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1 Introduction and background
Let s denote the set of all real and complex sequences x = (xk). By l∞ and c, we denote the
Banach spaces of bounded and convergent sequences x = (xk) normed by ‖x‖ = supn|xn|,
respectively. A linear functional L on l∞ is said to be a Banach limit [] if it has the following
properties:
() L(x)≥  if n≥  (i.e., xn ≥  for all n),
() L(e) = , where e = (, , . . .),
() L(Dx) = L(x), where the shift operator D is defined by D(xn) = {xn+}.

Let B be the set of all Banach limits on l∞. A sequence x ∈ �∞ is said to be almost con-
vergent if all Banach limits of x coincide. Let ĉ denote the space of almost convergent
sequences. Lorentz [] has shown that

ĉ =
{
x ∈ l∞ : lim

m
tm,n(x) exists uniformly in n

}
,

where

tm,n(x) =
xn + xn+ + xn+ + · · · + xn+m

m + 
.

By a lacunary θ = (kr), r = , , , . . . , where k = , we shall mean an increasing sequence
of non-negative integers with kr – kr– → ∞ as r → ∞. The intervals determined by θ will
be denoted by Ir = (kr–,kr] and hr = kr – kr–.The ratio kr

kr–
will be denoted by qr .

The space of lacunary strongly convergent sequencesNθ was defined by Freedman et al.
[] as follows:

Nθ =
{
x = (xk) : limr


hr

∑
k∈Ir

|xk – le| =  for some l
}
.
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There is a strong connection between Nθ and the space w of strongly Cesàro summable
sequences which is defined by

w =

{
x = (xk) : limn


n

n∑
k=

|xk – le| =  for some l

}
.

In the special case where θ = (r), we have Nθ = w.
More results on lacunary strong convergence can be seen from [–].
Ruckle [] used the idea of a modulus function f to construct a class of FK spaces

L(f ) =

{
x = (xk) :

∞∑
k=

f
(|xk|) < ∞

}
.

The space L(f ) is closely related to the space l which is an L(f ) space with f (x) = x for all
real x ≥ .
Maddox [] introduced and examined some properties of the sequence spaces w(f ),

w(f ) and w∞(f ) defined using a modulus f , which generalized the well-known spaces w,
w and w∞ of strongly summable sequences.
Recently Savaş [] generalized the concept of strong almost convergence by using a

modulus f and examined some properties of the corresponding new sequence spaces.
Waszak [] defined the lacunary strong (A,ϕ)-convergence with respect to a modulus
function.
Following Ruckle, a modulus function f is a function from [,∞) to [,∞) such that
(i) f (x) =  if and only if x = ,
(ii) f (x + y) ≤ f (x) + f (x) for all x, y≥ ,
(iii) f increasing,
(iv) f is continuous from the right at zero.
Since |f (x)– f (y)| ≤ f (|x–y|), it follows from condition (iv) that f is continuous on [,∞).
By a ϕ-function we understood a continuous non-decreasing function ϕ(u) defined for

u≥  and such that ϕ() = , ϕ(u) >  for u >  and ϕ(u) → ∞ as u→ ∞.
A ϕ-function ϕ is called no weaker than a ϕ-functionψ if there are constants c,b,k, l > 

such that cψ(lu)≤ bϕ(ku) (for all large u) and we write ψ ≺ ϕ.
ϕ-functions ϕ and ψ are called equivalent and we write ϕ ∼ ψ if there are positive con-

stants b, b, c, k, k, l such that bϕ(ku) ≤ cψ(lu)≤ bϕ(ku) (for all large u).
A ϕ-function ϕ is said to satisfy (�)-condition (for all large u) if there exists a constant

K >  such that ϕ(u) ≤ Kϕ(u).
In the present paper, we introduce and study some properties of the following sequence

space that is defined using the ϕ-function and the generalized three parametric real ma-
trix.

2 Main results
Let ϕ and f be a given ϕ-function and a modulus function, respectively. Moreover, let
A = (ank(i)) be the generalized three parametric real matrix, and let a lacunary sequence
θ be given. Then we define

N
θ (A,ϕ, f ) =

{
x = (xk) : limr


hr

∑
n∈Ir

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)
=  uniformly in i

}
.
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If x ∈ N
θ (A,ϕ, f ), the sequence x is said to be lacunary strong (A,ϕ)-convergent to zero

with respect to a modulus f . When ϕ(x) = x, for all x, we obtain

N
θ (A, f ) =

{
x = (xk) : limr


hr

∑
n∈Ir

f

(∣∣∣∣∣
∞∑
k=

ank(i)
(|xk|)

∣∣∣∣∣
)
=  uniformly in i

}
.

If we take f (x) = x, we write

N
θ (A,ϕ) =

{
x = (xk) : limr


hr

∑
n∈Ir

∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣ =  uniformly in i

}
.

If we take A = I and ϕ(x) = x respectively, then we have []

N
θ =

{
x = (xk) : limr


hr

∑
n∈Ir

f
(|xk|) =  uniformly in i

}
.

If we define the matrix A = (ank(i)) as follows: for all i,

ank(i) :=

{

n if n≥ k,
 otherwise,

then we have

N
θ (C,ϕ, f ) =

{
x = (xk) : limr


hr

∑
n∈Ir

f

(∣∣∣∣∣ n
n∑
k=

ϕ
(|xk|)

∣∣∣∣∣
)
=  uniformly in i

}
,

ank(i) :=

{

n if i≤ k ≤ i + n – ,
 otherwise,

then we have

N
θ (ĉ,ϕ, f ) =

{
x = (xk) : limr


hr

∑
n∈Ir

f

(∣∣∣∣∣ n
i+n∑
k=i

ϕ
(|xk|)

∣∣∣∣∣
)
=  uniformly in i

}
.

We are now ready to write the following theorem.

Theorem . Let A = (ank(i)) be the generalized three parametric real matrix, and let the
ϕ-function ϕ(u) satisfy the condition (�). Then the following conditions are true.
(a) If x = (xk) ∈ w(A,ϕ, f ) and α is an arbitrary number, then αx ∈ w(A,ϕ, f ).
(b) If x, y ∈ w(A,ϕ, f ), where x = (xk), y = (yk) and α, β are given numbers, then

αx + βy ∈ w(A,ϕ, f ).

The proof is a routine verification by using standard techniques and hence is omitted.

Theorem . Let f be anymodulus function, and let the generalized three parametric real
matrix A and the sequence θ be given. If

w(A,ϕ, f ) =

{
x = (xk) : limm


m

m∑
n=

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)
=  uniformly in i

}
,

then the following relations are true.
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(a) If lim infr qr > , then we have w(A,ϕ, f ) ⊆N
θ (A,ϕ, f ).

(b) If supr qr < ∞, then we have N
θ (A,ϕ, f ) ⊆ w(A,ϕ, f ).

(c)  < lim infr qr ≤ lim supr qr < ∞, then we have N
θ (A,ϕ, f ) = w(A,ϕ, f ).

Proof (a) Let us suppose that x ∈ w(A,ϕ, f ). There exists δ >  such that qr >  + δ for all
r ≥ , and we have hr/kr ≥ δ/( + δ) for sufficiently large r. Then, for all i,


kr

kr∑
n=

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)

≥ 
kr

∑
n∈Ir

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)

=
hr
kr


hr

∑
n∈Ir

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)

≥ δ

 + δ


hr

∑
n∈Ir

f

(∣∣∣∣∣
∞∑
k=

ankϕ
(|xk|)

∣∣∣∣∣
)
.

Hence, x ∈N
θ (A,ϕ, f ).

(b) If lim supr qr < ∞, then there exists M >  such that qr < M for all r ≥ . Let x ∈
N

θ (A,ϕ, f ) and ε be an arbitrary positive number, then there exists an index j such that
for every j ≥ j and all i,

Rj =

hj

∑
n∈Ir

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)
< ε.

Thus, we can also find K >  such that Rj ≤ K for all j = , , . . . . Now, letm be any integer
with kr– ≤ m ≤ kr , then we obtain, for all i,

I =

m

m∑
n=

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)

≤ 
kr–

kr∑
n=

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)
= I + I,

where

I =


kr–

j∑
j=

∑
n∈Ij

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)
,

I =


kr–

m∑
j=j+

∑
n∈Ij

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)
.

It is easy to see that

I =


kr–

j∑
j=

∑
n∈Ij

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)

=


kr–

(∑
n∈I

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)
+ · · · +

∑
n∈Ij

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
))
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≤ 
kr–

(hR + · · · + hjRj )

≤ 
kr–

jkj sup
≤i≤j

Ri

≤ jkj
kr–

K .

Moreover, we have, for all i,

I =


kr–

m∑
j=j+

∑
n∈Ij

f

(∣∣∣∣∣
∞∑
k=

ankϕ
(|xk|)

∣∣∣∣∣
)

=


kr–

m∑
j=j+


hj

∑
n∈Ij

f

(∣∣∣∣∣
∞∑
k=

ankϕ
(|xk|)

∣∣∣∣∣
)
hj

≤ ε


kr–

m∑
j=j+

hj

≤ ε
kr
kr–

= εqr < ε ·M.

Thus I ≤ jkj
kr–

K + ε ·M. Finally, x ∈ w(A,ψ , f ).
The proof of (c) follows from (a) and (b). This completes the proof. �

We now prove the following theorem.

Theorem . Let f be a modulus function. Then N
θ (A,ϕ) ⊂N

θ (A,ϕ, f ).

Proof Let x ∈N
θ (A,ϕ). Let ε >  be given and choose  < δ <  such that f (x) < ε for every

x ∈ [, δ]. We can write


hr

∑
n∈Ir

f

∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣ = S + S,

where S = 
hr

∑
n∈Ir f (|

∑∞
k= ank(i)ϕ(|xk|)|), and this sum is taken over

∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣ ≤ δ

and

S =

hr

∑
n∈Ir

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)
,

and this sum is taken over
∣∣∣∣∣

∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣ > δ.
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By the definition of the modulus f , we have S = 
hr

∑
n∈Ir f (δ) = f (δ) < ε and further

S = f ()

δ


hr

∑
n∈Ir

∞∑
k=

ank(i)ϕ
(|xk|).

Therefore we have x ∈N
θ (A,ϕ, f ).

This completes the proof. �

3 A-Statistical convergence
The idea of convergence of a real sequence was extended to statistical convergence by
Fast [] (see also Schoenberg []) as follows: IfN denotes the set of natural numbers and
K ⊂ N, then K(m,n) denotes the cardinality of the set K ∩ [m,n]. The upper and lower
natural density of the subset K is defined by

d(K) = lim
n→∞ sup

K(,n)
n

and d(K) = lim
n→∞ inf

K(,n)
n

.

If d(K) = d(K), then we say that the natural density of K exists and it is denoted simply by
d(K). Clearly, d(K) = limn→∞ K (,n)

n .
A sequence (xk) of real numbers is said to be statistically convergent to L if for arbitrary

ε > , the set K(ε) = {k ∈ N : |xk – L| ≥ ε} has natural density zero. Statistical convergence
turned out to be one of the most active areas of research in summability theory after the
work of Fridy [] and Šalát [].
In another direction, a new type of convergence, called lacunary statistical convergence,

was introduced in [] as follows.
A sequence (xk)n∈N of real numbers is said to be lacunary statistically convergent to L

(or Sθ -convergent to L) if for any ε > ,

lim
r→∞


hr

∣∣{k ∈ Ir : |xk – L| ≥ ε
}∣∣ = ,

where |A| denotes the cardinality ofA⊂N. In [] the relation between lacunary statistical
convergence and statistical convergence was established among other things. Moreover,
Kolk [] defined A-statistical convergence by using non-negative regular summability
matrix.
In this section we define (A,ϕ)-statistical convergence by using the generalized three

parametric real matrix and the ϕ-function ϕ(u).
Let θ be a lacunary sequence, and let A = (ank(i)) be the generalized three parametric

real matrix; let the sequence x = (xk), the ϕ-function ϕ(u) and a positive number ε >  be
given. We write, for all i,

Kr
θ

(
(A,ϕ), ε

)
=

{
n ∈ Ir :

∞∑
k=

ank(i)ϕ
(|xk|) ≥ ε

}
.

The sequence x is said to be (A,ϕ)-statistically convergent to a number zero if for every
ε > ,

lim
r


kr

μ
(
Kr

θ

(
(A,ϕ), ε

))
=  uniformly in n,

http://www.advancesindifferenceequations.com/content/2013/1/274
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where μ(Kr
θ ((A,ϕ), ε)) denotes the number of elements belonging to Kr

θ ((A,ϕ), ε). We de-
note by Sθ (A,ϕ) the set of sequences x = (xk) which are lacunary (A,ϕ)-statistical conver-
gent to zero. We write

Sθ (A,ϕ) =
{
x = (xk) : limr


hr

μ
(
Kr

θ

(
(A,ϕ), ε

))
=  uniformly in i

}
.

Theorem . If ψ ≺ ϕ, then Sθ (A,ψ)⊂ Sθ (A,ϕ).

Proof By assumption we have ψ(|xk|) ≤ bϕ(c|xk|) and we have, for all i,

∞∑
k=

ank(i)ψ
(|xk|) ≤ b

∞∑
k=

ank(i)ϕ
(
c|xk|

) ≤ L
∞∑
k=

ank(i)ϕ
(|xk|)

for b, c > , where the constant L is connectedwith the properties of ϕ. Thus, the condition∑∞
k= ank(i)ϕ(|xk|) ≥  implies the condition

∑∞
k= ank(i)ϕ(|xk|) ≥ ε, and finally we get

μ
(
Kr

θ

(
(A,ϕ), ε

)) ⊂ μ
(
Kr

θ

(
(A,ψ), ε

))
and

lim
r


hr

μ
(
Kr

θ

(
(A,ϕ), ε

)) ≤ lim
r


hr

μ
(
Kr

θ

(
(A,ψ), ε

))
.

This completes the proof. �

We finally prove the following theorem.

Theorem . (a) If the matrix A, the sequence θ and functions f and ϕ are given, then

N
θ

(
(A,ϕ), f

) ⊂ Sθ (A,ϕ).

(b) If the ϕ-function ϕ(u) and the matrix A are given, and if the modulus function f is
bounded, then

Sθ (A,ϕ) ⊂N
θ

(
(A,ϕ), f

)
.

(c) If the ϕ-function ϕ(u) and the matrix A are given, and if the modulus function f is
bounded, then

Sθ (A,ϕ) =N
θ

(
(A,ϕ), f

)
.

Proof (a) Let f be a modulus function, and let ε be a positive number. We write the fol-
lowing inequalities:


hr

∑
n∈Ir

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)

≥ 
hr

∑
n∈Ir

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)
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≥ 
hr
f (ε)

∑
n∈Ir



≥ 
hr
f (ε)μ

(
Kr

θ (A,ϕ), ε
)
,

where

Ir =

{
n ∈ Ir :

∞∑
k=

ank(i)ϕ
(|xk|) ≥ ε

}
.

Finally, if x ∈N
θ ((A,ϕ), f ), then x ∈ Sθ (A,ϕ).

(b) Let us suppose that x ∈ Sθ (A,ϕ). If the modulus function f is a bounded function,
then there exists an integer L such that f (x) < L for x≥ . Let us take

Ir =

{
n ∈ Ir :

∞∑
k=

ank(i)ϕ
(|xk|) < ε

}
.

Thus we have


hr

∑
n∈Ir

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)

≤ 
hr

∑
n∈Ir

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)

+

hr

∑
n∈Ir

f

(∣∣∣∣∣
∞∑
k=

ank(i)ϕ
(|xk|)

∣∣∣∣∣
)

≤ 
hr
Mμ

(
Kr

θ

(
(A,ϕ), ε

))
+ f (ε).

Taking the limit as ε → , we obtain that x ∈N
θ (A,ϕ, f ).

The proof of (c) follows from (a) and (b).
This completes the proof. �
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