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1 Introduction
Fractional calculus is the field of mathematical analysis, which deals with the investigation
and applications of integrals and derivatives of an arbitrary order. In its turn,mathematical
aspects of studies on fractional differential equationswere discussed bymany authors (see,
for example, Refs. [–] and the references therein). Some recent results on fractional
boundary value problems on a infinite interval can be found in [–] and the references
therein. For example, Liu in [] studied the following boundary value problem for the
fractional differential equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dα
+u(t) = f (t, v(t),Dp

+v(t)), t ∈ (,∞),

Dβ

+v(t) = g(t,u(t),Dq
+u(t)), t ∈ (,∞),

a limt→ t–αu(t) – b limt→Dα–
+ u(t) = u,

c limt→ t–βv(t) – d limt→Dβ–
+ v(t) = v,

limt→∞ Dα–
+ u(t) = u, limt→∞ Dβ–

+ v(t) = v

by using the properties of Green’s function of the corresponding problem and the
Schauder fixed point theorem, where α,β ∈ (, ), p ∈ (,β), q ∈ (,α), u, v,u, v ∈ R,
f , g : (,∞)×R

 →R are continuous functions, and f , g may be singular at t = .
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Liu et al. [] considered the following boundary value problem for fractional differential
equations:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dα
+u(t) = f (t, v(t),Dp

+v(t)), t ∈ (,∞),

Dβ

+v(t) = g(t,u(t),Dq
+u(t)), t ∈ (,∞),

limt→ t–αu(t) = u, limt→ t–βv(t) = v,

limt→Dα–
+ u(t) = u, limt→Dβ–

+ v(t) = v,

where a,b, c,d > , α,β ∈ (, ), p ∈ (β – ,β), q ∈ (α – ,α), u, v,u, v ∈R, f , g : (,∞)×
R

 →R are continuous functions, and f , gmay be singular at t = . By using the properties
of Green’s function together with the Schauder fixed point theorem, it has been proved
that this problem has at least one positive solution.
Our purpose in the first part of this paper is to show the existence of at least one positive

solution for the following fractional problem:
⎧⎨
⎩
Dα

+u(t) = f (t,u(t)), t ∈ (,∞),

limt→ t–αu(t) = a, limt→Dα–
+ u(t) = b,

()

where  < α ≤ , a,b ∈ R, Dα
+ is the Riemann-Liouville fractional derivative of order

α, f : (,∞) × R → R is a continuous function, and f may be singular at t = , i.e.,
limt→+ f (t, ·) = +∞.
In the second part of this paper, we consider an infinite fractional boundary value prob-

lem for singular integro-differential equation of mixed type on the half line:
⎧⎨
⎩
Dα

+u(t) = f (t,u(t), (Su)(t), (Hu)(t)), t ∈ (,∞),

limt→ t–αu(t) = a, limt→Dα–
+ u(t) = b,

()

where S,H : (,∞)× (,∞)→ [,∞),

(Su)(t) =
∫ t


K(t, s)u(s)ds, (Hu)(t) =

∫ ∞


H(t, s)u(s)ds.

The rest of the article is organized as follows: in Section , we shall recall certain re-
sults from the theory of the continuous fractional calculus. In Section , we shall provide
some conditions, under which problem () has at least one positive solution. In Section ,
by suitable conditions, we will prove that problem () has at least one positive solution.
Finally, in Section , we shall provide two numerical examples, which shall explicate the
applicability of our results.

2 Preliminaries
In this section, we present some notations and preliminary lemmas that will be used in
the proofs of the main results.

Definition  Let X be a real Banach space. A non-empty closed set P ⊂ X is called a cone
of X if it satisfies the following conditions:
() x ∈ P, μ ≥ , implies μx ∈ P, and
() x ∈ P, –x ∈ P, implies x = .
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Definition  [, ] The Riemann-Liouville fractional integral operator of order α >  of
function f ∈ L(R+) is defined as

Iα+ f (t) =


�(α)

∫ t


(t – s)α–f (s)ds,

where �(·) is the Euler gamma function.

Definition  [, ] The Riemann-Liouville fractional derivative of order α >  of a con-
tinuous function f : (,∞)→R is defined as

Dα
+ f (t) =


�(n – α)

(
d
dt

)n ∫ t


(t – s)n–α–f (s)ds,

where n = [α] + .

Lemma  [] The equality Dγ

+ I
γ

+ f (t) = f (t), γ >  holds for f ∈ L(, ).

Lemma  [] Let α > , then the differential equation

Dα
+u = 

has a unique solution u(t) = ctα– + ctα– + · · · + cntα–n, ci ∈ R, i = , . . . ,n, where n –  <
α ≤ n.

Lemma  [] Let α > , then the following equality holds for u ∈ L(, ), Dα
+u ∈ L(, );

Iα+D
α
+u(t) = u(t) + ctα– + ctα– + · · · + cntα–n,

ci ∈R, i = , . . . ,n, where n –  < α ≤ n.

3 Existence solution of problem (1)
In this section, we study the existence and uniqueness of solutions of (). To prove the
main result, we need the following definitions and a preliminary lemma.
Let C(,∞) be the set of all continuous functions on (,∞). Choose σ > – and

X :=
{
u ∈ C(,∞) :

t–α

 + tσ+
u(t) is bounded on (,∞)

}
.

For u ∈ X, define the norm by

‖u‖X := sup
t∈(,∞)

(
t–α

 + tσ+
∣∣u(t)∣∣

)
.

It is easy to show that X is a real Banach space. We note that this Banach space can be
equipped with a partial order given by

x, y ∈ X, x ≤ y ⇔ x(t)≤ y(t) for all t ∈ (,∞). ()

Define the classic metric given by

d(x, y) = sup
t∈(,∞)

(
t–α

 + tσ+
∣∣x(t) – y(t)

∣∣) ()

http://www.advancesindifferenceequations.com/content/2013/1/266
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and the cone P ⊂ X by

P =
{
u ∈ X : u(t) ≥ , t ∈ (,∞)

}
.

Definition  f : (,∞) × R → R is called an α-Caratheodory function if it satisfies the
following assumptions:

(i) t → f (t, +tσ+t–α u) is measurable on (,∞) for every u ∈R,
(ii) u → f (t, +tσ+t–α u) is continuous on [, +∞) for all t ∈ (,∞),
(iii) for each r > , there existMr >  and μ ∈ (–,σ ) such that

∣∣∣∣f
(
t,
 + tσ+

t–α
u
)∣∣∣∣ ≤ Mrtμ, t ∈ (,∞), |u| ≤ r.

The following two lemmas are fundamental in the proofs of our main results.

Lemma  [] Let (X,≤) be a partially ordered set, and suppose that there exists a metric
space. Assume that X satisfies the following condition: if {xn} is a nondecreasing sequence
in X such that xn → x then xn ≤ x for all n ∈N. Let T : X → X be a nondecreasing mapping
such that

d(Tx,Ty) ≤ d(x, y) – ϕ
(
d(x, y)

)
, for all x ≥ y, ()

where ϕ : [, +∞) → [, +∞) is a continuous and nondecreasing function such that is pos-
itive in (, +∞) and ϕ() = . If there exists x ∈ X with x ≤ T(x), then T has a fixed
point.

If we consider that (X,≤) satisfies the following condition:

for x, y ∈ X, there exists z ∈ X which is comparable to x and y, ()

then we have the following lemma in [].

Lemma  [] Adding condition () to the hypotheses of Lemma , one obtains uniqueness
of the fixed point of T .

Lemma  (See Lemma . in []) Suppose that h : (,∞) → R is a given function satis-
fying that there exist numbers M >  and k ∈ (–,σ ) such that |h(t)| ≤ Mtk and  < α < ,
a,b ∈ R. Then u is a solution of

⎧⎨
⎩
Dα

+u(t) = h(t), t ∈ (,∞),

limt→ t–αu(t) = a, limt→Dα–
+ u(t) = b,

if and only if u ∈ X and

u(t) =


�(α)

∫ t


(t – s)α–h(s)ds +

b
�(α)

tα– + atα–. ()
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Lemma  Let – < σ < ,  < α < , f : (,∞)× [, +∞) → [, +∞) is an α-Caratheodory
function, tσ f (t,u) ≥  for (t,u) ∈ (,∞) × [, +∞) and limt→+ f (t, ·) = ∞. Assume that
tσ f (t, ·) is a bounded function on (,∞), and define the Hammerstein integral operator
T : P → X by

Tu(t) =


�(α)

∫ t


(t – s)α–f

(
s,u(s)

)
ds +

b
�(α)

tα– + atα–. ()

Then TP ⊂ P.

Proof The proof is straightforward, so we omit it here. �

We state our main result as follows.

Theorem  Assume that  < σ < , and the hypotheses of Lemma  hold. Suppose that

 < λ ≤ �(α)
supt∈(,∞)

t–σ
+tσ+B(α,  – σ)

such that for u, v ∈ [, +∞) with u≥ v and t ∈ (,∞),

 ≤ tσ
[
f
(
t,
 + tσ+

t–α
u
)
– f

(
t,
 + tσ+

t–α
v
)]

≤ λφ(u – v),

where φ : [, +∞) → [, +∞) is continuous and nondecreasing, ϕ(u) = u – φ(u) satisfies
(a) ϕ : [, +∞)→ [, +∞) and is nondecreasing,
(b) ϕ() = ,
(c) ϕ is positive in (, +∞).
Then the boundary value problem () has a unique positive solution.

Proof Firstly, we claim that the operator T is nondecreasing. To this end, by hypothesis,
for u≥ v,

(Tu)(t) =


�(α)

∫ t


(t – s)α–f

(
s,u(s)

)
ds +

b
�(α)

tα– + atα–

=


�(α)

∫ t


(t – s)α–s–σsσ f

(
s,u(s)

)
ds +

b
�(α)

tα– + atα–

≥ 
�(α)

∫ t


(t – s)α–s–σsσ f

(
s, v(s)

)
ds +

b
�(α)

tα– + atα–

=


�(α)

∫ t


(t – s)α–f

(
s, v(s)

)
ds +

b
�(α)

tα– + atα– = (Tv)(t).

Also, for u≥ v, by (), one can get

d(Tu,Tv) = sup
t∈(,∞)

(
t–α

 + tσ+
∣∣(Tu)(t) – (Tv)(t)

∣∣)

= sup
t∈(,∞)

t–α

 + tσ+

[


�(α)

∫ t


(t – s)α–

(
f
(
s,u(s)

)
– f

(
s, v(s)

))
ds

]

http://www.advancesindifferenceequations.com/content/2013/1/266
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= sup
t∈(,∞)

t–α

 + tσ+

[


�(α)

∫ t


(t – s)α–

(
f
(
s,
 + sσ+

s–α
· s–α

 + sσ+
u(s)

)

– f
(
s,
 + sσ+

s–α
· s–α

 + sσ+
v(s)

))
ds

]

= sup
t∈(,∞)

t–α

 + tσ+

[


�(α)

∫ t


(t – s)α–s–σsσ

(
f
(
s,
 + sσ+

s–α
· s–α

 + sσ+
u(s)

)

– f
(
s,
 + sσ+

s–α
· s–α

 + sσ+
v(s)

))
ds

]

≤ sup
t∈(,∞)

t–α

 + tσ+

[


�(α)

∫ t


(t – s)α–s–σλφ

(
s–α

 + sσ+
(
u(s) – v(s)

))
ds

]
.

As the function φ(u) is nondecreasing, then for u ≥ v,

φ

(
s–α

 + sσ+
(
u(s) – v(s)

)) ≤ φ
(‖u – v‖X

)
,

and by the inequality above, we get

d(Tu,Tv) ≤ sup
t∈(,∞)

t–α

 + tσ+

[


�(α)

∫ t


(t – s)α–s–σλφ

(
s–α

 + sσ+
(
u(s) – v(s)

))
ds

]

≤ λφ
(‖u – v‖X

)
sup

t∈(,∞)

t–α

 + tσ+

[


�(α)

∫ t


(t – s)α–s–σ ds

]

≤ λφ
(‖u – v‖X

)
sup

t∈(,∞)

t–σ

 + tσ+


�(α)

∫ 


( –ω)α–ω–σ dω

= λφ
(‖u – v‖X

) 
�(α)

B(α,  – σ) sup
t∈(,∞)

t–σ

 + tσ+

≤ φ
(‖u – v‖X

)
= ‖u – v‖X –

(‖u – v‖X – φ
(‖u – v‖X

))
.

Suppose that ϕ(u) = u – φ(u) and ϕ : [, +∞) → [, +∞) is continuous, nondecreasing,
positive in (,+∞) and ϕ() = . Thus, for u ≥ v, d(Tu,Tv) ≤ d(u, v) – ϕ(d(u, v)). Finally,
take into account that for the zero function, T ≥ , by Lemma , the boundary value
problem () has at least one positive solution.Moreover, this solution is unique since (P,≤)
satisfies condition () and Lemma . This completes the proof. �

Remark  Theorem  extends the result in [] on the existence of a unique nonnegative
solution for the following problem:

⎧⎨
⎩
Dα

+u(t) + f (t,u(t)) = , t ∈ (, ),

u() = u′() = u′′() = .
()

Here the authors worked in the space C[, ].

4 Existence solution of problem (2)
In this section, we study the existence and uniqueness of solutions of (). To prove the
main result, we need the following assumptions:

http://www.advancesindifferenceequations.com/content/2013/1/266
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(H) k := supt∈(,∞)
t–α

+tσ+
∫ t


+sσ+
s–α K(t, s)ds < ∞ and

h := supt∈(,∞)
t–α

+tσ+
∫ ∞
 H(t, s) +sσ+s–α ds <∞;

(H) There exist positive functions Li(t), i = , ,  such that

∥∥∥∥f
(
t,
 + tσ+

t–α
u(t),

(
S
 + tσ+

t–α
u
)
(t),

(
H
 + tσ+

t–α
u
)
(t)

)

–f
(
t,
 + tσ+

t–α
v(t),

(
S
 + tσ+

t–α
v
)
(t),

(
H
 + tσ+

t–α
v
)
(t)

)∥∥∥∥
≤ L(t)|u – v| + L(t)|Su – Sv| + L(t)|Hu –Hv|, ∀u, v ∈R, t ∈ (,∞);

(H) There exists a number ν such that λ ≤ ν < , t ∈ (,∞), where

λ = ( + k + h)IαL ,

and

IαL =max

{
sup

t∈(,∞)

t–α

 + tσ+
Iα+Li(t), i = , , 

}
.

Theorem Assume that (H)holds,and f : (,∞)×R×R×R→R is a jointly continuous
function, which satisfies (H) that there exist numbers M >  and k ∈ (–,σ ) such that
|f (t,u(t), (Su)(t), (Hu)(t))| ≤ Mtk . Then problem () has a unique solution, provided λ < ,
where λ is given in (H).

Proof Let the operator L : X → X be defined by the formula

Lu(t) =


�(α)

∫ t


(t – s)α–f

(
s,u(s), (Su)(s), (Hu)(s)

)
ds

+
b

�(α)
tα– + atα–, t ∈ (,∞). ()

Setting supt∈(,∞) ‖f (t, , , )‖ =M, γ = 
�(α+) supt∈(,∞)

t
+tσ+ , A = supt∈(,∞)

t
+tσ+ , A =

supt∈(,∞)


+tσ+ and choosing

R ≥ 
 – ν

∣∣∣∣
[
γM +

b
�(α)

A + aA

]∣∣∣∣,

where λ ≤ ν < . Let DR = {u ∈ X : ‖u‖ ≤ R}, then DR is a closed, bounded and convex set
of X. For every u ∈DR, by means of (H) and the triangle inequality, for t ∈ (,∞), we get

∥∥f (s,u(s), (Su)(s), (Hu)(s))∥∥
=

∥∥∥∥f
(
s,
 + sσ+

s–α
· s–α

 + sσ+
u(s),

(
S
 + sσ+

s–α
· s–α

 + sσ+
u
)
(s),

(
H
 + sσ+

s–α
· s–α

 + sσ+
u
)
(s)

)∥∥∥∥
≤

∥∥∥∥f
(
s,
 + sσ+

s–α
· s–α

 + sσ+
u(s),

(
S
 + sσ+

s–α
· s–α

 + sσ+
u
)
(s),

http://www.advancesindifferenceequations.com/content/2013/1/266
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(
H
 + sσ+

s–α
· s–α

 + sσ+
u
)
(s)

)
– f (s, , , )

∥∥∥∥ +
∥∥f (s, , , )∥∥

≤ L(s)
s–α

 + sσ+
|u| + L(s)

s–α

 + sσ+
|Su| + L(s)

s–α

 + sσ+
|Hu| +M

≤ L(s)‖u‖ + L(s)‖Su‖ + L(s)‖Hu‖ +M

≤ [
L(s) + kL(s) + hL(s)

]‖u‖ +M ≤ [
L(s) + kL(s) + hL(s)

]
R +M, ()

where

(
S
 + tσ+

t–α
u
)
(t) =

∫ t


K(t, s)

 + sσ+

s–α
u(s)ds,

(
H
 + tσ+

t–α
u
)
(t) =

∫ ∞


H(t, s)

 + sσ+

s–α
u(s)ds.

Now, we will show that LDR ⊂ DR. For all u ∈DR, by (H), (H), (H) and (), we have

∥∥(Lu)(t)∥∥ ≤ sup
t∈(,∞)

t–α

 + tσ+

[∫ t



(t – s)α–

�(α)
{[
L(s) + kL(s) + hL(s)

]
R +M

}
ds

+
b

�(α)
tα– + atα–

]

≤
{

sup
t∈(,∞)

t–α

 + tσ+
Iα+L(t) + k sup

t∈(,∞)

t–α

 + tσ+
Iα+L(t)

+ h sup
t∈(,∞)

t–α

 + tσ+
Iα+L(t)

}
R +


�(α + )

sup
t∈(,∞)

tαt–α

 + tσ+
M

+
b

�(α)
sup

t∈(,∞)

tα–t–α

 + tσ+
+ a sup

t∈(,∞)

tα–t–α

 + tσ+

≤ ( + k + h)IαL R + γM +
b

�(α)
A + aA

≤ λR + ( – ν)R≤ R. ()

Therefore, ‖(Lu)(t)‖ ≤ R.
Next, we shall show that L is a contraction. For u, v ∈ X and for each t ∈ (,∞), by (H)

and (H), one can get

∥∥(Lu)(t) – (Lv)(t)
∥∥ ≤ sup

t∈(,∞)

t–α

 + tσ+

[∫ t



(t – s)α–

�(α)
[
f
(
s,u(s), (Su)(s), (Hu)(s)

)

–f
(
t, v(t), (Sv)(s), (Hv)(s)

)]
ds

]

≤ sup
t∈(,∞)

t–α

 + tσ+

∫ t



(t – s)α–

�(α)
{
L(s)‖u – v‖ + L(t)‖Su – Sv‖

+L(s)‖Hu –Hv‖}ds
≤

{
sup

t∈(,∞)

t–α

 + tσ+
Iα+L(t) + k sup

t∈(,∞)

t–α

 + tσ+
Iα+L(t)

http://www.advancesindifferenceequations.com/content/2013/1/266
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+h sup
t∈(,∞)

t–α

 + tσ+
Iα+L(t)

}
‖u – v‖

≤ ( + k + h)IαL ‖u – v‖ = λ‖u – v‖,

where λ is given in (H). As λ < , therefore, L is a contraction. By the contraction map-
ping principle, we conclude that L has a unique fixed point, which is a unique solution of
problem (). �

5 Application
Example  Consider the following singular boundary value problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D


+u(t) =



(+t

 )

|u|
+|u| +


t(+t)

∫ t


s

 u(s)

(+s

 )(+t+s)

ds

+ 
t(+t)

∫ ∞


s



(+s

 )
e–s cos(t – s)u(s)ds, t ∈ (,∞),

limt→ t

 u(t) = a, limt→D



+u(t) = b.

()

Here α = 
 ,K(t, s) = 

t

 (+t)

· s



(+s

 )(+t+s)

andH(t, s) = 

t

 (+t)

· s



+s


e–s cos(t–s). Choose

σ = – 
 . Then by direct calculations, we can obtain that

k = ., h = ., I


L ≈ ..

Further, we have

λ = ( + k + h)I


L ≈ . < .

Then by using Theorem , problem () has a unique solution on (,∞).

Example  Consider the following singular boundary value problem:

⎧⎪⎨
⎪⎩
D



+u(t) =



√

π t ln( +
t



+t


u), t ∈ (,∞),

limt→ t

 u(t) = a, limt→D



+u(t) = b,

()

where a,b ∈R are constants. Here we have α = 
 and

f (t,u) =



√

π t
ln

(
 +

t 


 + t 
u
)
.

Note that we have limt→+ f (t, ·) = +∞. Let us choose σ = – 
 and σ = 

 , φ(u – v) =
ln(u – v + ). Moreover, for u≥ v and t ∈ (,∞), one can get

 ≤
[



√

π
ln( + u) –



√

π
ln( + v)

]
,

since h(x) = ln( + x) is nondecreasing on [,+∞), and



√

π

[
ln( + u) – ln( + v)

]
=



√

π
ln

 + u
 + v

≤ 

√

π
ln(u – v + ).
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Also, we have

�(  )

supt∈(,∞)
t



+t


B(  ,


 )

=
√
π

>



√

π
.

Therefore, by using Theorem , the boundary value problem () has one positive solution.

Conclusions
The existence of the positive solutions to fractional boundary value problems involving the
nonlinear boundary conditions is an important issue in the area of fractional calculus, and
it is a crucial step for finding the correct numerical solutions of these types of equations.
In this paper, by using a fixed point theorem in partially ordered sets and the contrac-

tion mapping principle, we have proved the existence of at least one positive solution for
two problems of boundary value problems for the fractional differential equation, and we
provided two illustrative examples in order to justify our approach.
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