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Abstract
In this paper, we study the existence and uniqueness of solutions for the boundary
value problem of fractional difference equations

{
–�νy(t) = f (t + ν – 1, y(t + ν – 1)),

y(ν – 3) = 0, �y(ν – 3) = 0, y(ν + b) = g(y)

and

{
–�νy(t) = λf (t + ν – 1, y(t + ν – 1)),

y(ν – 3) = 0, �y(ν – 3) = 0, y(ν + b) = g(y),

respectively, where t = 1, 2, . . . ,b, 2 < ν ≤ 3, f : {ν – 1, . . . ,ν + b} ×R →R is a
continuous function and g ∈ C([ν – 3,ν + b]Zν–3 ,R) is a continuous functional. We
prove the existence and uniqueness of a solution to the first problem by the
contraction mapping theorem and the Brouwer theorem. Moreover, we present the
existence and nonexistence of a solution to the second problem in terms of the
parameter λ by the properties of the Green function and the Guo-Krasnosel’skii
theorem. Finally, we present some examples to illustrate the main results.
MSC: 34A08; 34B18; 39A12

Keywords: discrete fractional equation; boundary value problem; existence and
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1 Introduction
In recent years, fractional differential equations have been of great interest. It is caused
both by the intensive development of the theory of fractional calculus itself and by the ap-
plications of such constructions in various sciences such as physics, mechanics, chemistry
and engineering. Mathematicians have employed this fractional calculus in recent years
to model and solve a variety of applied problems. Indeed, as Podlubny outlines in [], frac-
tional calculus aids significantly in the fields of viscoelasticity, capacitor theory, electrical
circuits, electro-analytical chemistry, neurology, diffusion, control theory and statistics.
The continuous fractional calculus has developed greatly in the last decades. Some of

the recent progress in the continuous fractional calculus includes the paper [], in which
the authors explored a continuous fractional boundary value problem of conjugate type
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using cone theory, they then deduced the existence of one or more positive solutions. Of
particular interest with regard to the present paper is the recent work by Benchohra et al.
[]. In that paper, the authors considered a continuous fractional differential equationwith
nonlocal conditions. Other recent work in the direction of those articles may be found, for
example, in [–].
In recent years, a number of papers on the discrete fractional calculus have appeared,

such as [–], which has helped to build up some of the basic theory of this area. For
example, Atici and Eloe discussed the properties of the generalized falling function, a cor-
responding power rule for fractional delta-operators and the commutativity of fractional
sums in []. They presented in [] more rules for composing fractional sums and dif-
ferences. Goodrich studied a two-point fractional boundary value problem in [], which
gave the existence results for a certain two-point boundary value problem of right-focal
type for a fractional difference equation. At the same time, a number of papers appeared,
and these began to build up the theoretical foundations of the discrete fractional calcu-
lus. For example, a recent paper by Atici and Eloe [] explored some of the theories of
a conjugate discrete fractional boundary value problem. Discrete fractional initial value
problems were considered in a paper by Atici and Eloe [].
Atici and Eloe in [] considered a two-point boundary value problem for the finite frac-

tional difference equation

–�νy(t) = f
(
t + ν – , y(t + ν – )

)
, t = , , . . . ,b + ,

y(ν – ) = , y(ν + b + ) = ,

where  < ν ≤  is a real number, b ≥  is an integer and f : [ν,ν + b]Nν– × R → R is
continuous. They analyzed the corresponding Green function, provided an application
and obtained sufficient conditions for the existence of positive solutions for a two-point
boundary value problem for a nonlinear finite fractional difference equation.
Goodrich in [] considered a discrete fractional boundary value problem of the form

–�νy(t) = f
(
t + ν – , y(t + ν – )

)
,

y(ν – ) = , y(ν + b) = g(y),

where t ∈ [,b]N := {, , . . . ,b}, f : [ν – ,ν – , . . . ,ν + b – ]Nν– ×R→R is a continuous
function, g ∈ C([ν –,ν + b]Zν– ,R) is a given functional, and  < ν ≤ . He established the
existence and uniqueness of a solution to this problem by the contraction mapping theo-
rem, the Brouwer fixed point theorem and the Guo-Krasnosel’skii fixed point theorem.
Although the boundary value problem of fractional difference equations has been stud-

ied by several authors, the present works are almost all concerned with  < μ ≤ , very
little is known in the literature about a fractional difference equation with  <μ ≤ .
Motivated by all theworks above, in this paper, we first aim to study the following bound-

ary value problem:

⎧⎨
⎩–�νy(t) = f (t + ν – , y(t + ν – )), t = , , , . . . ,b,

y(ν – ) = , �y(ν – ) = , y(ν + b) = g(y),
(.)
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where t = , , , . . . ,b,  < ν ≤ , f : {ν – , . . . ,ν + b – }Nν– × R → R is continuous and
g ∈ C([ν – ,ν + b]Zν– ,R) is a continuous functional.
Our second aim is to investigate the boundary value problem of a fractional difference

equation with parameter

⎧⎨
⎩–�νy(t) = λf (t + ν – , y(t + ν – )), t = , , , . . . ,b,

y(ν – ) = , �y(ν – ) = , y(ν + b) = g(y),
(.)

where t = , , , . . . ,b,  < ν ≤ , f : {ν – , . . . ,ν + b – }Nν– × R → R is continuous and
g ∈ C([ν–,ν+b]Zν– ,R) is a continuous functional, λ is a positive parameter.We establish
some sufficient conditions for the nonexistence and existence of at least one or twopositive
solutions for the boundary value problem by considering the eigenvalue intervals of the
nonlinear fractional differential equation with boundary conditions.
The plan of this paper is as follows. We first give the form of solutions of problem (.),

second we prove the existence and uniqueness of a solution to problem (.) by the con-
traction mapping theorem and the Brouwer theorem, and then the eigenvalue intervals
for the boundary value problem of nonlinear fractional difference equation (.) are con-
sidered by the properties of the Green function and the Guo-Krasnosel’skii fixed point
theorem on cones. Finally we present some examples to illustrate the main results.

2 Preliminaries
For the convenience of the readers, we first present some useful definitions and funda-
mental facts of fractional calculus theory, which can be found in [, ].

Definition . [] We define tν := �(t+)
�(t+–ν) for any t and ν , for which the right-hand side

is defined.We also appeal to the convention that if t+–ν is a pole of the gamma function
and t +  is not a pole, then tν = .

Definition . [] The νth fractional sum of a function f , for ν > , is defined by

�–ν f (t;a) :=


�(ν)

t–ν∑
s=a

(t – s – )ν–f (s)

for t ∈ {a+ ν,a+ ν + , . . .} :=Na+ν . We also define the νth fractional difference for ν >  by
�ν f (t) :=�N�ν–Nf (t), where t ∈Na+ν and ν ∈N is chosen so that  ≤ N –  < ν ≤ N .

Lemma . [] If t ≤ r, then tα ≤ rα for any α > .

Lemma . [] Let  ≤ N –  < ν ≤ N . Then �–ν�νy(t) = y(t) + Ctν– + Ctν– + · · · +
CNtν–N for some Ci ∈R with  ≤ i≤ N .

Lemma . [] For t and s, for which both (t – s– )ν and (t – s– )ν are defined, we find
that

�s
[
(t – s – )ν

]
= –ν(t – s – )ν–.

http://www.advancesindifferenceequations.com/content/2013/1/275
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Now let us consider a linear boundary value problem, which is important for us to facil-
itate the analysis of problems (.) and (.).

Lemma . Let h : [ν – ,ν + b – ]Zν– → R and g : Rb+ → R. A function y is a solution
of the problem

–�νy(t) = h(t + ν – ), (.)

y(ν – ) = , (.)

�y(ν – ) = , (.)

y(ν + b) = g(y), (.)

where t ∈ [,b]Z if and only if y(t), t ∈ [ν – ,ν + b]Zν– , has the form

y(t) =
b∑
s=

G(t, s)h(s + ν – ) +
tν–

(ν + b)ν–
g(y),

where

G(t, s) =


�(ν)

⎧⎨
⎩

tν–(ν+b–s–)ν–
(ν+b)ν– – (t – s – )ν–, s < t – ν +  ≤ b,

tν–(ν+b–s–)ν–
(ν+b)ν– , t – ν +  ≤ s≤ b.

Proof By Lemma ., we obtain

y(t) = –�–νh(t + ν – ) +Ctν– +Ctν– +Ctν–, t ∈ [ν – ,ν + b]Zν– . (.)

From (.) we get

y(ν – ) = –�–νh(t + ν – )|t=ν– +C(ν – )ν– +C(ν – )ν– +C(ν – )ν–.

Noting that

�–νh(t + ν – )|t=ν– = –


�(ν)

t–ν∑
s=

(t – s – )ν–h(s + ν – )|t=ν– = ,

(ν – )ν– = , (ν – )ν– = ,

we deduce C = .
By (.) we have

�y(ν – ) = y(ν – ) – y(ν – ) = ,

then y(ν – ) = . We note that

y(ν – ) = –�–νh(t + ν – )|t=ν– +C(ν – )ν– +C(ν – )ν–

http://www.advancesindifferenceequations.com/content/2013/1/275
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and

�–νh(t + ν – )|t=ν– = , (ν – )ν– = ,

it follows that C = .
From (.) we know

y(ν + b) = –�–νh(t + ν – )|t=ν+b +C(ν + b)ν– = g(y), (.)

which implies that

C =


(ν + b)ν–

[


�(ν)

b∑
s=

(ν + b – s – )ν–h(s + ν – ) + g(y)

]
.

Consequently, we deduce that y(t) has the form

y(t) = –


�(ν)

t–ν∑
s=

(t – s – )ν–h(s + ν – )

+


(ν + b)ν–

[


�(ν)

b∑
s=

(ν + b – s – )ν–h(s + ν – ) + g(y)

]
tν–

= –


�(ν)

t–ν∑
s=

(t – s – )ν–h(s + ν – )

+
tν–

(ν + b)ν–�(ν)

b∑
s=

(ν + b – s – )ν–h(s + ν – ) +
tν–

(ν + b)ν–
g(y)

=
b∑
s=

G(t, s)h(s + ν – ) +
tν–

(ν + b)ν–
g(y) (.)

for t ∈ [ν – ,ν + b]Zν– , where

G(t, s) =


�(ν)

⎧⎨
⎩

tν–(ν+b–s–)ν–
(ν+b)ν– – (t – s – )ν–, s < t – ν +  ≤ b,

tν–(ν+b–s–)ν–
(ν+b)ν– , t – ν +  ≤ s≤ b.

This shows that if (.)-(.) has a solution, then it can be represented by (.) and that
every function of the form (.) is a solution of (.)-(.), which completes the proof.

�

Theorem . The Green function G(t, s) satisfies the following conditions:
(i) G(t, s) >  for (t, s) ∈ [ν – ,ν + b]Zν– × [,b].
(ii) maxt∈[ν–,ν+b]Zν–

G(t, s) =G(s + ν – , s) for s ∈ [,b].
(iii) There exists a positive number γ ∈ (, ) such that

min
t∈[ b+ν

 , (b+ν)
 ]

G(t, s)≥ γ max
t∈[ν–,ν+b]Zν–

G(t, s) = γG(s + ν – , s) for s ∈ [,b].

The proof of this theorem is similar to that of Theorem . in []. Hence, we omit the
proof here.

http://www.advancesindifferenceequations.com/content/2013/1/275
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3 Existence and uniqueness of solution
In this section, we wish to show that under certain conditions, problem (.) has at least
one solution.We know that problem (.) can be recast as an equivalent summation equa-
tion. It follows from Lemma . that y is a solution of (.) if and only if y is a fixed point
of the operator T :Rb+ →R, where

(Ty)(t) := –


�(ν)

t–ν∑
s=

(t – s – )ν–f
(
t + ν – , y(t + ν – )

)

+
tν–

(ν + b)ν–�(ν)

b∑
s=

(ν + b – s – )ν–f
(
t + ν – , y(t + ν – )

)

+
tν–

(ν + b)ν–
g(y) (.)

for t ∈ [ν – ,ν + b]Zν– . We use this fact to prove the first existence theorem.

Theorem . Define ‖y‖ = maxt∈[ν–,ν+b]Zν–
|y(t)|. Suppose that f (t, y) and g(y) are Lip-

schitz in y. That is, there exist α,β >  such that |f (t, y) – f (t, y)| ≤ α‖y – y‖, |g(y) –
g(y)| ≤ β‖y – y‖ for any functions y, y defined on [ν – ,ν + b]Zν– . Then if the condi-
tion

α
b∏
j=

(
ν + j
j

)
+ β <  (.)

holds, then problem (.) has a unique solution.

Proof We show that T is a contraction mapping. To achieve this, we notice that for given
y and y,

‖Ty – Ty‖ ≤ α‖y – y‖ max
t∈[ν–,ν+b]Zν–

[


�(ν)

t–ν∑
s=

(t – s – )ν–
]

+ α‖y – y‖ max
t∈[ν–,ν+b]Zν–

tν–

�(ν)(ν + b)ν–

b∑
s=

(ν + b – s – )ν–

+ β‖y – y‖ max
t∈[ν–,ν+b]Zν–

tν–

(ν + b)ν–
. (.)

By an application of Lemma ., we get


�(ν)

t–ν∑
s=

(t – s – )ν– =


�(ν)

[
–

ν
(t – s)ν

]t–ν+

s=

=
�(t + )

�(ν + )�(t +  – ν)

≤ �(ν + b + )
�(b + )�(ν + )

=
b∏
j=

(
ν + j
j

)
. (.)

http://www.advancesindifferenceequations.com/content/2013/1/275
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Similar to the above inequality, we have

tν–

�(ν)(ν + b)ν–

b∑
s=

(ν + b – s – )ν– ≤ 
�(ν)

b∑
s=

(ν + b – s – )ν–

=


�(ν)

[
–

ν
(ν + b – s)ν

]b+

s=

=
�(ν + b + )

�(b + )�(ν + )

=
b∏
j=

(
ν + j
j

)
. (.)

From another application of Lemma ., we obtain

tν–

(ν + b)ν–
≤ (ν + b)ν–

(ν + b)ν–
= . (.)

So, putting (.)-(.) in (.), we conclude that

‖Ty – Ty‖ ≤
{
α

b∏
j=

(
ν + j
j

)
+ β

}
‖y – y‖.

Then condition (.) holds. We find that (.) has a unique solution, which completes the
proof of the theorem. �

Byweakening the conditions imposed on f (t, y) and g(y), we can still obtain the existence
of a solution to (.). We apply the Brouwer theorem to accomplish this.

Theorem . Suppose that there exists a constant K >  such that f (t, y) satisfies the in-
equality

max
(t,y)∈[ν–,ν+b]Zν–×[–K ,K ]

∣∣f (t, y)∣∣ ≤ K
�(ν+b+)

�(ν+)�(b+) + 
(.)

and g(y) satisfies the inequality

max
y∈[–K ,K ]

∣∣g(y)∣∣ ≤ K
�(ν+b+)

�(ν+)�(b+) + 
. (.)

Then (.) has at least one solution y satisfying |y(t)| ≤ K for all t ∈ [ν – ,ν + b]Zν– .

Proof Consider the Banach space B := {y ∈ R
b+ : ‖y‖ ≤ K}. T is defined as (.). It is

obvious that T is a continuous operator. Therefore, our main objective is to show that
T :B → B . That is, whenever ‖y‖ ≤ K , it follows that ‖Ty‖ ≤ K . Once this is established,
we use the Brouwer theorem to deduce the conclusion.
Assume that inequalities (.) and (.) hold for given f and g . For convenience, we let

	 :=
K

�(ν+b+)
�(ν+)�(b+) + 

, (.)

http://www.advancesindifferenceequations.com/content/2013/1/275
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which is a strictly positive constant. Then we have

‖Ty‖ ≤ max
t∈[ν–,ν+b]Zν–


�(ν)

t–ν∑
s=

(t – s – )ν–
∣∣f (s + ν – , y(s + ν – )

)∣∣

+ max
t∈[ν–,ν+b]Zν–

tν–

�(ν)(ν + b)ν–

b∑
s=

(ν + b – s – )ν–
∣∣f (s + ν – , y(s + ν – )

)∣∣

+ max
t∈[ν–,ν+b]Zν–

tν–

(ν + b)ν–
∣∣g(y)∣∣

≤ 	 max
t∈[ν–,ν+b]Zν–

[


�(ν)

t–ν∑
s=

(t – s – )ν– +
tν–

�(ν)(ν + b)ν–

b∑
s=

(ν + b – s – )ν–
]

+	 max
t∈[ν–,ν+b]Zν–

tν–

(ν + b)ν–
. (.)

As in the proof of Theorem ., we can simplify the expression on the right-hand side
of inequality (.). Indeed, we know that


�(ν)

t–ν∑
s=

(t – s – )ν– +
tν–

�(ν)(ν + b)ν–

b∑
s=

(ν + b – s – )ν–

≤ 
�(ν)

t–ν∑
s=

(t – s – )ν– +


�(ν)

b∑
s=

(ν + b – s – )ν–

≤ 
�(ν)

b∑
s=

(ν + b – s – )ν– +


�(ν)

b∑
s=

(ν + b – s – )ν–

=


�(ν)

b∑
s=

(ν + b – s – )ν–. (.)

On the one hand, from Lemma . we know tν– is increasing in t, thus we have

b∑
s=

(ν + b – s – )ν– =
[
–

ν
(ν + b – s)ν

]b+

s=
=

�(ν + b + )
ν�(b + )

. (.)

On the other hand,

tν–

(ν + b)ν–
≤ . (.)

Inserting (.)-(.) into (.), we can obtain

‖Ty‖ ≤ 	

[
�(ν + b + )

�(ν + )�(b + )

]
+	 = 	

[
�(ν + b + )

�(ν + )�(b + )
+ 

]
. (.)

By substituting (.) into (.), we have

‖Ty‖ ≤ 	

[
�(ν + b + )

�(ν + )�(b + )
+ 

]
= K . (.)

http://www.advancesindifferenceequations.com/content/2013/1/275
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Thus, from (.) we deduce that T : B → B . Consequently, it follows at once by the
Brouwer theorem that there exists a fixed point of the map T , say Ty = y with y ∈ B .
So, this function y is a solution of (.) and y satisfies the bound |y(t)| ≤ K for each
t ∈ [ν – ,ν + b]Zν– . And this completes the proof of the theorem. �

4 Existence of a positive solution
In this section, we show the existence of positive solutions for boundary value prob-
lem (.).

Lemma . [] Let B be a Banach space, and let K ⊆ B be a cone. Assume that 
 and

 are two bounded open subsets contained in B such that  ∈ 
 and 
 ⊆ 
. Assume
further that T :K ∩ (
 \ 
) →K is a completely continuous operator. If either
() ‖Ty‖ ≤ ‖y‖ for y ∈K ∩ ∂
 and ‖Ty‖ ≥ ‖y‖ for y ∈K ∩ ∂
, or
() ‖Ty‖ ≥ ‖y‖ for y ∈K ∩ ∂
 and ‖Ty‖ ≤ ‖y‖ for y ∈K ∩ ∂
,

then T has at least one fixed point in K ∩ (
 \ 
).

Define the Banach space B by

B =
{
y : [ν – ,ν + b]Zν– →R : y(ν – ) = y(ν – ) = , y(ν + b) = g(y)

}
,

with the norm ‖y‖ =max{|y(t)|, t ∈ [ν – ,ν + b]Zν–}.
For tν– is increasing, we get maxt∈[ν–,ν+b]Zν–

tν–
(ν+b)ν– = . Thus, there exists a positive

constant γ such that

min
t∈[ ν+b

 , (ν+b) ]Zν–

tν–

(ν + b)ν–
≥ γ max

t∈[ν–,ν+b]Zν–

tν–

(ν + b)ν–
.

In fact, for t ∈ [ ν+b
 , (ν+b) ]Zν– ,

tν–
(ν+b)ν– is strictly positive, then we let

k = min
t∈[ ν+b

 , (ν+b) ]Zν–

tν–

(ν + b)ν–
.

Take  < γ ≤ k. Then

min
t∈[ ν+b

 , (ν+b) ]Zν–

tν–

(ν + b)ν–
≥ γ max

t∈[ν–,ν+b]Zν–

tν–

(ν + b)ν–
.

Denote γ̃ =min{γ ,γ}. Then we have

min
t∈[ ν+b

 , (ν+b) ]Zν–

tν–

(ν + b)ν–
≥ γ̃ max

t∈[ν–,ν+b]Zν–

tν–

(ν + b)ν–
. (.)

Define the cone

P =
{
y ∈ B : y(t) ≥ , min

t∈[ ν+b
 , (ν+b) ]Zν–

y(t) ≥ γ̃ ‖y‖, t ∈ [ν – ,ν + b]Zν–

}
.

http://www.advancesindifferenceequations.com/content/2013/1/275
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We define an operator Tλ :P → B as follows:

(Tλy)(t) = λ

b∑
s=

G(t, s)f
(
s + ν – , y(s + ν – )

)
+ λ

tν–

(ν + b)ν–
g(y), t ∈ [ν – ,ν + b]Zν– .

It is easy to see from Lemma . that y is a solution of (.) if and only if y is a fixed point
of Tλ.
Suppose that f is a nonnegative function. Then, from Theorem . and (.), we have

min
t∈[ ν+b

 , (ν+b) ]Zν–

(Tλy)(t)

= min
t∈[ ν+b

 , (ν+b) ]Zν–

λ

b∑
s=

G(t, s)f
(
s + ν – , y(s + ν – )

)

+ min
t∈[ ν+b

 , (ν+b) ]Zν–

λ
tν–

(ν + b)ν–
g(y)

≥ γ λ max
t∈[ν–,ν+b]Zν–

b∑
s=

G(t, s)f
(
s + ν – , y(s + ν – )

)

+ γ̃ λ max
t∈[ν–,ν+b]Zν–

tν–

(ν + b)ν–
g(y)

≥ γ̃ λ max
t∈[ν–,ν+b]Zν–

b∑
s=

G(t, s)f
(
s + ν – , y(s + ν – )

)

+ γ̃ λ max
t∈[ν–,ν+b]Zν–

tν–

(ν + b)ν–
g(y)

= γ̃ ‖Tλy‖. (.)

Thus, Tλ(P)⊂P .

Lemma . Tλ :P →P is completely continuous.

Proof Note that Tλ is a summation operator on a discrete finite set, so Tλ is trivially com-
pletely continuous. �

For convenience, we define:
(F) f (t, y) = h(t)g(y), where h is a positive function, g is a nonnegative functional;
(F)

lim
‖y‖→+

g(y)
‖y‖ = , lim‖y‖→+∞

g(y)
‖y‖ = +∞;

(F)

lim
‖y‖→+

g(y)
‖y‖ = +∞, lim‖y‖→+∞

g(y)
‖y‖ = .
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Set l = � (ν+b)
 –ν+�+– ν+b

 –ν+�,M =maxG(t, s) for (t, s) ∈ [ν–,ν+b]Zν– × [,b],

m =
∑� (ν+b) –ν+�

s= ν+b
 –ν+� G(s + ν – , s), h =minh(t), H =maxh(t) for t ∈ [ν – ,ν + b]Zν– .

Theorem . Suppose that conditions (F) and (F) hold. If there exist a sufficiently small
positive constant δ and a sufficiently large constant L such that (MH(b + ) + )δ <mhL
holds, then for each

λ ∈ (
(mhL)–,

((
MH(b + ) + 

)
δ
)–), (.)

boundary value problem (.) has at least one positive solution.

Proof By condition (F), there exists r >  such that

g(y) ≤ δr,  < ‖y‖ ≤ r. (.)

So, for y ∈P with ‖y‖ = r, by (.) and (.), we have, for all t ∈ [ν – ,ν + b]Zν– ,

(Tλy)(t) = λ

b∑
s=

G(t, s)f
(
s + ν – , y(s + ν – )

)
+ λ

tν–

(ν + b)ν–
g(y)

≤ λM
b∑
s=

h(s + ν – )g
(
y(s + ν – )

)
+ λg(y)

≤ λMH(b + )δr + λδr

= λ
(
MH(b + ) + 

)
δr

≤ r = ‖y‖. (.)

Thus, if we choose 
 = {y ∈ B : ‖y‖ < r}, then (.) implies that

‖Tλy‖ ≤ ‖y‖, y ∈P ∩ ∂
. (.)

Similarly, by condition (F), we can find  < r < r and a sufficiently large constant L
such that

g(y) ≥ L
γ  r, ‖y‖ ≥ r. (.)

And then we set r∗ = r/γ > r and 
 = {y ∈ B : ‖y‖ < r∗}. Then y ∈P and ‖y‖ = r∗ imply

min
t∈[ ν+b

 , (ν+b) ]Zν–

y(t) ≥ γ ‖y‖ = γ r∗ = r,

thus

y(t) ≥ r for all t ∈
[

ν + b


,
(ν + b)



]
Zν–

.
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Therefore, for given t ∈ [ b+ν
 , (b+ν)

 ], by Theorem ., (.) and (.), we have

(Tλy)(t) = λ

b∑
s=

G(t, s)f
(
s + ν – , y(s + ν – )

)
+ λ

tν–

(ν + b)ν–
g(y)

≥ λ

� (ν+b) –ν+�∑
s= ν+b

 –ν+�
G(t, s)h(s + ν – )g

(
y(s + ν – )

)

≥ λγh
L
γ  r

� (ν+b) –ν+�∑
s= ν+b

 –ν+�
G(s + ν – , s)

≥ λmhLr∗

≥ r∗ = ‖y‖. (.)

Hence, from (.) we have

‖Tλy‖ ≥ ‖y‖, y ∈P ∩ ∂
. (.)

Now, from (.), (.) and Lemma ., we have Tλ has a fixed point y ∈ P ∩ (
 \ 
)
with r ≤ ‖y‖ ≤ r∗ . Then the theorem is proved. �

Theorem . Assume that conditions (F) and (F) hold. If there exists a sufficiently large
constant L such that (MbH + ) <mhL holds, then for each

λ ∈ (
(mhL)–,

(
MH(b + ) + 

)–), (.)

boundary value problem (.) has at least one positive solution.

Proof By condition (F), there exist r >  and a sufficiently large constant L >  such that

g(y) >
L
γ
r for  < ‖y‖ < r. (.)

Let 
 = {y ∈ B,‖y‖ < r}. Then, for y ∈ 
,

(Tλy)(t) = λ

b∑
s=

G(t, s)f
(
s + ν – , y(s + ν – )

)
+ λ

tν–

(ν + b)ν–
g(y)

≥ λ

� (ν+b) –ν+�∑
s= ν+b

 –ν+�
G(t, s)h(s + ν – )g

(
y(s + ν – )

)

≥ λγmh
L
γ
r

= λmhLr

≥ r = ‖y‖. (.)
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Then (.) implies that

‖Tλy‖ ≥ ‖y‖, y ∈P ∩ ∂
. (.)

Next, we consider two cases for the construction of 
.
Case . Suppose that g is bounded. Then there exists some R > r such that

g(y) ≤ R for y ∈P . (.)

From (.) we know

λ <
(
MH(b + ) + 

)–. (.)

Thus, from (.) and (.), we get

(Tλy)(t) = λ

b∑
s=

G(t, s)f
(
s + ν – , y(s + ν – )

)
+ λ

tν–

(ν + b)ν–
g(y)

≤ λM
b∑
s=

h(s + ν – )g
(
y(s + ν – )

)
+ λg(y)

≤ λMHR(b + ) + λR

= λ
(
MH(b + ) + 

)
R

≤ R = ‖y‖. (.)

Case . Suppose that g is unbounded. From (.) we know λ < (MH(b + ) + )–, so
λ < ((MH(b+ ) + )δ)– for a sufficiently small constant δ. Then, by condition (F), there
exists some R such that

g(y) ≤ δ‖y‖, ‖y‖ ≥ R. (.)

Choose R such that R > r and for  < ‖y‖ ≤ R, g(y) ≤ g(R). Define R = max{R,R}.
Now we set 
 = {y ∈ B : ‖y‖ < R}, then g(R)≤ δR. Thus, for y ∈ ∂
, we have

(Tλy)(t) = λ

b∑
s=

G(t, s)f
(
s + ν – , y(s + ν – )

)
+ λ

tν–

(ν + b)ν–
g(y)

≤ λM
b∑
s=

h(s + ν – )g
(
y(s + ν – )

)
+ λg(y)

≤ λMH(b + )δR + λδR

= λ
(
MH(b + ) + 

)
δR

≤ R = ‖y‖. (.)

Then, in both Case  and Case , we have

‖Tλy‖ ≤ ‖y‖, y ∈P ∩ ∂
. (.)
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From (.), (.) and Lemma ., we get Tλ has a fixed point y ∈ P ∩ (
 \ 
) with
r ≤ ‖y‖ ≤ R. This completes the proof. �

5 Nonexistence
In this section, we give some sufficient conditions for the nonexistence of a positive solu-
tion to boundary value problem (.).
We state the following hypotheses that will be used in what follows.
(F)

g = lim sup
‖y‖→+

g(y)
‖y‖ , g∞ = lim sup

‖y‖→+∞
g(y)
‖y‖ ;

(F)

g∗
 = lim inf

‖y‖→+
g(y)
‖y‖ , g∗

∞ = lim inf‖y‖→+∞
g(y)
‖y‖ .

Theorem . Assume that (F) and (F) hold. If g < +∞ and g∞ < +∞, then there exists
λ such that for all  < λ < λ, boundary value problem (.) has no positive solution.

Proof Since g < +∞ and g∞ < +∞, there exist positive numbers c, c, r and r such that
r < r and

g(y) ≤ c‖y‖ for ‖y‖ ∈ [, r],

g(y) ≤ c‖y‖ for ‖y‖ ∈ [r, +∞).

Let c =max{c, c,maxr≤‖y‖≤r
g(y)
‖y‖ }. Then we have

g(y) ≤ c‖y‖ for all ‖y‖ ∈ [, +∞).

Suppose that y(t) is a positive solution of (.). Then we show that this leads to a contra-
diction for  < λ < λ := ((MH(b+ ) + )c)–. Since Tλy(t) = y(t), for t ∈ [ν – ,ν + b]Zν– ,

‖y‖ = ‖Tλy‖ ≤ λMH
b∑
s=

g
(
y(s + ν – )

)
+ λg(y) ≤ λ

(
MH(b + ) + 

)
c‖y‖ < ‖y‖,

which is a contradiction. Therefore, (.) has no positive solution. This completes the
proof. �

Theorem . Assume that (F) and (F) hold. If g∗
 >  and g∗∞ > , then there exists λ

such that for all λ > λ, boundary value problem (.) has no positive solution.

Proof Since g∗
 >  and g∗∞ > , we can get that there exist positive numbers η, η, r, r

such that r < r, and

g(y) ≥ η‖y‖, ‖y‖ ∈ [, r],

g(y) ≥ η‖y‖, ‖y‖ ∈ [r, +∞).
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Let η =min{η,η,minr≤‖y‖≤r
g(y)
‖y‖ } > . Then

g(y) ≥ η‖y‖ for ‖y‖ ∈ [, +∞).

Assume that y(t) is a positive solution of (.). We show that this leads to a contradiction
for λ > λ := (γmHlη)–. Since Tλy(t) = y(t), for t ∈ [ν – ,ν + b]Zν– , thus

‖y‖ = ‖Tλy‖ ≥ λ

� (ν+b) –ν+�∑
s= ν+b

 –ν+�
G(t, s)h(s + ν – )g

(
y(s + ν – )

)

≥ λγmhη‖y‖ > ‖y‖,

which is a contradiction. Thus, (.) has no positive solution. The proof is completed. �

6 Example
In this section, we present some examples to illustrate the main results.

Example . Suppose that ν = 
 , b = . Let f (t, y(t)) := | cos y(t)|

,+t and g(y) := 
‖ sin y‖. Then

(.) becomes

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–�

 y(t) = | cos y(t)|

,+t , t = , , , . . . , ,

y(– 
 ) = ,

�y(– 
 ) = ,

y(  ) =

‖ sin y‖.

(.)

In this case, let α = 
 , β = 

 . Inequality (.) is

α
b∏
j=

(
ν + j
j

)
+ β ≤ 


+




< .

Therefore, from Theorem . we deduce that problem (.) has a unique solution.

Example . Suppose that ν = 
 , b =  and K = ,. Let f (t, y) := 

 t exp{– 
y

} and
g(y) := ‖ cos y‖. Then problem (.) is

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–�

 y(t) = t exp{– 

y
(t)}, t = , , , . . . , ,

y(– 
 ) = ,

�y(– 
 ) = ,

y(  ) = ‖ cos y‖.

(.)

The Banach space B := {y ∈R
 : ‖y‖ ≤ ,}.

We note that

K
�(ν+b+)

�(ν+)�(b+) + 
=

,
�(  )

�(  )�()
+ 

>
,


≈ ..
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It is clear that |f (t, y)| ≤ . < ., |g(y)| ≤  < .. So, f and g satisfy the conditions.
Thus, by Theorem . we deduce that problem (.) has at least one solution.

Example . Suppose that ν = 
 , b = . Let h(t) = t for t ∈ [ν – ,ν + b]Zν– , g(y) = ‖y‖

for ‖y‖ ∈ (, +∞). Take L = , δ = 
, . Then f (t, y) = ty, and problem (.) becomes

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–�

 y(t) = λty(t), t ∈ [, ]Z,

y(– 
 ) = ,

�y(– 
 ) = ,

y(  ) = ‖y‖.

(.)

By routine numerical calculations, we have

M = max
(t,s)∈[ν–,ν+b]Zν–×[,b]

G(t, s)≈ .,

H = (ν + b) = 
(


+ 

)
= , h = (ν – ) = × 


= ,

m =
� (ν+b) –ν+�∑
s= ν+b

 –ν+�
G(s + ν – , s) =

∑
s=

G(s + ν – , s)≈ .

and

lim
‖y‖→+

g(y)
‖y‖ = , lim‖y‖→+∞

g(y)
‖y‖ = +∞.

Then

(
MH(b + ) + 

)
δ = (.× ×  + )× 

,
= .,

mhL = .× ×  = ,.,

thus (MHb + )δ <mhL. So, the conditions of Theorem . are satisfied. Since

((
MH(b + ) + 

)
δ
)– = 

.
≈ ., (mhL)– ≈ .,

thus by Theorem . we have that boundary value problem (.) has at least one positive
solution for each λ ∈ (., .).

Example . Suppose that ν = 
 , b = . Let h(t) = 

 t for t ∈ [ν – ,ν + b]Zν– , g(y) = e–‖y‖

for y ∈ (, +∞). Take L = ,. Then f (t, y) = 
 te

–y, and problem (.) becomes

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–�

 y(t) = 

λte–y(t), t ∈ [, ]Z,

y(– 
 ) = ,

�y(– 
 ) = ,

y(  ) = e–‖y‖.

(.)
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By routine numerical calculations, we have

M = max
(t,s)∈[ν–,ν+b]Zν–×[,b]

G(t, s)≈ .,

H =



(ν + b) =




(


+ 

)
=


,

, h =



(ν – ) =




× 

=


,

and

lim
‖y‖→+

g(y)
‖y‖ = lim

‖y‖→+
e–‖y‖

‖y‖ = +∞, lim‖y‖→+∞
g(y)
‖y‖ = lim‖y‖→+∞

e–‖y‖

‖y‖ = .

Then

MH(b + ) +  =
(
.× 

,
×  + 

)
≈ .,

mhL = .× 
,

× , = .,

thusMH(b + ) +  <mhL. So, the conditions of Theorem . are satisfied. Since

(
MH(b + ) + 

)– = 
.

≈ ., (mhL)– ≈ .,

then byTheorem.wededuce that boundary value problem (.) has at least one positive
solution for each λ ∈ (., .).

Example . Suppose that ν = 
 , b = . Let h(t) = t for t ∈ [ν – ,ν + b]Zν– , g(y) = y for

y ∈ (, +∞). Take c = c = . Then f (t, y) = ty, and problem (.) becomes

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–�

 y(t) = λty(t), t ∈ [, ]Z,

y(– 
 ) = ,

�y(– 
 ) = ,

y(  ) = ‖y‖.

(.)

Thus, we have

g = lim
‖y‖→+

sup
g(y)
‖y‖ =  < +∞, g∞ = lim‖y‖→+∞ sup

g(y)
‖y‖ =  < +∞.

By calculation,

M = max
(t,s)∈[ν–,ν+b]Zν–×[,b]

G(t, s)≈ .,

H = (ν + b) = 
(


+ 

)
= , c =max

{
c, c, max

r≤y≤r

g(y)
y

}
= ,

so

λ =
((
MH(b + ) + 

)
c
)– = (

(.× ×  + )× 
)– ≈ ..

Therefore, by Theorem . we deduce that (.) has no positive solution for  < λ < λ.
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Example . Suppose that ν = 
 , b = . Let h(t) = 

, t for t ∈ [ν –,ν +b]Zν– , g(y) = ‖y‖
for y ∈ (, +∞). Take η = η = 

 . Then f (t, y) = 
, ty, and problem (.) becomes

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–�

 y(t) = λty(t), t ∈ [, ]Z,

y(– 
 ) = ,

�y(– 
 ) = ,

y(  ) = ‖y‖.

(.)

Thus, we have

g = lim
‖y‖→+

sup
g(y)
‖y‖ =  < +∞, g∞ = lim‖y‖→+∞ sup

g(y)
‖y‖ =  < +∞.

By calculation,

M = max
(t,s)∈[ν–,ν+b]Zν–×[,b]

G(t, s)≈ .,

H =


,
(ν + b) =


,

(


+ 

)
=




, η =min

{
η,η, min

r≤y≤r

g(y)
y

}
=


,

l =
⌊
(ν + b)


– ν + 

⌋
+  –

⌈
ν + b


– ν + 
⌉
=


.

By the definition of [], we know

γ = min

{


( (ν+b) )ν–

[(
(ν + b)



)ν–

–
( (ν+b) –

∑
())ν–(ν + b + )ν–

(ν + b +  –
∑

())ν–

]
,
( ν+b

 )ν–

(b + ν)ν–

}

≈ .,

and then

λ := (γMHlη)– =
(

γM × 


× 


× 


)–

≈ ..

Hence by Theorem . we deduce that (.) has no positive solution for λ > λ.

7 Conclusion
This paper is an extension of [] and []. The main contributions of this paper include:
• The existence and uniqueness of a solution to a class of boundary value problems for a
fractional difference equation with  < α ≤  are studied by the contraction mapping
theorem.

• The existence of a solution to a class of boundary value problems for a fractional
difference equation with  < α ≤  is studied by the Brouwer fixed point theorem.

• The eigenvalue intervals of a boundary value problem for a class nonlinear fractional
difference equations with  < α ≤  are investigated by the Guo-Krasnosel’skii fixed
point theorem.

• The nonexistence of a positive solution boundary value problem for a class nonlinear
fractional difference equations with  < α ≤  is considered in terms of parameter.

http://www.advancesindifferenceequations.com/content/2013/1/275


Pan et al. Advances in Difference Equations 2013, 2013:275 Page 19 of 20
http://www.advancesindifferenceequations.com/content/2013/1/275

In contrast to [] and [], the similarities and differences are as follows:
• The methods used to prove the existence results are standard and the same; however,
their exposition in the framework of problems (.) and (.) is new.

• The major difference is that the equations have different fractional order. The order is
 < α ≤  in this paper and  < α ≤  in [] and []. The higher order leads the
comparable process to being more difficult and complex.

• Nonlocal boundary conditions are considered in this paper and [], Dirichlet
boundary conditions are considered in [].

• Both the existence and nonexistence are considered in this paper, but only the
existence is considered in [] and [].
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