not true, then there exists k ∈ [,T]Z such that

u(k) – u∗
ε (k) = max

k∈[,T]Z

(
u(k) – u∗

ε (k)
) ≥ .

It follows that �u(k – ) ≥ �u∗
ε (k – ) and �u∗

ε (k) ≥ �u(k). Thus,

�
(
φ
(
�u∗

ε (k – )
)) ≥ �

(
φ
(
�u(k – )

))
. ()

On the other hand,

g∗(u(k)) = g
(
u∗

ε (k)
)
–

u(k) – u∗
ε (k)

 + u(k) – u∗
ε (k)

≤ g
(
u∗

ε (k)
)

http://www.advancesindifferenceequations.com/content/2013/1/264


Bai Advances in Difference Equations 2013, 2013:264 Page 9 of 10
http://www.advancesindifferenceequations.com/content/2013/1/264

and () implies that

�
(
φ
(
�u(k – )

))
= –λp(k)g∗(u(k)) ≥ –λp(k)g

(
u∗

ε (k)
)
> �

(
φ
(
�u∗

ε (k – )
))
,

which contradicts (). Thus, if u is a solution of (), then u ∈ �. DefineT∗
λ the same asTλ

replacing g by g∗. Then T∗
λ : K → K is continuous. Since g∗ is bounded, there exists R > 

such that ‖T∗
λu‖ < R for all u ∈ K . Thus, we can choose R sufficiently large such thatR > R

and� ⊂ BR. HereBR = {u ∈ E : ‖u‖ < R}. Then by Lemma ., we have i(T∗
λ ,BR∩K ,K) = .

Since all positive fixedpoints ofT∗
λ are contained in�, andTλu = u is equivalent toT∗

λu = u
on � ∩K , one has

i(Tλ,� ∩K ,K) = i
(
T∗

λ ,� ∩K ,K
)
= i

(
T∗

λ ,BR ∩K ,K
)
= . ()

By Lemma ., there exists λ̄ > λ∗ such that problem () has no positive solution at λ̄.
Thus, for any open set U in E,

i(Tλ̄,U ∩K ,K) = . ()

Take ε = 
λp , where p = mink∈[,T]Z p(k). By (A), there exists L >  such that g(u) > εφ(u)

for u > L. Let  be a compact set of (,∞) containing λ and λ̄. Then by Lemma ., we
can choose b >  sufficiently large such that all possible solutions u of () at any λ̃ ∈ 
satisfy ‖u‖ < b and that b > (T + )L and � ⊂ Bb . Here Bb = {u ∈ E : ‖u‖ < b}. Define
h : [, ]× (B̄b ∩K) → K by

h(t,u) = Tτ λ̄+(–τ )λ(u).

It is easy to see that h is continuous on [, ] × K , h(,u) = Tλu and h(,u) = Tλ̄u. We
need to prove that h(τ ,u) �= u for all (τ ,u) ∈ [, ]× (∂B̄b ∩ K). Assume that there exists
(τ ,u) ∈ [, ]× (∂B̄b ∩K) such that

u(k) =
k∑
s=

φ–

(
C(h)
 +

(
τ λ̄ + ( – τ )λ

) T∑
l=s

p(l)g
(
u(l)

))
, k ∈ [,T + ]Z,

whereC(h)
 satisfies u(T +) = . Then by Lemma ., u(k) ≥ 

T+‖u‖ > L for k ∈ [,T]Z. Let
‖u‖ = u(k∗). Similar to the proof of Lemma ., if k∗ > , then one can get a contradiction
that

u() > φ–((τ λ̄ + ( – τ )λ
)
pεφ

(
u()

))
> u().

If k∗ = , one can also have a contradiction. Therefore, h(τ ,u) �= u for all (τ ,u) ∈ [, ] ×
(∂B̄b ∩ K) and i(h(τ , ·),Bb ∩ K ,K) is well defined. Thus, by the property of homotopy
invariance and (),

i(Tλ,Bb ∩K ,K) = i(Tλ̄,Bb ∩K ,K) = . ()

http://www.advancesindifferenceequations.com/content/2013/1/264
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Then by the additive property, we have from () and (),

i
(
Tλ, (Bb\�̄)∩K ,K

)
= –.

Therefore, problem () has one positive solution in � ∩ K and another in (Bb\�̄) ∩ K .
The proof is completed.
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