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Abstract
This paper presents new results on anti-periodic solutions for impulsive high-order
Hopfield neural networks with time-varying delays in the leakage terms. By
employing a novel proof, some criteria are derived for guaranteeing the existence and
exponential stability of the anti-periodic solution, which are new and complement
previously known results. Moreover, a numerical simulation is given to show the
effectiveness.
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1 Introduction
In this paper, we discuss anti-periodic solutions for impulsive high-order Hopfield neural
networks (IHHNNs) with time-varying delays in the leakage terms

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
i(t) = –ci(t)xi(t – ηi(t)) +

∑n
j= aij(t)gj(xj(t – τij(t)))

+
∑n

j=
∑n

l= bijl(t)gj(xj(t – σijl(t)))gl(xl(t – vijl(t))) + Ii(t),

t > , t �= tk ,

�xi(tk) = dikxi(tk),

xi(t) = ϕi(t), t ∈ [–τi, ], k = , , . . . ,

(.)

where i ∈ N := {, , . . . ,n} and n is the number of units in a neural network, xi(t) cor-
responds to the state vector of the ith unit at time t, ci(t) >  represents the rate at
which the ith unit will reset its potential to the resting state in isolation when discon-
nected from the network and external inputs, aij(t) and bijl(t) are the first- and second-
order connection weights of the neural network, ηi(t) ≥  denotes the leakage delay and
t – ηi(t) >  for all t > . τij(t) ≥ , σijl(t) ≥ , vijl(t) ≥  correspond to the transmis-
sion delays, Ii(t) denotes the external inputs at time t, and gj is the activation function
of signal transmission. ci, ηi, Ii, aij, bijl , gj, τij, σijl , vijl are continuous functions on R. τi =
maxj,l∈N maxt∈[,ω]{ηi(t), τij(t),σijl(t), vijl(t)} is a positive constant. �xi(tk) = xi(t+k ) – xi(tk),
xi(t+k ) = lim�t→+ xi(tk +�t), xi(tk) = lim�t→– xi(tk +�t), i ∈ N , k = , , . . . . tk >  are im-
pulsive moments satisfying tk < tk+ and limk→+∞ tk = +∞. ϕ(t) = (ϕ,ϕ, . . . ,ϕn)T is the
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initial condition and ϕi(·) denotes real-valued continuous functions defined on [–τi, ],
i ∈N .
The impulsive differential equations have been proposed in many fields such as con-

trol theory, physics, chemistry, population dynamics, biotechnologies, industrial robotics,
economics, etc. [–]. High-order neural networks have been the object of intensive anal-
ysis by numerous authors since high-order neural networks have stronger approximation
property, faster convergence rate, greater storage capacity, and higher fault tolerance than
lower-order neural networks [–]. Thus,many high-orderHopfield neural networkswith
impulses have been studied extensively, and a great deal of literature focuses on the exis-
tence and stability of equilibrium points, periodic solutions, almost periodic solutions and
anti-periodic solutions [–]. However, to the best of our knowledge, few authors have
considered the existence and stability of an anti-periodic solution of system (.) with the
leakage delay ηi(t) �= constant. We mention that arguments in [–] are not applicable to
system (.).
The purpose of this paper is to discuss the existence and exponential stability of an anti-

periodic solution for IHHNNs with time-varying delays in the leakage terms of system
(.). The outline of the paper is as follows. In Section , some preliminaries and basic
results are established. In Section , we give sufficient conditions for the existence and
exponential stability of an anti-periodic solution for system (.). In Section , we give an
example and numerical simulation to illustrate our results.

2 Preliminaries and basic results
Throughout this paper, we assume that the following conditions hold.

(H) For i, j, l ∈N and k ∈ Z+, where Z+ denotes the set of all positive integers, there exists
a constant ω >  such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ci(t +ω) = ci(t), ηi(t +ω) = ηi(t),

aij(t +ω)gj(u) = –aij(t)gj(–u),

τij(t +ω) = τij(t), σijl(t +ω) = σijl(t), vijl(t +ω) = vijl(t),

bijl(t +ω)gj(u)gl(u) = –bijl(t)gj(–u)gl(–u),

Ii(t +ω) = –Ii(t), t,u ∈ R.

(.)

(H) For i, j, l ∈N , there exist constants c+i , η+
i , I+i , a+ij , τ+

ij , b+ijl , σ
+
ijl , v

+
ijl such that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c+i =maxt∈[,ω] ci(t), η+
i =maxt∈[,ω] ηi(t),

a+ij =maxt∈[,ω] |aij(t)|, τ+
ij =maxt∈[,ω] τij(t),

b+ijl =maxt∈[,ω] |bijl(t)|, σ +
ijl =maxt∈[,ω] σijl(t),

v+ijl =maxt∈[,ω] vijl(t), I+i =maxt∈[,ω] |Ii(t)|.

(.)

(H) – ≤ dik ≤  for i ∈N and k ∈ Z+.
(H) There exists q ∈ Z+ such that

di(k+q) = dik , tk+q = tk +ω.
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(H) For each j ∈ N , the activation functions gj : R → R are continuous and there exist
nonnegative constants Lj andM such that, for all u, v ∈ R,

gj() = ,
∣∣gj(u) – gj(v)

∣∣ ≤ Lj|u – v|, ∣∣gj(u)∣∣ ≤ M.

(H) For all t >  and i ∈N , there exist positive constants ξi and η such that

–η > –
[
ci(t) – ci(t)ηi(t)c+i

]
ξi +

n∑
j=

(∣∣aij(t)∣∣ + ci(t)ηi(t)a+ij
)
Ljξj

+
n∑
j=

n∑
l=

(∣∣bijl(t)∣∣ + ci(t)ηi(t)b+ijl
)
(Ljξj + Llξl)M. (.)

For convenience, let Rn be the set of all real vectors. We use x = (x,x, . . . ,xn)T ∈ Rn to
denote a column vector, in which the symbol (T ) denotes the transpose of a vector. As
usual in the theory of impulsive differential equations, at the points of discontinuity tk of
the solution t 	→ (x(t),x(t), . . . ,xn(t))T , we assume that (x(t),x(t), . . . ,xn(t))T = (x(t –
),x(t – ), . . . ,xn(t – ))T . It is clear that, in general, the derivative x′

i(tk) does not exist.
On the other hand, according to system (.), there exists the limit x′

i(tk ∓ ). In view of
the above convention, we assume that x′

i(tk) ≡ x′
i(tk – ).

Definition . A solution x(t) of (.) is said to be ω-anti-periodic if
⎧⎨
⎩x(t +ω) = –x(t), t �= tk ,

x((tk +ω)+) = –x(t+k ), k ∈ Z+,

where the smallest positive number ω is called the anti-period of function x(t).

In what follows, we shall prove the lemmas which will be used to prove our main results
in Section .

Lemma . Let (H)-(H) hold. Suppose that x(t) = (x(t),x(t), . . . ,xn(t))T is a solution of
system (.) with initial conditions

xi(s) = ϕi(s),
∣∣ϕi(s)

∣∣ < ξi
γ

η
, s ∈ [–τi, ], (.)

where γ =  +maxi∈N {[c+i η+
i + ]I+i }, i ∈N . Then

∣∣xi(s)∣∣ < ξi
γ

η
for all t > , i ∈N . (.)

Proof Assume that (.) does not hold. From (H), we have

∣∣xi(t+k )∣∣ = | + dik|
∣∣xi(tk)∣∣ ≤ ∣∣xi(tk)∣∣.

So, if |xi(t+k )| > ξi
γ

η
, then |xi(tk)| > ξi

γ

η
. Thus, we may assume that there exist i ∈ N and

t∗ ∈ (tk , tk+) such that

∣∣xi(t∗)∣∣ = ξi
γ

η
, and

∣∣xj(t)∣∣ < ξj
γ

η
for all t ∈ [–τj, t∗), j ∈N . (.)
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In view of (.), for i ∈N , we obtain

x′
i(t) = –ci(t)xi

(
t – ηi(t)

)
+

n∑
j=

aij(t)gj
(
xj

(
t – τij(t)

))

+
n∑
j=

n∑
l=

bijl(t)gj
(
xj

(
t – σijl(t)

))
gl

(
xl

(
t – vijl(t)

))
+ Ii(t)

= –ci(t)xi(t) + ci(t)
[
xi(t) – xi

(
t – ηi(t)

)]
+

n∑
j=

aij(t)gj
(
xj

(
t – τij(t)

))

+
n∑
j=

n∑
l=

bijl(t)gj
(
xj

(
t – σijl(t)

))
gl

(
xl

(
t – vijl(t)

))
+ Ii(t)

= –ci(t)xi(t) + ci(t)
∫ t

t–ηi(t)
x′
i(s)ds +

n∑
j=

aij(t)gj
(
xj

(
t – τij(t)

))

+
n∑
j=

n∑
l=

bijl(t)gj
(
xj

(
t – σijl(t)

))
gl

(
xl

(
t – vijl(t)

))
+ Ii(t), t > , t �= tk . (.)

Calculating the upper left derivative of |xi(t)|, together with (.), (H), (H) and

γ >
[
c+i η

+
i + 

]
I+i ,

we obtain

 ≤ D–∣∣xi(t∗)∣∣
≤ –ci(t∗)

∣∣xi(t∗)∣∣ + ci(t∗)
∫ t∗

t∗–ηi(t∗)

∣∣x′
i(s)

∣∣ds + n∑
j=

∣∣aij(t∗)∣∣∣∣gj(xj(t∗ – τij(t∗)
))∣∣

+
n∑
j=

n∑
l=

∣∣bijl(t∗)∣∣∣∣gj(xj(t∗ – σijl(t∗)
))
gl

(
xl

(
t∗ – vijl(t∗)

))∣∣ + ∣∣Ii(t∗)∣∣

= –ci(t∗)
∣∣xi(t∗)∣∣ + ci(t∗)

∫ t∗

t∗–ηi(t∗)

∣∣∣∣–ci(s)xi(s – ηi(s)
)

+
n∑
j=

aij(s)
[
gj
(
xj

(
s – τij(s)

))
– gj()

]

+
n∑
j=

n∑
l=

bijl(s)
(
gj
(
xj

(
s – σijl(s)

))
– gj()

)
gl

(
xl

(
s – vijl(s)

))
+ Ii(s)

∣∣∣∣ds

+
n∑
j=

∣∣aij(t∗)∣∣∣∣gj(xj(t∗ – τij(t∗)
))
– gj()

∣∣

+
n∑
j=

n∑
l=

∣∣bijl(t∗)∣∣∣∣gj(xj(t∗ – σijl(t∗)
))

– gj()
∣∣∣∣gl(xl(t∗ – vijl(t∗)

))∣∣ + ∣∣Ii(t∗)∣∣

≤ –
[
ci(t∗) – ci(t∗)ηi(t∗)c+i

]∣∣xi(t∗)∣∣ + n∑
j=

(∣∣aij(t∗)∣∣ + ci(t∗)ηi(t∗)a+ij
)
Ljξj

γ

η
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+
n∑
j=

n∑
l=

(∣∣bijl(t∗)∣∣ + ci(t∗)ηi(t∗)b+ijl
)
Ljξj

γ

η
M +

[
c+i η

+
i + 

]
I+i

< –
[
ci(t∗) – ci(t∗)ηi(t∗)c+i

]
ξi

γ

η
+

n∑
j=

(∣∣aij(t∗)∣∣ + ci(t∗)ηi(t∗)a+ij
)
Ljξj

γ

η

+
n∑
j=

n∑
l=

(∣∣bijl(t∗)∣∣ + ci(t∗)ηi(t∗)b+ijl
)
(Ljξj + Llξl)M

γ

η
+

[
c+i η

+
i + 

]
I+i

=

{
–
[
ci(t∗) – ci(t∗)ηi(t∗)c+i

]
ξi +

n∑
j=

(∣∣aij(t∗)∣∣ + ci(t∗)ηi(t∗)a+ij
)
Ljξj

+
n∑
j=

n∑
l=

(∣∣bijl(t∗)∣∣ + ci(t∗)ηi(t∗)b+ijl
)
(Ljξj + Llξl)M

}
γ

η
+

[
c+i η

+
i + 

]
I+i

< –η
γ

η
+

[
c+i η

+
i + 

]
I+i

< .

It is a contradiction and shows that (.) holds. The proof is now completed. �

Remark . After conditions (H)-(H), the solution of system (.) always exists (see [,
]). In view of the boundedness of this solution, from the theory of impulsive differential
equations in [], it follows that the solution of system (.) can be defined on [,+∞).

Lemma . Suppose that (H)-(H) are true. Let x∗(t) = (x∗
 (t),x∗

(t), . . . ,x∗
n(t))T be the

solution of system (.) with initial value ϕ∗(t) = (ϕ∗
 (t),ϕ∗

 (t), . . . ,ϕ∗
n(t))T , and let x(t) =

(x(t),x(t), . . . ,xn(t))T be the solution of system (.) with initial value ϕ(t) = (ϕ(t),ϕ(t),
. . . ,ϕn(t))T . Then there exists a positive constant λ such that

xi(t) – x∗
i (t) =O

(
e–λt), i ∈N .

Proof Let y(t) = x(t) – x∗(t). Then, for i ∈N , it follows that
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y′
i(t) = –ci(t)yi(t – ηi(t)) +

∑n
j= aij(t)[gj(xj(t – τij(t))) – gj(x∗

j (t – τij(t)))]

+
∑n

j=
∑n

l= bijl(t)[gj(xj(t – σijl(t)))gl(xl(t – vijl(t)))

– gj(x∗
j (t – σijl(t)))gl(x∗

l (t – vijl(t)))], t > , t �= tk ,

y+i (t+k ) = ( + dik)yi(tk), k ∈ Z+.

(.)

Define continuous functions �i(r) by setting

�i(r) = –
[
ci(t)erηi(t) – r – ci(t)erηi(t)ηi(t)

(
r + c+i e

rη+i
)]

ξi

+
n∑
j=

(∣∣aij(t)∣∣erτij(t) + a+ijci(t)e
rτ+ij ηi(t)

)
Ljξj

+
n∑
j=

n∑
l=

b+ijlci(t)e
rηi(t)ηi(t)

(
ervijl(t)Llξl + erσijl(t)Ljξj

)
M

+
n∑
j=

n∑
l=

∣∣bijl(t)∣∣(ervijl(t)Llξl + erσijl(t)Ljξj
)
M, r ≥ , t ≥ , i ∈N .
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Then

�i() = –
[
ci(t) – ci(t)ηi(t)c+i

]
ξi +

n∑
j=

(∣∣aij(t)∣∣ + ci(t)ηi(t)a+ij
)
Ljξj

+
n∑
j=

n∑
l=

(∣∣bijl(t)∣∣ + ci(t)ηi(t)b+ijl
)
(Llξl + Ljξj)M

< , t ≥ , i ∈N ,

which, for i ∈ N , together with the continuity of �i(t), implies that we can choose suffi-
ciently small λ satisfying ci(t) > λ >  and η >  such that

–η > �i(λ)

= –
[
ci(t)eληi(t) – λ – ci(t)eληi(t)ηi(t)

(
λ + c+i e

λη+i
)]

ξi

+
n∑
j=

(∣∣aij(t)∣∣eλτij(t) + a+ijci(t)e
λτ+ij ηi(t)

)
Ljξj

+
n∑
j=

n∑
l=

b+ijlci(t)e
ληi(t)ηi(t)

(
eλv+ijl Llξl + eλσ+

ijl Ljξj
)
M

+
n∑
j=

n∑
l=

∣∣bijl(t)∣∣(eλvijl(t)Llξl + eλσijl(t)Ljξj
)
M, t ≥ . (.)

Let

Yi(t) = yi(t)eλt , i ∈N .

Then, for i ∈N ,

Y ′
i (t) = λYi(t) – ci(t)eλtyi

(
t – ηi(t)

)
+ eλt

{ n∑
j=

aij(t)
[
gj
(
xj

(
t – τij(t)

))
– gj

(
x∗
j
(
t – τij(t)

))]

+
n∑
j=

n∑
l=

bijl(t)
[
gj
(
xj

(
t – σijl(t)

))
gl

(
xl

(
t – vijl(t)

))

– gj
(
x∗
j
(
t – σijl(t)

))
gl

(
x∗
l
(
t – vijl(t)

))]}

= λYi(t) – ci(t)eληi(t)Yi(t) + ci(t)eληi(t)
[
Yi(t) – Yi

(
t – ηi(t)

)]
+ eλt

{ n∑
j=

aij(t)
[
gj
(
xj

(
t – τij(t)

))
– gj

(
x∗
j
(
t – τij(t)

))]

+
n∑
j=

n∑
l=

bijl(t)
[
gj
(
xj

(
t – σijl(t)

))
gl

(
xl

(
t – vijl(t)

))

– gj
(
x∗
j
(
t – σijl(t)

))
gl

(
x∗
l
(
t – vijl(t)

))]}
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= λYi(t) – ci(t)eληi(t)Yi(t) + ci(t)eληi(t)
∫ t

t–ηi(t)
Y ′
i (s)ds

+ eλt

{ n∑
j=

aij(t)
[
gj
(
xj

(
t – τij(t)

))
– gj

(
x∗
j
(
t – τij(t)

))]

+
n∑
j=

n∑
l=

bijl(t)
[
gj
(
xj

(
t – σijl(t)

))
gl

(
xl

(
t – vijl(t)

))

– gj
(
x∗
j
(
t – σijl(t)

))
gl

(
x∗
l
(
t – vijl(t)

))]}

= λYi(t) – ci(t)eληi(t)Yi(t) + ci(t)eληi(t)
∫ t

t–ηi(t)

{
λYi(s) – ci(s)eλsyi

(
s – ηi(s)

)

+ eλs
n∑
j=

aij(s)
[
gj
(
xj

(
s – τij(s)

))
– gj

(
x∗
j
(
s – τij(s)

))]

+ eλs
n∑
j=

n∑
l=

bijl(s)
[
gj
(
xj

(
s – σijl(s)

))
gl

(
xl

(
s – vijl(s)

))

– gj
(
x∗
j
(
s – σijl(s)

))
gl

(
x∗
l
(
s – vijl(s)

))]}
ds

+ eλt

{ n∑
j=

aij(t)
[
gj
(
xj

(
t – τij(t)

))
– gj

(
x∗
j
(
t – τij(t)

))]

+
n∑
j=

n∑
l=

bijl(t)
[
gj
(
xj

(
t – σijl(t)

))
gl

(
xl

(
t – vijl(t)

))

– gj
(
x∗
j
(
t – σijl(t)

))
gl

(
x∗
l
(
t – vijl(t)

))]}
, t > , t �= tk , (.)

and

∣∣Yi
(
t+k

)∣∣ = ∣∣( + dik)Yi(tk)
∣∣. (.)

We define a positive constantM as follows:

M =max
i∈N

{
sup

s∈[–τi ,]

∣∣Yi(s)
∣∣}.

Let K be a positive number such that

∣∣Yi(t)
∣∣ ≤ M < Kξi for all t ∈ [–τi, ], i ∈N . (.)

We claim that

∣∣Yi(t)
∣∣ < Kξi for all t > , i ∈N . (.)

Obviously, (.) holds for t = . We first prove that (.) is true for  < t ≤ t. Other-
wise, there exist i ∈ N and ρ ∈ (, t] such that one of the following two cases must oc-
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cur.

() Yi(ρ) = Kξi,
∣∣Yj(t)

∣∣ < Kξj for all t ∈ [,ρ), j ∈N . (.)

() Yi(ρ) = –Kξi,
∣∣Yj(t)

∣∣ < Kξj for all t ∈ [,ρ), j ∈N . (.)

Now, we consider two cases.
Case (i). If (.) holds. Then, from (.), (.) and (H)-(H), we have

 ≤ Y ′
i (ρ)

= λYi(ρ) – ci(ρ)eληi(ρ)Yi(ρ) + ci(ρ)eληi(ρ)
∫ ρ

ρ–ηi(ρ)

{
λYi(s) – ci(s)eλsyi

(
s – ηi(s)

)

+ eλs
n∑
j=

aij(s)
[
gj
(
xj

(
s – τij(s)

))
– gj

(
x∗
j
(
s – τij(s)

))]

+ eλs
n∑
j=

n∑
l=

bijl(s)
[
gj
(
xj

(
s – σijl(s)

))
gl

(
xl

(
s – vijl(s)

))

– gj
(
x∗
j
(
s – σijl(s)

))
gl

(
x∗
l
(
s – vijl(s)

))]}
ds

+ eλρ

{ n∑
j=

aij(ρ)
[
gj
(
xj

(
ρ – τij(ρ)

))
– gj

(
x∗
j
(
ρ – τij(ρ)

))]

+
n∑
j=

n∑
l=

bijl(ρ)
[
gj
(
xj

(
ρ – σijl(ρ)

))
gl

(
xl

(
ρ – vijl(ρ)

))

– gj
(
x∗
j
(
ρ – σijl(ρ)

))
gl

(
x∗
l
(
ρ – vijl(ρ)

))]}

≤ λYi(ρ) – ci(ρ)eληi(ρ)Yi(ρ) + ci(ρ)eληi(ρ)
∫ ρ

ρ–ηi(ρ)

{
λYi(ρ) + c+i e

ληi(s)
∣∣Yi

(
s – ηi(s)

)∣∣

+
n∑
j=

a+ijLje
λτij(s)

∣∣Yj
(
s – τij(s)

)∣∣ + n∑
j=

n∑
l=

b+ijl

× [
eλs∣∣gj(xj(s – σijl(s)

))∣∣∣∣gl(xl(s – vijl(s)
))
– gl

(
x∗
l
(
s – vijl(s)

))∣∣
+ eλs∣∣gl(x∗

l
(
s – vijl(s)

))∣∣∣∣gj(xj(s – σijl(s)
))
– gj

(
x∗
j
(
s – σijl(s)

))∣∣]}ds

+
n∑
j=

∣∣aij(ρ)∣∣Ljeλτij(ρ)
∣∣Yj

(
ρ – τij(ρ)

)∣∣ + n∑
j=

n∑
l=

∣∣bijl(ρ)∣∣
× [

eλρ
∣∣gj(xj(ρ – σijl(ρ)

))∣∣∣∣gl(xl(ρ – vijl(ρ)
))
– gl

(
x∗
l
(
ρ – vijl(ρ)

))∣∣
+ eλρ

∣∣gl(x∗
l
(
ρ – vijl(ρ)

))∣∣∣∣gj(xj(ρ – σijl(ρ)
))
– gj

(
x∗
j
(
ρ – σijl(ρ)

))∣∣]
≤ –

[
ci(ρ)eληi(ρ) – λ – ci(ρ)eληi(ρ)ηi(ρ)

(
λ + c+i e

λη+i
)]
Kξi

+
n∑
j=

(∣∣aij(ρ)∣∣eλτij(ρ) + a+ijci(ρ)e
λτ+ij ηi(ρ)

)
LjKξj
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+
n∑
j=

n∑
l=

b+ijlci(ρ)e
ληi(ρ)ηi(ρ)

(
Meλv+ijl LlKξl +Meλσ+

ijl LjKξj
)

+
n∑
j=

n∑
l=

∣∣bijl(ρ)∣∣(Meλvijl(ρ)LlKξl +Meλσijl(ρ)LjKξj
)

=

{
–
[
ci(ρ)eληi(ρ) – λ – ci(ρ)eληi(ρ)ηi(ρ)

(
λ + c+i e

λη+i
)]

ξi

+
n∑
j=

(∣∣aij(ρ)∣∣eλτij(ρ) + a+ijci(ρ)e
λτ+ij ηi(ρ)

)
Ljξj

+
n∑
j=

n∑
l=

b+ijlci(ρ)e
ληi(ρ)ηi(ρ)

(
eλv+ijl Llξl + eλσ+

ijl Ljξj
)
M

+
n∑
j=

n∑
l=

∣∣bijl(ρ)∣∣(eλvijl(ρ)Llξl + eλσijl(ρ)Ljξj
)
M

}
K

< –ηK

< .

Case (ii). If (.) holds. From (.), (.) and (H)-(H), using a similar method, we can
obtain the contradiction. Therefore, (.) holds for t ∈ [, t]. From (.) and (.), we
know that

∣∣Yi(t)
∣∣ = ∣∣yi(t)∣∣eλt < Kξi, i ∈N ,

and

∣∣Yi
(
t+

)∣∣ = | + di|
∣∣Yi(t)

∣∣ ≤ ∣∣Yi(t)
∣∣ < Kξi, i ∈N .

Thus, for t ∈ [t, t], we may repeat the above procedure and obtain

∣∣Yi(t)
∣∣ = ∣∣yi(t)∣∣eλt < Kξi for all t ∈ [t, t], i ∈N .

Further, we have

∣∣Yi(t)
∣∣ = ∣∣yi(t)∣∣eλt < Kξi for all t > , i ∈N .

That is,

∣∣xi(t) – x∗
i (t)

∣∣ ≤ Kξie–λt , ∀t > , and i ∈N . �

Remark . If x∗(t) = (x∗
 (t),x∗

(t), . . . ,x∗
n(t))T is anω-anti-periodic solution of system (.),

it follows from Lemma . that x∗(t) is globally exponentially stable.

3 Main results
In this section, we study the existence and exponential stability for an anti-periodic solu-
tion of system (.).

http://www.advancesindifferenceequations.com/content/2013/1/273
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Theorem. Suppose that all conditions in Lemma . are satisfied.Then system (.) has
exactly one ω-anti-periodic solution x∗(t).Moreover, x∗(t) is globally exponentially stable.

Proof Let x(t) = (x(t),x(t), . . . ,xn(t))T be a solution of system (.). By Remark ., the
solution x(t) can be defined for all t ∈ [, +∞). By hypothesis (H), we have, for any natural
number h and i ∈N ,

(
(–)h+xi

(
t + (h + )ω

))′

= (–)h+xi
(
t + (h + )ω

)′

= (–)h+
{
–ci

(
t + (h + )ω

)
xi

(
t + (h + )ω – ηi

(
t + (h + )ω

))

+
n∑
j=

aij
(
t + (h + )ω

)
gj
(
xj

(
t + (h + )ω – τij

(
t + (h + )ω

)))

+
n∑
j=

n∑
l=

bijl
(
t + (h + )ω

)
gj
(
xj

(
t + (h + )ω – σijl

(
t + (h + )ω

)))

× gl
(
xl

(
t + (h + )ω – vijl

(
t + (h + )ω

)))
+ Ii

(
t + (h + )ω

)}

= (–)h+
{
–ci(t)xi

(
t + (h + )ω – ηi(t)

)

+
n∑
j=

aij(t)(–)h+gj
(
(–)h+xj

(
t + (h + )ω – τij(t)

))

+
n∑
j=

n∑
l=

bijl(t)(–)h+gj
(
(–)h+xj

(
t + (h + )ω – σijl(t)

))

× gl
(
(–)h+xl

(
t + (h + )ω – vijl(t)

))
+ (–)h+Ii(t)

}

= –ci(t)(–)h+xi
(
t + (h + )ω – ηi(t)

)
+

n∑
j=

aij(t)gj
(
(–)h+xj

(
t + (h + )ω – τij(t)

))

+
n∑
j=

n∑
l=

bijl(t)gj
(
(–)h+xj

(
t + (h + )ω – σijl(t)

))

× gl
(
(–)h+xl

(
t + (h + )ω – vijl(t)

))
+ Ii(t), t �= tk . (.)

Further, by hypothesis (H), we obtain

(–)h+xi
((
tk + (h + )ω

)+)
= (–)h+xi

(
t+k+(h+)q

)
= (–)h+( + di(k+(h+)q))xi(tk+(h+)q)

= ( + dik)(–)h+xi
(
tk + (h + )ω

)
, k = , , . . . . (.)

http://www.advancesindifferenceequations.com/content/2013/1/273
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Thus, for any natural number h, we obtain that (–)h+x(t+(h+)ω) is a solution of system
(.) for all t + (h + )ω ≥ . Hence, –x(t +ω) is also a solution of (.) with initial values

–xi(s +ω), s ∈ [–τi, ], i ∈N .

Then, by the proof of Lemma ., for i ∈N , there exists a constant K >  such that for any
natural number h, we have

∣∣(–)h+xi(t + (h + )ω
)
– (–)hxi(t + hω)

∣∣
=

∣∣xi(t + hω) –
(
–xi(t + hω +ω)

)∣∣
≤ Kξie–λ(t+hω)

= Kξie–λt
(


eλω

)h

, t + hω ≥ , t �= tk , (.)

and

∣∣(–)h+xi((tk + (h + )ω
)+) – (–)hxi

(
(tk + hω)+

)∣∣
= | + dik|

∣∣xi(tk + hω) –
(
–xi(tk + hω +ω)

)∣∣
≤ Kξie–λ(tk+hω)

= Kξie–λtk
(


eλω

)h

, k ∈ Z+. (.)

Moreover, for any natural numberm, and i ∈N , we can obtain

(–)m+xi
(
t + (m + )ω

)
= xi(t) +

m∑
h=

[
(–)h+xi

(
t + (h + )ω

)
– (–)hxi(t + hω)

]
, t + hω ≥ , t �= tk , (.)

and

(–)m+xi
((
tk + (m + )ω

)+)
= xi

(
t+k

)
+

m∑
h=

[
(–)h+xi

((
tk + (h + )ω

)+) – (–)hxi
(
(tk + hω)+

)]
, k ∈ Z+. (.)

Combining (.)-(.) with (.)-(.), we know that (–)mx(t + mω) converges uni-
formly to a piecewise continuous function x∗(t) = (x∗

 (t),x∗
(t), . . . ,x∗

n(t))T on any compact
set of R.
Now we are in a position to prove that x∗(t) is an ω-anti-periodic solution of system

(.). It is easily known that x∗(t) is ω-anti-periodic since

x∗
i (t +ω) = lim

m→+∞(–)mxi(t +ω +mω) = – lim
m+→+∞(–)m+xi

(
t + (m + )ω

)
= –x∗

i (t), t �= tk ,

http://www.advancesindifferenceequations.com/content/2013/1/273
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and

x∗
i
(
(tk +ω)+

)
= – lim

m+→+∞(–)m+xi
((
tk + (m + )ω

)+) = –x∗
i
(
t+k

)
, k ∈ Z+,

where i ∈N . Noting that the right-hand side of (.) is piecewise continuous, togetherwith
(.) and (.), we know that (–)m+{x′

i(t + (m + )ω)} converges uniformly to a piecewise
continuous function on any compact set of R \ {t, t, . . .}. Therefore, letting m → +∞ on
both sides of (.) and (.), we get

x∗′
i (t) = –ci(t)x∗

i (t – ηi(t)) +
∑n

j= aij(t)gj(x∗
j (t – τij(t)))

+
∑n

j=
∑n

l= bijl(t)gj(x∗
j (t – σijl(t)))gl(x∗

l (t – vijl(t))) + Ii(t),
t > , t �= tk ,

x∗
i (t+k ) = ( + dik)x∗

i (tk), k ∈ Z+,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

i ∈N .

Thus, x∗(t) =
(
x∗
 (t),x∗

(t), . . . ,x∗
n(t)

)T is an ω-anti-periodic solution of system (.).
Finally, by Lemma ., we can prove that x∗(t) is globally exponentially stable. This com-

pletes the proof. �

4 Example
In this section, we give an example to demonstrate the results obtained in previous sec-
tions.

Example . Consider the following IHHNNs consisting of two neurons with time-
varying delays in the leakage terms:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
(t) = –.x(t – | sinπ t|

, ) + | sinπ t|
 g(x(t – | sinπ t|))

+ | cosπ t|
 g(x(t – | cosπ t|))

+ cosπ t
 [g(x(t – | cosπ t|))g(x(t – | sinπ t|))

+ g(x(t – | sinπ t|))g(x(t – | cosπ t|))
+ g(x(t – | sinπ t|))g(x(t – | cosπ t|))
+ g(x(t – | sinπ t|))g(x(t – | cosπ t|))]
+  sinπ t,

x′
(t) = –.x(t – | sinπ t|

, ) + | cosπ t|
 g(x(t – | cosπ t|))

+ | sinπ t|
 g(x(t – | sinπ t|))

+ sinπ t
 [g(x(t – | sinπ t|))g(x(t – | cosπ t|))

+ g(x(t – | cosπ t|))g(x(t – | sinπ t|))
+ g(x(t – | cosπ t|))g(x(t – | sinπ t|))
+ g(x(t – | cosπ t|))g(x(t – | sinπ t|))]
+  cosπ t,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t �= k – .,

xi(t+k ) = ( + dik)xi(tk),

di(s) = –, di(s–) = –,

⎫⎬
⎭ tk = k – ., i = , ,k, s = , , . . . .

(.)

http://www.advancesindifferenceequations.com/content/2013/1/273
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Here, it is assumed that the activation functions

g(x) = g(x) = |x + | – |x – |.

Note that

c(t) = c(t) = ., L = L = , M = ,

a(t) =
| sinπ t|


, a(t) =

| cosπ t|


,

a(t) =
| cosπ t|


, a(t) =

| sinπ t|


,

b(t) = b(t) = b(t) = b(t) =
cosπ t


,

b(t) = b(t) = b(t) = b(t) =
sinπ t


,

η(t) = η(t) =
| sinπ t|
,

, I(t) =  sinπ t, I(t) =  cosπ t,

τ(t) = | sinπ t|, τ(t) = | cosπ t|, τ(t) = | cosπ t|, τ(t) = | sinπ t|,
σ(t) = | cosπ t|, σ(t) = σ(t) = σ(t) = | sinπ t|,
σ(t) = | sinπ t|, σ(t) = σ(t) = σ(t) = | cosπ t|,
v(t) = | sinπ t|, v(t) = v(t) = v(t) = | cosπ t|,
v(t) = | cosπ t|, v(t) = v(t) = v(t) = | sinπ t|.

Then we obtain

–
[
ci(t) – ci(t)ηi(t)c+i

]
ξi +

n∑
j=

(∣∣aij(t)∣∣ + ci(t)ηi(t)a+ij
)
Ljξj

+
n∑
j=

n∑
l=

(∣∣bijl(t)∣∣ + ci(t)ηi(t)b+ijl
)
(Ljξj + Llξl)M

< –. + .× 
,

× . +
(




+ × 
,

× 


)
× × 

+
(




+ × 
,

× 


)
× ( + )× × 

= –. < –., ξi = , i = , . (.)

It follows that system (.) satisfies all the conditions in Theorem.. Hence, system (.)
has exactly one -anti-periodic solution. Moreover, the -anti-periodic solution is globally
exponentially stable. The fact is verified by the numerical simulation in Figure .

Remark . Since [–] only dealt with IHHNNs without leakage delays, one can ob-
serve that all the results in these works and the references therein cannot be applicable
to prove the existence and exponential stability of -anti-periodic solution for IHHNNs
(.). This implies that the results of this paper are essentially new.
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Figure 1 Numerical solution x(t) = (x1(t),x2(t))T of systems (4.1) for initial value ϕ(s)≡ (6, –7)T ,
s ∈ [–2, 0].
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