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1 Introduction
A quadratic stochastic operators (q.s.o. in short), firstly initiated by Bernstein [], is a non-
linear difference equation, which has arisen from some problems of population genetics.
Further development of this theory belongs to Lyubich [, ], Kesten [, ], Vallander [],
and Zakharevich [], where the authors investigate the limit behavior of the trajectories
(or dynamics) of q.s.o. It should be noted that the limit behavior of the trajectories of q.s.o.
on D simplex was fully studied by Lyubich [, ], where it was shown that the ω-limit set
(see definition below) of any initial point is a finite set. Vallander [] studied the dynamics
of some special q.s.o. on D simplex. Vallander’s result was later extended to any finite-
dimensional space by Ganikhodzhaev in [, ]. Later on, this special q.s.o. was called as
Volterra q.s.o., which is, in fact the Lotka-Volterra predator prey equation in discrete set-
tings. The dynamics of Volterra q.s.o. was somehow studied successfully in []. However,
not all q.s.o. are of Volterra-type, and the dynamics of non-Volterra q.s.o. remains open.
Notable results for non-Volterra q.s.o. were obtained by Rozikov and his students [–],
who introduced different classes of q.s.o., such as ‘strictly non-Volterra,’ ‘F-q.s.o.’ (F stands
for a ‘female’ due to its genetic interpretation), ‘separable q.s.o.,’ ‘�-Volterra’ and studied
the limit behavior of the trajectories. A manuscript [] provides some results and open
problem on q.s.o.
A majorization of vectors [] turned out to be a useful tool for classifying q.s.o. into

some of its subclasses. With the help of it, the definition of doubly stochastic and dissi-
pative q.s.o. were introduced in papers [] and [], respectively. Further properties of
such operators were studied in [–]. Of course, Volterra q.s.o. and classes considered
in papers [–] are different from doubly stochastic and dissipative q.s.o. It is to note

© 2013 Shahidi; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2013/1/272
mailto:farruh.shahidi@gmail.com
http://creativecommons.org/licenses/by/2.0


Shahidi Advances in Difference Equations 2013, 2013:272 Page 2 of 13
http://www.advancesindifferenceequations.com/content/2013/1/272

that the limit behavior of the trajectories of the dissipative q.s.o. on finite-dimensional
simplex (the set of vectors with non-negative components summing up to ) was fully
classified in []. Note that a q.s.o. is just a discrete probability distribution of a finite
population. However, there are models where the probability distribution is countably
infinite, which means that a q.s.o. is defined on infinite-dimensional space. In the sim-
plest case, the infinite-dimensional space should be the Banach space � of absolutely
summable sequences. It is worth mentioning that Volterra q.s.o. and doubly stochastic
q.s.o. on infinite-dimensional space was introduced and studied in papers [] and [],
respectively.
Therefore, the purpose of the present paper is to introduce a dissipative q.s.o. on infinite-

dimensional subspace of �, by using majorization for infinite vectors []. We show the
difference between finite- and infinite-dimensional cases. While the existence of fixed
point and convergence of Cesaro averages (that is an ergodic theorem) holds for finite-
dimensional dissipative operators, we show that it fails for infinite-dimensional operators.
We also provide some regular dissipative q.s.o. in infinite-dimensional case.
The paper is organized as follows. The next chapter provides some preliminaries and

results from finite-dimensional cases. In Section , we introduce a dissipative q.s.o. in
infinite-dimensional simplex and study its properties. Finally, we study the limit behavior
of the trajectories of dissipative q.s.o. in Section . We use notations and terminology as
in [, ].

2 Preliminaries
In this section, we give some definitions and state some previous results. Let

Sm– =

{
x ∈ Rm : xi ≥ ,

m∑
i=

xi = 

}

be an (m – )-dimensional simplex. Then the vectors

ek = (, , . . . , ︸︷︷︸
k

, . . . , ), k = ,m

are its vertices. For α ⊂ I = {, , . . . ,m}, the set Fα = {x ∈ Sm– : xi = , i /∈ α} is called a face
of the simplex.
For x = (x,x, . . . ,xm) ∈ Sm–, let us put x↓ = (x[],x[], . . . ,x[m]), where (x[],x[], . . . ,x[m])-

nonincreasing rearrangement of (x,x, . . . ,xm), that is, x[] ≥ x[] ≥ · · · ≥ x[m]. We say []
that x ismajorized by y on Sm–, and write x ≺ y (or y� x) if

k∑
i=

x[i] ≤
k∑
i=

y[i], ∀k = ,m – .

It is easy to see that for any x ∈ Sm–, we have

(

m
,

m
, . . . ,


m

)
≺ x ≺ (, , , . . . , ).
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Definition  An operator V : Sm– → Sm– is called dissipative if

Vx � x, ∀x ∈ Sm–.

More information on dissipative operators on Sm– can be found in []. Now, let us re-
call some terminology. Let x ∈ Sm– and V : Sm– → Sm– be an operator. Then the set
{x,Vx,V x, . . .} is called the trajectory of V starting at the point x. The point x sat-
isfying Vx = x is called fixed. The set of all fixed points of the q.s.o. V is denoted by
Fix(V ). A q.s.o. V : Sm– → Sm– is called regular if the trajectory of any x ∈ Sm– con-
verges to a unique fixed point. Wemay note that regular q.s.o. a priorimust have a unique
fixed point. Let V be a q.s.o. Then the set ω(x) =

⋂
k≥

⋃
n≥k{Vnx} is called an ω-limit

set of trajectory of initial point x ∈ Sm–. From the compactness of the simplex, one can
deduce that ω(x) �= ∅ for all x ∈ Sm–. V is called ergodic if the following limit exists
limn→∞ x+Vx+···+Vn–x

n for any x ∈ Sm–.
The following facts are known for dissipative q.s.o. on Sm–.

Theorem . [, ]
• Any dissipative operator is ergodic.
• Any dissipative q.s.o. has either unique or infinitely many fixed points.
• One of the following statements always holds for a dissipative q.s.o.
- The operator is regular. Its unique point is either a vertex of the simplex or the center
of its face.

- The operator has infinitely many fixed points. ω-Limit set of any initial point is
contained in the set of fixed points, i.e., ω(x)⊂ Fix(V ).

In the next section, we define a dissipative operator on infinite-dimensional simplex and
study the statements above in infinite-dimensional setting.

3 Infinite-dimensional dissipative operators
In this section, we define dissipative quadratic stochastic operators on infinite-dimen-
sional simplex. We study some properties and examples of dissipative q.s.o.
Let � be the set of absolutely summable sequences. The set

S =

{
x = (x,x, . . .) ∈ l : xi ≥ ,

∞∑
i=

xi = 

}
()

is called an infinite-dimensional simplex. The � norm is defined as ‖x‖ = ∑∞
i= |xi|. So,

() can be rewritten as

S =
{
x = (x,x, . . .) ∈ l : xi ≥ ,‖x‖ = 

}
.

It is known that S = co(Extr(S)). Moreover, any extreme point of S has the following form

ek = (, , . . . , , , . . .),

where  stands in kth position. That is, vertices of the simplex are extreme points of the
simplex. An infinite-dimensional quadratic stochastic operator (q.s.o. for shortness) V :
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S → S is defined in the following way

(Vx)k =
∞∑
i,j=

pij,kxixj, k = , , . . . , ()

where the coefficients pij,k , satisfy the following conditions

pij,k = pji,k ≥ ,
∞∑
k=

pij,k = . ()

One can easily see that the sum () is convergent. It is also important to note that the
operator () is well defined, that is, it maps simplex into itself.
For a point x = (x,x, . . .), from S, let x↓ = (x[],x[], . . .) be a nonincreasing rearrange-

ment of x, that is, x[] ≥ x[] ≥ · · · . Recall that for two elements x, y, taken from the simplex
S, we say that x ismajorized by y, and write x≺ y if the following holds

k∑
i=

x[i] ≤
k∑
i=

y[i], ∀k = , , . . . .

This definition ofmajorization is given in []. General definition ofmajorization differs
from the one that is given above in []; however, on �, we can give as above.

Definition  An operator V : S → S is called dissipative if

Vx � x, ∀x ∈ S. ()

Lemma . Let V be a linear dissipative operator, that is Vx = Ax, where A = (aij)i,j∈N is
an infinite matrix. Then A is (, ) column stochastic matrix.

Note that here and henceforth N denotes natural numbers.

Proof of Lemma . Since Vx � x, then by putting x = ei we have Aei � ei. At the same
time, it is easy to see that Aei ≺ ei. That is why (Aei)↓ = (ei)↓, which means that only one
component of the vector Aei is , and the others are . Therefore, the matrix A is (, )
column stochastic matrix. �

From this lemma, it follows that the class of linear dissipative operators on S is not large.
Therefore, we are interested to study nonlinear (that is q.s.o.) dissipative operators. Let us
provide some examples of dissipative quadratic operators.

Example  Let V : Sm– → Sm– be a finite-dimensional dissipative q.s.o., then the opera-
torW : S → S, given by

(Wx)k = (Vx)k , k = ,m,
(Wx)k = , k >m,

}

is an evidently infinite-dimensional dissipative q.s.o. Because V is dissipative, then the
conditions () can easily be verified.
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Example  Let V : Sm– → Sm– be a finite-dimensional dissipative q.s.o., then the oper-
atorW : S → S, given by

(Wx)k = (Vx)k + xk
∑∞

i=m+ xi, k = ,m,
(Wx)k+m = xk+m, k ∈N ,

}

is a dissipative q.s.o. Dissipativity can be verified by using the fact that V is dissipative.

We can also provide somemore examples of a dissipative q.s.o. by pointing out that if an
operator is dissipative, then by rearranging its components, it preserves its dissipativity.
Let us consider the operator V : S → S, given as follows

V (x,x, . . .) = (,x,x, . . .).

One can see that this operator maps infinite-dimensional simplex into itself, and since
(Vx)↓ = x↓, then V is dissipative. One can see that V does not have nonzero fixed points.
As we consider V acting on S, then V has no fixed points. Therefore, Theorem . fails in
infinite-dimensional setting.
Now, let us put x = (, , , . . .) and calculate the following Ceasaro mean

x +Vx + · · · +Vn–x
n

=
(

n
,

n
, . . . ,


n
, , . . .

)
.

Let us consider l norm and denote it by ‖ ·‖. Note that if a sequence on l converges in its
norm, then it converges componentwise. So, if the sequence ( n ,


n , . . . ,


n , , . . .) converges,

it converges to (, , . . .). But it can easily be seen that

∥∥∥∥
(

n
,

n
, . . . ,


n
, , . . .

)
– (, , . . .)

∥∥∥∥

= .

Therefore, the average

lim
n→∞

x + Tx + · · · + Tn–x
n

does not have a limit. Thus, for dissipative q.s.o., an ergodic theorem fails dramatically.
In addition to that, one can see that the trajectory of certain point under V may not con-
verge in general. Indeed, take x = e = (, , , . . .), then Vnx = en (en is nth vertex of the
simplex S), and hence ‖Vnx – Vn+mx‖ = ‖en – en+m‖ = . So, the trajectory is divergent.
We see that when we consider operators in infinite-dimensional space, all the statements
in Theorem . fail dramatically. This is the difference between finite-dimensional and
infinite-dimensional cases.
We now study some properties of dissipative q.s.o.
Given q.s.o. V , we denote aij = (pij,,pij,, . . . ,pij,m, . . .) ∀i, j ∈ N , where pij,k are the coeffi-

cients of q.s.o. V . One can see that aij ∈ S, for all i, j ∈ N .

Lemma . Let V be a dissipative q.s.o. Then the following conditions hold

(aii)↓ = e ∀i ∈N .
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Proof Due to dissipativity of V one has Vx � x, ∀x ∈ S. Now by putting x = ei we get
ei ≺ Vei. On the other hand, we have ei � x, ∀x ∈ S. That is why (Vei)↓ = (ei)↓ = e. Then
the equality Vei = aii implies the assertion. �

The lemma above implies that any dissipative q.s.o. can be written as

(Vx)k =
∑
i∈αk

xi + 
∑
i<j

pij,kxixj, k ∈N , ()

where

αk ⊂N , αi ∩ αj = ∅, i �= j,
∞⋃
k=

αk =N . ()

We call () a canonical form of dissipative q.s.o. V .

Lemma . Let () be a dissipative q.s.o.
(i) If j ∈ αk , then pij,k = (aij)[] ≥ 

 , ∀i ∈N .
(ii) For any k ≥ , one has (aij)[k] = , ∀i ∈N .

Proof (i) Let j ∈ αk and x = ( – λ)ej + λei, where ei, ej are the vertices of the simplex and
 ≤ λ ≤ . We can choose λ sufficiently small so that x[] =  – λ and (Vx)[] = (Vx)k . Since
Vx � x, then x[] ≤ (Vx)[], so  – λ ≤ (Vx)k or

 – λ ≤ ( – λ) + pij,kλ( – λ).

The last inequality implies that pij,k ≥ 
 . Since i is chosen arbitrary, then the above is true

for all i ∈N .
(ii) Denote pij,k∗ =maxt �=k pij,t . This maximum exists as the coefficients of q.s.o. are not

greater than . One can see that (Vx)k∗ = (aij)[]. Now, from

x[] + x[] ≤ (Vx)[] + (Vx)[],

we obtain

 ≤ ( – λ) + (pij,ko + pij,k∗ )λ( – λ).

From this inequality, we get pij,ko +pij,k∗ ≥ λ–λ

λ(–λ) =
–λ

(–λ) =

 (+


–λ

) ≥ . This yields pij,ko +
pij,k∗ =  and (aij)[k] =  ∀k ≥ , ∀i ∈N . �

4 The limit behavior of the trajectories
In this section, we study the limit behavior of the trajectories of dissipative q.s.o.We study
some criteria for the existence of fixed point. We also provide some examples of regular
dissipative q.s.o.

Theorem . A dissipative q.s.o. V defined on infinite-dimensional simplex S has either 
or  or infinitely many fixed points.

The proof is based on expressing V in canonical form, dividing the proof into several
cases and using proof method of its finite-dimensional counterpart.
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Proof of Theorem . First, we rewrite dissipative q.s.o. in its canonical form and corre-
spond the partition {αk ,k ∈N} of N to a dissipative q.s.o. V .
We need to know those numbers k for which k ∈ αk . Hence we consider the following

possible cases
() There is no k such that k ∈ αk , that is, k /∈ αk , ∀k ∈N .
() There exists numbers {ki, i ∈N} such that ki ∈ αki , ∀i ∈N .
() Since there is no k with k ∈ αk and αk is a partition of N , then a particular number k

must belong to one of the set other than αk , say αk . The number k belongs to some αk

and so on. Therefore, there exists a sequence K = {kl, l ∈ N} such that kl ∈ απ (kl), where
π is a bijection on the set K = {kl, l ∈ N}. In this case, the operators V can be written as
follows

(Vx)kl = xπ (kl) +
∑

i∈αkl \{π (kl)} x

i +

∑
i<j pij,kl xixj, kl ∈ K ,

(Vx)k =
∑

i∈αk
xi + 

∑
i<j pij,kxixj, k ∈N \K .

}
()

Taking into account
∑∞

i= xi = , one can rewrite () as

(Vx)kl = xπ (kl) +
∑

i∈αkl \{π (kl)} x

i +

∑
i<j pij,kl xixj –

∑∞
i=,i�=π (kl) xixπ (kl),

kl ∈ K ,
(Vx)k =

∑
i∈αk

xi + 
∑

i<j pij,kxixj, k ∈N \K .

⎫⎪⎬
⎪⎭ ()

The set K can be finite or infinite. We assume that the set K is the largest set, for which
kl ∈ απ (kl), ∀kl ∈ K . In this case, one can show that αk = ∅, ∀k ∈ N \ K . Indeed, clearly
numbers elements of K do not belong to any of the sets αkl , kl ∈ N . This implies that it
is possible to find finite or infinite sequence K ′ = {k′

l , l ∈ N} such that k′
l ∈ απ ′(k′

l )
, where

π ′ is a bijection on K ′. But this implies that we found the set (K ∪ K ′) larger than K with
the property that kl ∈ απ (kl) ∀kl ∈ K ∪ K ′, which is the contradiction. Therefore, one can
consider αk = ∅, ∀k ∈ N \K .
Now, if we define

Lkl =
∑
i<j

pij,kl xixj –
∞∑

i=,i�=π (kl)

xixπ (kl), kl ∈ K , ()

then one can show that Lkl ≥ , ∀kl ∈ K . Indeed, since π (kl) ∈ αkl , kl ∈ K , then Lemma .
implies that piπ (kl),kl ≥  for all i ∈N \ π (kl). Therefore,

Lkl = pπ (kl),kl xxkl + pπ (kl),kl xxkl + · · ·
+

∑
i<j,j �=π (kl)

pij,kl xixj – (xxπ (kl) + xxπ (kl) + xπ (kl)–xπ (kl) + xπ (kl)+xπ (kl) + · · · )

= (pπ (kl),kl – )xxkl + (pπ (kl),kl – )xxkl + · · · +
∑

i<j,j �=π (kl)

pij,kl xixj ≥ .

Let Vx = x. Using Lkl ≥ , and summing up () for all values of kl , one gets

∑
kl∈K

∑
i∈αkl \{π (kl)}

xi = .

http://www.advancesindifferenceequations.com/content/2013/1/272
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Note that since {αk ,k ∈N} is the partition of N , then

∑
k∈N

∑
i∈αk

xi =
∑
i∈N

xi ,

and since αk = ∅, ∀k ∈N \K , one finds

∑
k∈K

∑
i∈αk

xi =
∑
i∈N

xi .

Therefore,

 =
∑
kl∈K

∑
i∈αkl \{π (kl)

xi =
∑
k∈K

∑
i∈αk

xi –
∑
k∈K

xi =
∑
k∈N

xi –
∑
k∈K

xi =
∑

k∈N\K
xi ,

which implies that xk = , ∀k ∈ N \ K . In addition, from (), it follows that all xkl , kl ∈ K
should be equal. So, if K is a finite set, then V has a unique fixed point, which is

x =

⎧⎨
⎩xi = 

|K | , if i ∈ K ,

xi = , otherwise.

If K is an infinite set, then all components of a fixed point should be , therefore, there
are no fixed points.
() Let F be the set of numbers kl such that kl ∈ αkl for all kl ∈ F .
Since there is no k ∈N \F with k ∈ αk and αk is a partition ofN , then a particular number

k must belong to one of the set other than αk , say αk . The number k belongs to some
αk and so on. Therefore, there exists a sequence K = {ki, i ∈N} such that ki ∈ απ (ki), where
π is a bijection on the set K = {ki, i ∈ N}. In this case, the operators V can be written as
follows

(Vx)kl = xkl +
∑

i∈αkl \kl x

i +

∑
i<j pij,kl xixj, kl ∈ F ,

(Vx)kl = x
π (kl)

+
∑

i∈αkl \{π (kl)} x

i +

∑
i<j pij,kl xixj, kl ∈ K ,

(Vx)k =
∑

i∈αk
xi + 

∑
i<j pij,kxixj, k ∈N \ F ∪K .

⎫⎪⎪⎬
⎪⎪⎭ ()

Taking into account
∑∞

i= xi = , one can rewrite () as:

(Vx)kl = xkl +
∑

i∈αkl \{kl} x

i +

∑
i<j pij,kl xixj

–
∑∞

i=,i�=kl xixkl , kl ∈ F ,
(Vx)kl = xπ (kl) +

∑
i∈αkl \{π (kl)} x


i +

∑
i<j pij,kl xixj

–
∑∞

i=,i�=π (kl) xixπ (kl), kl ∈ K ,
(Vx)k =

∑
i∈αk

xi + 
∑

i<j pij,kxixj, k ∈N \ F ∪K .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

()

Both sets F and K can be finite or infinite, and note that F �= ∅, otherwise, the case
would coincide with the previous case. We also assume that the sets F and K are largest
sets satisfying conditions given in their definitions. Therefore, similar to a previous case
one can show that αk = ∅, k ∈N \ F ∪K .
Now, if we define Lkl , kl ∈ F ∪ K as in (), one can show in the same way that Lkl ≥ ,

∀kl ∈ F ∪K . Therefore, by letting Vx = x and summing up () for all values of kl ∈ F ∪K ,

http://www.advancesindifferenceequations.com/content/2013/1/272
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one gets

∑
kl∈F

∑
i∈αkl \{kl}

xi +
∑
kl∈K

∑
i∈αkl \{π (kl)}

xi = .

Note that {αk ,k ∈N} is the partition of N , hence

∑
k∈F∪N

∑
i∈αk

xi =
∑
i∈N

xi

taking into account αk = ∅, ∀k ∈N \ (F ∪K), we find

∑
k∈F∪K

∑
i∈αk

xi =
∑
i∈N

xi .

Therefore,

 =
∑
kl∈F

∑
i∈αkl \{kl}

xi +
∑
kl∈K

∑
i∈αkl \{π (kl)}

xi

=
∑

k∈F∪K

∑
i∈αk

xi –
∑

k∈F∪K
xi =

∑
k∈N

xi –
∑

k∈F∪K
xi =

∑
k∈N\(F∪K )

xi ,

which implies that xk = , ∀k ∈N \K . In addition, it follows that all xkl , kl ∈ K are equal.
Due to the operator above, () can be simplified as follows

(Vx)kl = xkl + Lkl , kl ∈ F ,
(Vx)kl = xπ (kl) + Lkl , kl ∈ K ,
(Vx)k =

∑∞
i,j= pij,kxixj, k ∈N \ (F ∪N).

⎫⎪⎬
⎪⎭ ()

Using (), one can find all the fixed points by putting Vx = x and solving the system of
equations. We consider the following few cases. First of all, note that |F| >  and |K | > 
(here |F| stands for the cardinality of F).
If |F| =  (say, F = {}) and K is finite (say, K = {, , . . . ,k + }), then

Fix(V ) =
{
(α,β ,β , . . . ,β , , , . . .)|α + kβ = ,  ≤ α,β ≤ 

}
,

where β appears k times.
If |F| =  (say, F = {}) andK is infinite, then since all xkl , kl ∈ K are equal and

∑
kl∈K xkl ≤

 implies that xkl =  for all kl ∈ K . Therefore, the operator has a unique fixed point
(, , , . . .).
If F is finite (say, F = {, , . . . ,k}) and K is finite (say, K = k + ,k + , . . . ,k +m), then

Fix(V ) =
{
(α,α, . . . ,α,β ,β , . . . ,β , , , . . .)|kα +mβ = ,  ≤ α,β ≤ 

}
.

If F is finite (say, F = {, , . . . ,k}) and K is infinite, then the unique fixed point is
( k ,


k , . . . ,


k , , , . . .).

Finally, if both F and K are infinite, then the vertices ekl , kl ∈ F of the simplex are fixed.
So, in this case, there are infinitely many fixed points since F is infinite. �
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Corollary . Let dissipative quadratic operator V be given in canonical form (). Then
V has a fixed point if and only if there exists a finite sequence k,k, . . . ,kl (l ≥ ) such that
kl ∈ απ (kl) for some permutation π of the sequence {kl, l ≥ }.

Proof follows from the prof of Theorem ..
Now, we study the limit behavior of the trajectories. We have seen in Section  that the

trajectory of the point under dissipative operator may not converge in general. Here, we
consider a particular case, assuming that a dissipative operator has a unique fixed point.

Theorem . If dissipative q.s.o. V : S → S has a unique fixed point, then the operator is
regular at this point, i.e., the trajectory of any initial point tends to this unique point.

Proof Let us use the decomposition of V given by (), and let F and K be the sets defined
in ().We have seen in the previous Theorem. that an operator has a unique fixed point
if and only if one of the conditions is satisfied: () |F| = , K = ∅, () F = ∅, |K | <∞.
Let us consider the case () and assume that F = {}. Then V has a form

(Vx) = x +
∑

i∈α\{} x

i +

∑∞
i,j= pij,xixj,

(Vx)k =
∑

i∈αi
xi +

∑∞
i,j= pij,kxixj, k �= .

}

Since the sets F and K are chosen as largest, then we can simplify the operator as

(Vx) = x +
∑

i∈α\{} x

i +

∑∞
i,j= pij,xixj –

∑∞
i= xxi,

(Vx)k =
∑∞

i,j= pij,kxixj, k �= .

}
()

Note that we set αk = ∅, k ≥ .
Let us set x(n) = V (n)x and define ϕ(x) = x. Because Lemma . implies that

∑∞
i,j= ×

pij,xixj –
∑∞

i= xxi ≥ , one can see that ϕ(x()) ≥ ϕ(x), which means that ϕ(x(n)), n ∈ N is
monotone and bounded sequence, and hence convergent. We put limn→∞ ϕ(x(n)) = C.
Note that from (), by applying iterations n times to its first equation, we get

x(n+) = x(n) +
∑

i∈α\{}

(
x(n)i

) + ∞∑
i,j=

pij,x(n)i x(n)j –
∞∑
i=

x(n) x(n)i .

Now, since limn→∞ x(n+) = limn→∞ x(n) = C, then

∑
i∈α\{}

(
x(n)i

) = ∞∑
i=

(
x(n)i

) = ,

hence x(n)i →  for all i≥  as n→ ∞. From the last, one can find that x(n) →  as n → ∞.
Finally, from

∥∥x(n) – e
∥∥
 =  – x(n) + x(n) + x(n) + · · · = 

(
 – x(n)

) → 

as n→ ∞, we find that the trajectory of any initial point converges to e.
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Now, we turn to the other case. Let F = ∅ and K = {, , . . . , l}. The unique point in this
case is ( l ,


l , . . . ,


l , , , . . .). The operator has a form () or (). Note that one can assume

π (i) = i + , π (k) = . Therefore, the operator has a form

(Vx)k = xk+ +
∑

i∈αk\{k+} x

i +

∑
i<j pij,kxixj –

∑
i∈N ,i�=k+ xixk+,

 ≤ k ≤ l – ,
(Vx)l = x +

∑
i∈αn\{} xi +

∑
i<j pij,lxixj –

∑∞
i= xix,

(Vx)k =
∑

i∈αk
xi + 

∑
i<j pij,kxixj, k ≥ l + .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ ()

Define

ϕ(x) = x + x + · · · + xl.

Then

ϕ(Vx) =
l∑

i=

(Vx)i =
l∑

i=

xi +
l∑

k=

∑
i∈αk\{k+}

xi +
l∑

i=

Li.

Here, Li satisfy (). Since Li ≥ , then from the above, it follows that ϕ(Vx)≥ ϕ(x). Hence,
the sequence {ϕ(x(n)) : n = , , . . .} is non-decreasing and bounded. That is why the limit
limn→∞ ϕ(x(n)) exists. Let us put C = limk→∞ ϕ(x(n)).
Since K is chosen as largest, then one can rewrite the above as

ϕ(Vx) =
l∑

i=

(Vx)i =
l∑

i=

xi +
∞∑

i=l+

xi +
l∑

i=

Li.

From the last, we get

ϕ
(
x(n+)

)
=

l∑
i=

(
x(n+)

)
i =

l∑
i=

(
x(n)

)
i +

∞∑
i=l+

(
x(n)

)
i +

l∑
i=

L(n)i

= ϕ
(
x(n)

)
+

m∑
i=l+

(
x(n)

)
i +

l∑
i=

L(n)i ,

where

L(n)s =
∑
i<j

pij,s
(
x(n)

)
i

(
x(n)

)
j –

∑
i∈N ,i�=s+

(
x(n)

)
i

(
x(n)

)
s+, s = , l,n = , , . . . .

Since limn→∞ ϕ(x(n)) = limn→∞ ϕ(x(n)) = C and L(n)s ≥ , then we get
∑m

i=l+(x(n))i → 
as n → ∞. Therefore, (x(n))i →  for all i = l + ,∞, as n → ∞. Taking into account∑m

i=(Vkx)i = , we get C = . Furthermore, if n → ∞, then
∑

i∈αs\{s+}(x
(n))i →  for s = , l

and Lki → . Therefore, from

(
x(n+)

)
i =

(
x(n)

)
i+ +

∑
i∈αi\{i+}

(
x(n)

)
i + Lni ,  ≤ i≤ l,
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we get

lim
n→∞

(
x(n)

)
i+ = lim

n→∞
(
x(n)

)
i,

which implies that limn→∞(x(n))i = 
l , ∀i = , l.

Since x(n)i →  as n →  for all i > l, then one can assume that the initial point is taken
in a small neighborhood of the set {x ∈ S|∑l

 xi = }, and hence

∥∥∥∥x(n) –
(

l
,

l
, . . . ,


l
, , , . . .

)∥∥∥∥

=

l
– x(n) +


l
– x(n) + · · · + 

l
– x(n)l + +x(n)l+ + · · ·

= 

(
 –

l∑
i=

x(n)i

)
→ 

as n→ ∞. �

5 Conclusion
In this paper, we study dissipative q.s.o. defined on infinite-dimensional simplex. In this
case, we have some obstacles. First, an infinite-dimensional simplex is not compact in �

topology, nor it is compact in a weak topology, which makes the study of limit behavior
harder. Moreover, the operator may not have fixed points at all. Despite this, we were able
to define the dissipative q.s.o. in such space, and we classified the fixed points of dissipa-
tive operators. We also studied the limit behavior of the trajectories in some particular
cases that can be an impetus to further studies of dissipative q.s.o. on infinite-dimensional
space. There are some questions left unanswered. First, note that simple examples can
show that a dissipative q.s.o. is not non-expansive operator, so we can not use the general
theorems guaranteeing the convergence of Cesaro means. So the questions is: find neces-
sary and sufficient conditions for a dissipative q.s.o. to be mean ergodic (i.e., Cesaro mean
of any initial point converges in � norm). Second, investigate the limit behavior of the
trajectories for arbitrary dissipative q.s.o.
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