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Abstract
In this paper, we investigate the convolution sums

∑
(a+b+c)x=n

a,
∑

ax+by=n

ab,
∑

ax+by+cz=n

abc,
∑

ax+by+cz+du=n

abcd,

where a,b, c,d, x, y, z,u,n ∈N. Many new equalities and inequalities involving
convolution sums, Bernoulli numbers and divisor functions have also been given.
MSC: 11A05; 33E99

Keywords: inequality of Diophantine equations; Bernoulli numbers; convolution
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1 Introduction
Throughout this paper, N, Z, and C will denote the sets of positive integers, rational in-
tegers, and complex numbers, respectively. The Bernoulli polynomials Bk(x), which are
usually defined by the exponential generating function

text

et – 
=

∞∑
k=

Bk(x)
tk

k!
,

play an important role in different areas of mathematics, including number theory and the
theory of finite differences. The Bernoulli polynomials satisfy the following well-known
identity:

N∑
j=

jk =
Bk+(N + ) – Bk+()

k + 
, k ≥ . ()

It is well known that Bk = Bk() are rational numbers. It can be shown that Bk+ =  for
k ≥ , and is alternatively positive and negative for even k. The Bk are called Bernoulli
numbers.
For n,k ∈N with s ∈N∪ {}, we define

σs(n) =
∑
d|n

ds, Fk(n) =

⎧⎨
⎩
, if k|n,
, if k � n.
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The exact evaluation of the basic convolution sum

n–∑
m=

σ(m)σ(n –m)

first appeared in a letter from Besge to Liouville in . Ramanujan’s work has been ex-
tended by many authors, e.g., see []. For example, the following identity

n–∑
m=

σ(m)σ(n –m) =



(
σ(n) + ( – n)σ(n)

)
()

is due to the works of Huard et al. []. In [], Ramanujan also found nine identities, includ-
ing (), of the form

n∑
m=

σr(m)σs(n –m) = Aσr+s+(n) + Bnσr+s–(n),

where A and B are certain rational numbers. We refer to [] for a similar work. Lahiri []
obtained the most general result by evaluating the sum

∑
m+···+mr=n

ma
 · · ·mar

r σb (m) · · ·σbr (mr) (r ≥ ),

where the sum is over all positive integers m, . . . ,mr satisfying m + · · · + mr = n, ai ∈
N∪ {}, and bi ∈N.
The convolution identities have many beautiful applications in modern number theory,

in particular in modular forms, since they appear in the coefficients of the Fourier expan-
sions of classical Eisenstein series. For example, a very well-knownwork of Serre on p-adic
modular forms (see []). For some of the history of the subject, and for a selection of these
articles, we mention [, ] and [], and especially [] and []. We also refer to [] and [].
In this paper, we shall investigate the convolution sums

∑
(a+b+c)x=n

a,
∑

ax+by=n

ab,
∑

ax+by+cz=n

abc,
∑

ax+by+cz+du=n

abcd.

In fact, we will prove the following results.

Theorem . Let n be a positive integer. Then we have

∑
(a+b+c)x=n

a =



σ(n) –


σ(n) +



σ(n) >



B(n – ) ()

with n≥ .

Remark . Let α be a fixed integer with α ≥ , and let

Pyrα(x) =



{
(x)(x + )

(
(α – )x +  – α

)}
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be the αth order pyramid number. In fact, in (), if n = p is a prime number, then we obtain

∑
(a+b+c)x=p

a = Pyr(p – ). ()

This result is similar to [, ()].

Theorem . Let M be an odd positive integer. Let R, r ∈N∪{} with R≥ r. Then we have

A(R, r) :=
∑

ax+by=RM
ax=rm
m odd

ab = R–r–
(
r+ – 

)
σ(M) >

R–r–


(
r+ – 

)B(q + ) ()

with M = q + .

Theorem . Let m be an odd positive integer. Let r, r ∈ N and r ∈ N ∪ {} with r >
r > r. Then we have

A(r, r, r) :=
∑

ax+by+cz=rm
ax+by=rm
ax=rm
m odd
m odd

abc = r–r–r–
(
r+ – 

)(
r+ – 

)
σ(m). ()

Theorem . Let m be an odd positive integer. Let r, r, r ∈ N and r ∈ N ∪ {} with
r > r > r > r. Then we have

∑
ax+by+cz+du=rm
ax+by+cz=rm
ax+by=rm
ax=rm
m odd
m odd
m odd

abcd =



· –r–r–r–(r+ – 
)(
r+ – 

)(
r+ – 

)

× {
rσ(m) + (–)r–rr+r–b(m)

}

when
∑∞

n= b(n)qn = q
∏∞

n=( – qn)( – qn).

Theorem . Let M be an odd positive integer. Let r,R ∈ N∪ {}. Then we have

∑
R≤r<log( 

RM
m )

∑
ax+by=RM
ax=rm
m odd

ab

=



{(
 · R+ – R+ + 

)
σ(M) –

(
 · R+M – 

)(
R+ – 

)
σ(M)

}
.

Corollary . For R > r,we have the following lower bound of A(R, r) and the upper bound
of A(r, r, r),

A(R, r) >


σ

(
R–r–M

)
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and

A(r, r, r) <



σ
(
r–m

)
.

2 Bernoulli number derived fromDiophantine equations
∑

(a+b+c)x=n a
Lemma . Let n ∈N. Let f : Z →C be an odd function. Then

∑
(a,b,c,x)∈N

(a+b+c)x=n

(
f (a + b) + f (b – c)

)
=

∑
e|n

e–∑
k=

(e – k – )f (e – k).

Proof We can write the equality as

∑
(a+b+c)x=n

{
f (a + b) + f (b – c)

}

=
∑
k≥

f (k)
{ ∑
(a+b+c)x=n

a+b=k

 +
∑

(a+b+c)x=n
b–c=k

 –
∑

(a+b+c)x=n
b–c=–k


}

=
∑
k≥

f (k)
∑

(a+b+c)x=n
a+b=k



=
∑
e|n

{
(e – )f (e – ) + (e – )f (e – ) + · · · + (

e – (e – )
)
f ()

}

=
∑
e|n

e–∑
k=

(e – k – )f (e – k).

This completes the proof of the lemma. �

Proof of Theorem . Let f (x) = x. Then Lemma . becomes

∑
(a+b+c)x=n

{a + b – c} = 

σ(n) – σ(n) +



σ(n) ()

and

∑
(a+b+c)x=n

a =



σ(n) –


σ(n) +



σ(n). ()

Using (), we note that

p–∑
j=

j =


{
B(p – ) – B

}
=
B(p – )



since B = . It is easily checked that

p(p – )(p – )


>
(p – )(p – )(p – )


.

http://www.advancesindifferenceequations.com/content/2013/1/277


Kim et al. Advances in Difference Equations 2013, 2013:277 Page 5 of 20
http://www.advancesindifferenceequations.com/content/2013/1/277

We can write that

∑
(a+b+c)x=n

a >


B(n – )

with n≥ . This completes the proof of the theorem. �

We list the first ten values of
∑

(a+b+c)x=n a in Table .

Remark . Let

f (x) :=
∑

(a+b+c)t=x

a

and

g(x) :=


x(x – )(x – ) = Pyr(x – ).

If x is a prime integer, by () and (), then f (x) = g(x).

The first nine values of f (x) and g(x) are given in Figure . In Figure , we plot the graphs
for the values of the sums f (x) and g(x) in Remark . when x = ,, , , , , , , .

Table 1 The first ten values of
∑

(a+b+c)x=n a

n 1 2 3 4 5 6 7 8 9 10∑
(a+b+c)x=n a 0 0 1 4 10 21 35 60 85 130

Figure 1 x = 3,4, 5, 6, 7, 8, 9, 10, 11.
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3 Two lemmas
Lemma . Let n ∈N and r,m ∈N∪ {} with r ≥ m. Let f : Z→ C be a function. Then

∑
(a,b,x,y)∈N

ax+by=rn
y=x+m

f (a + b) =
r–mn–∑

j=

(r–r–m)n+j–∑
l=m

∑
k|mj

f (k)δk,rn–l,

where the Kronecker delta symbol is defined by

δi,j =

⎧⎨
⎩
, i �= j,

, i = j.

Proof We note that

∑
(a,b,x,y)∈N

ax+by=rn
y=x+m

f (a + b) =
∑
k≥

f (k)
∑

ax+by=rn
y=x+m
a+b=k



=
∑
k≥

f (k)
∑

ax+b(x+m)=rn
a+b=k

 =
∑
k≥

f (k)
∑

(a+b)x+mb=rn
a+b=k

 ()

and

∑
(a+b)x+mb=rn

a+b=k



=
∑

(a+)x=rn–m
a+=k

 +
∑

(a+)x=rn–m·
a+=k

 + · · · +
∑

(a+r–mn–)x=rn–m(r–mn–)
a+(r–mn–)=k



=
∑

k|(rn–m)
k≥

 +
∑

k|(rn–m·)
k≥

 + · · · +
∑
k|m·

k≥r–mn–

 +
∑
k|m

k≥r–mn



= Fk
(
rn – m

)
(δk, + δk, + · · · + δk,rn–m )

+ Fk
(
rn – m · )(δk, + δk, + · · · + δk,rn–m·)

+ · · ·
+ Fk

(
m · )(δk,r–mn– + δk,r–mn + · · · + δk,m·)

+ Fk
(
m

)
(δk,r–mn + δk,r–mn+ + · · · + δk,m )

=
r–mn–∑

j=

Fk
(
mj

)
(δk,rn–m + δk,rn–(m+) + · · · + δk,rn–((r–r–m)n+j–))

=
r–mn–∑

j=

Fk
(
mj

) (r–r–m)n+j–∑
l=m

δk,rn–l.
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Therefore, () becomes

∑
(a,b,x,y)∈N

ax+by=rn
y=x+m

f (a + b) =
∑
k≥

f (k)
r–mn–∑

j=

Fk
(
mj

) (r–r–m)n+j–∑
l=m

δk,rn–l

=
r–mn–∑

j=

(r–r–m)n+j–∑
l=m

∑
k|mj

f (k)δk,rn–l.

This completes the proof of the lemma. �

Example .
(a) Letting m = r =  in Lemma .,

∑
(a,b,x,y)∈N

ax+by=n
y=x+

f (a + b) =
n–∑
j=

j–∑
l=

∑
k|j

f (k)δk,n–l.

(b) If m = r =  in Lemma ., then

∑
(a,b,x,y)∈N

ax+by=n
y=x+

f (a + b) =
n–∑
j=

n+j–∑
l=

∑
k|j

f (k)δk,n–l.

Corollary . Let n ∈ N and r,m ∈N∪{}with r ≥ m. Let f : Z →C be a complex-valued
function. Then

r∑
m=

∑
(a,b,x,y)∈N

ax+by=rn
y=x+m

f (a + b) =
r∑

m=

r–mn–∑
j=

(r–r–m)n+j–∑
l=m

∑
k|mj

f (k)δk,rn–l.

Proof It is obvious by Lemma .. �

Example . Let f (x) = x. Then we have

∑
ax+by=n
y=x+

(a + b) =
n–∑
j=

j–∑
l=

∑
k|j

kδk,n–l.

Lemma . Let n be an odd positive integer, and let f : Z →C be a complex-valued func-
tion. Then

∑
(a,b,x,y)∈N

ax+by=n
y=x+

f (a + b) =

n–
∑
j=

j+ n–
∑

l=

∑
k|(j+)

f (k)δk,n–l.

http://www.advancesindifferenceequations.com/content/2013/1/277
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Proof It is similar to Lemma .. �

4 A study of
∑

ax+by=n ab
Proof of Theorem . We observe that

∑
ax+by=RM
ax=rm
m odd

ab =
∑

m<R–rM
�m

( ∑
a|rm

a
)( ∑

b|r (R–rM–m)

b
)
. ()

Thus, for oddm, we have

∑
a|rm

a = σ
(
r

)
σ(m) =

(
r+ – 

)
σ(m). ()

Similarly, since R–rM –m is odd, we have

∑
b|r (R–rM–m)

b =
(
r+ – 

)
σ

(
R–rM –m

)
. ()

From () and (), we can write () as

∑
ax+by=RM
ax=rm
m odd

ab =
(
r+ – 

) ∑
m<R–rM

�m

σ(m)σ
(
R–rM –m

)

=
(
r+ – 

){ ∑
m<R–rM

σ(m)σ
(
R–rM –m

)

–
∑

m<R–rM
|m

σ(m)σ
(
R–rM –m

)}

=
(
r+ – 

){ ∑
m<R–rM

σ(m)σ
(
R–rM –m

)

–
∑

m<R–r–M

σ(m)σ
(
R–rM – m

)}
. ()

Let us consider the second term of (). Since σ(m) = σ(m) – σ(m ), so we obtain

∑
m<R–r–M

σ(m)σ
(
R–rM – m

)

=
∑

m<R–r–M

{
σ(m) – σ

(
m


)}
σ

(
R–rM – m

)

= 
∑

m<R–r–M

σ(m)σ
(
R–rM – m

)

– 
∑

m<R–r–M

σ(m)σ
(
R–rM – m

)
. ()

http://www.advancesindifferenceequations.com/content/2013/1/277
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Therefore, () becomes

∑
ax+by=RM
ax=rm
m odd

ab =
(
r+ – 

) ∑
m<R–rM

�m

σ(m)σ
(
R–rM –m

)

=
(
r+ – 

){ ∑
m<R–rM

σ(m)σ
(
R–rM –m

)

– 
∑

m<R–r–M

σ(m)σ
(
R–rM – m

)

+ 
∑

m<R–r–M

σ(m)σ
(
R–rM – m

)}

=
(
r+ – 

) · R–r–σ(M), ()

where we refer to (),

∑
m<n/

σ(m)σ(n – m) =



{
σ(n) + ( – n)σ(n) + σ(n/)

+ ( – n)σ(n/)
}

in [, (.)] and

∑
m<n/

σ(m)σ(n – m) =



{
σ(n) + ( – n)σ(n) + σ(n/)

+ σ(n/) + ( – n)σ(n/)
}

in [, Theorem ]. Thus, we obtain

A(R, r) = R–r–
(
r+ – 

)
σ(M)

> R–r–
(
r+ – 

)(
σ(M) – σ(M)

)

> R–r–
(
r+ – 

)(q(q + )(q + )


)

≥ R–r–
(
r+ – 

)(B(q + ) – B



)
()

withM = q + . This completes the proof of this theorem. �

Theorem . Let M be an odd positive integer. Let R ∈N and r ∈N∪ {} with R > r. Then
we have
(a)

∑
ax+by=RM
ax=rm
m odd
x even

ab = R–r–
(
r – 

)(
r+ – 

)
σ(M),

http://www.advancesindifferenceequations.com/content/2013/1/277
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(b)

∑
ax+by=RM
ax=rm
m odd
x even
y even

ab = R–r–
(
r – 

)
σ(M),

(c)

∑
ax+by=RM
ax=rm
m odd
x even
y odd

ab =
∑

ax+by=RM
ax=rm
m odd
x odd
y even

ab = R–r–
(
r – 

)
σ(M),

(d)

∑
ax+by=RM
ax=rm
m odd
x odd
y odd

ab = R–r–σ(M).

Proof
(a) First, we note that

∑
m<R–rM

�m

σ(m)σ
(
R–rM –m

)
= R–r–σ(M), ()

by (). Therefore,

∑
ax+by=RM
ax=rm
m odd
x even

ab =
∑

ax+by=RM
ax=rm
m odd

ab

=
∑

ax+by=RM
ax=r–m
m odd

ab

=
∑

m<R–rM
�m

( ∑
a|r–m

a
)( ∑

b|r (R–rM–m)

b
)

=
(
r – 

)(
r+ – 

) ∑
m<R–rM

�m

σ(m)σ
(
R–rM –m

)

= R–r–
(
r – 

)(
r+ – 

)
σ(M),

where we use () for the last line.

http://www.advancesindifferenceequations.com/content/2013/1/277
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(b) We observe that

∑
ax+by=RM
ax=rm
m odd
x even
y even

ab =
∑

ax+by=RM
ax=rm
m odd

ab =
∑

ax+by=R–M
ax=r–m
m odd

ab

= R–r–
(
r – 

)
σ(M),

by replacing R with R –  and r with r –  in Theorem ..
(c) We can write

∑
ax+by=RM
ax=rm
m odd
x even
y odd

ab =
∑

ax+by=RM
ax=rm
m odd
x even

ab –
∑

ax+by=RM
ax=rm
m odd
x even
y even

ab.

So we use Theorem .(a) and (b). We have that

∑
ax+by=RM
ax=rm
m odd
x odd
y even

ab =
∑

ax+by=RM
ax=rm
m odd
x odd

ab

=
∑

m<R–rM
�m

( ∑
a|rm

rm
a odd

a
)( ∑

b|r–(R–rM–m)

b
)
. ()

Then, since

∑
a|rm

rm
a odd

a =
∑
a|m

ra = r
∑
a|m

a = rσ(m),

so () becomes

r
(
r – 

) ∑
m<R–rM

�m

σ(m)σ
(
R–rM –m

)
.

Finally, we refer to ().
(d) Since

∑
ax+by=RM
ax=rm
m odd
x odd
y odd

ab =
∑

ax+by=RM
ax=rm
m odd

ab –
{ ∑
ax+by=RM
ax=rm
m odd
x even
y even

ab +
∑

ax+by=RM
ax=rm
m odd
x even
y odd

ab +
∑

ax+by=RM
ax=rm
m odd
x odd
y even

ab
}
,

we use Theorem . and Theorem .(b) and (c). �

http://www.advancesindifferenceequations.com/content/2013/1/277
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Corollary . Let M be an odd positive integer. Let R ∈N and r ∈N∪{} with R > r. Then
we have

∑
ax+by=RM
ax �=rm
m odd

ab =



[{


(
R+ – 

)
–  · R–r–(r+ – 

)}
σ(M)

–
(
R+ – 

)(
 · R+M – 

)
σ(M)

]
.

Proof From (), we deduce that

n–∑
m=

σ(m)σ(n –m) =
∑

ax+by=n

ab =



(
σ(n) + ( – n)σ(n)

)
. ()

So for n = RM with an oddM, we have

∑
ax+by=RM

ab =



(
σ

(
RM

)
+

(
 –  · RM)

σ
(
RM

))

=



(


(
(R+) – 

)
σ(M) +

(
 –  · R+M)(

R+ – 
)
σ(M)

)

=
∑

ax+by=RM
ax=rm
m odd

ab +
∑

ax+by=RM
ax �=rm
m odd

ab.

Thus, we refer to Theorem .. �

Corollary . Let M be an odd positive integer. Let R ∈N and r ∈N∪{} with R > r. Then
we have

R–∑
r=

∑
ax+by=RM
ax=rm
m odd

ab =



{
 · R+ –  · R +  · R+ – 

}
σ(M).

Proof By Theorem ., we have

R–∑
r=

∑
ax+by=RM
ax=rm
m odd

ab =
R–∑
r=

R–r–
(
r+ – 

)
σ(M)

= Rσ(M)
R–∑
r=

(
–r– + –r– – –r–

)
. ()

Then the first term of () is

R–∑
r=

–r– =  – –R. ()

http://www.advancesindifferenceequations.com/content/2013/1/277
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Similarly, the other terms of () are

R–∑
r=

–r– =


(
 – –R

)
()

and

R–∑
r=

–r– =


(
 – –R

)
. ()

From (), () and (), we get the result. �

Proof of Theorem . The proof starts as follows:

∑
ax+by+cz=rm
ax+by=rm
ax=rm
m odd
m odd

abc

=
∑

m<r–rm
�m

( ∑
m<r–rm

�m

∑
a|rm

a ·
∑

b|r (r–rm–m)

b
) ∑

c|r (r–rm–m)

c

=
∑

m<r–rm
�m

{
r–r–

(
r+ – 

)
σ(m)

}(
r+ – 

)
σ

(
r–rm –m

)
()

by Theorem .. So Eq. () is equal to

r–r–
(
r+ – 

)(r+ – 
) ∑
m<r–rm

�m

σ(m)σ
(
r–rm –m

)

= r–r–
(
r+ – 

)(r+ – 
){ ∑

m<r–rm

σ(m)σ
(
r–rm –m

)

–
∑

m<r–rm
|m

σ(m)σ
(
r–rm –m

)}
. ()

Then the second term of () is

∑
m<r–rm

|m

σ(m)σ
(
r–rm –m

)

=
∑

m<r–r–m

σ(m)σ
(
r–rm – m

)

=
∑

m<r–r–m

{
σ(m) – σ

(
m



)}
σ

(
r–rm – m

)

http://www.advancesindifferenceequations.com/content/2013/1/277
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= 
∑

m<r–r–m

σ(m)σ
(
r–rm – m

)

– 
∑

m<r–r–m

σ(m)σ
(
r–rm – m

)
.

So we refer to

n–∑
m=

σ(m)σ(n –m) =



[
σ(n) + ( – n)σ(n) – σ(n)

]

in [, (.)],

∑
m<n/

σ(m)σ(n – m) =



σ(n) +




σ

(
n


)
+
( – n)


σ

(
n


)
–




σ(n)

in [, Theorem ], and

∑
m<n/

σ(m)σ(n – m) =


,
σ(n) +




σ

(
n


)
+




σ

(
n


)

+
( – n)


σ

(
n


)
–




σ(n) +



a(n)

with
∑∞

n= a(n)qn = q
∏∞

n=( – qn) in [, Theorem .]. Therefore, () becomes

∑
ax+by+cz=rm
ax+by=rm
ax=rm
m odd
m odd

abc = –r–r–
(
r+ – 

)(
r+ – 

){rσ(m) + ra
(
r–rm

)}

= r–r–r–
(
r+ – 

)(
r+ – 

)
σ(m),

where we use the fact that r > r and a(n) =  for n ∈ N. This completes the proof this
theorem. �

Proof of Theorem . From Theorem ., we observe that

∑
ax+by+cz+du=rm
ax+by+cz=rm
ax+by=rm
ax=rm
m odd
m odd
m odd

abcd = r–r–r–
(
r+ – 

)(
r+ – 

)(
r+ – 

)

×
∑

m<r–rm
�m

σ(m)σ
(
r–rm –m

)
.
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Thus, we refer to

∑
m< n



σ(m)σ(n – m) =


,
σ(n) +




σ

(
n


)
+
( – n)


σ

(
n


)

+



σ(n) –




b(n)

and

∑
m< n



σ(m)σ(n – m) =


,
σ(n) +


,

σ

(
n


)
+




σ

(
n


)
+
( – n)


σ

(
n


)

+



σ(n) –


,

b(n) –



b
(
n


)

in [, Theorem .]. Also, to obtain the formula, we use the fact that b(n) = –b( n ) in [,
Remark .]. �

Proof of Theorem . If rm < RM, then r < log( 
RM
m ). We note that

∑
ax+by=RM

ab =
R–∑
r=

∑
ax+by=RM
ax=rm
m odd

ab +
∑

R≤r<log( 
RM
m )

( ∑
ax+by=RM
ax=rm
m odd

ab
)
.

Thus, by () and Corollary ., we get our result. �

Theorem . Let M be an odd positive integer. Let R ∈ N and r ∈ N ∪ {} with R > r. We
have
(a)

∑
ax+by=RM
ax=rm
m odd

(–)aab = R–r–
(
r+ – 

)(
r+ – 

)
σ(M),

(b)

∑
ax+by=RM
ax=rm
m odd

(–)a+bab = R–r–
(
r+ – 

)
σ(M).

Proof
(a) The proof is similar to Theorem .. Let us consider that

∑
ax+by=RM
ax=rm
m odd

(–)aab =
∑

m<R–rM
�m

( ∑
a|rm

(–)aa
)( ∑

b|r (R–rM–m)

b
)
. ()

http://www.advancesindifferenceequations.com/content/2013/1/277
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Then

∑
a|rm

(–)aa = –
∑
a|m

a +
∑
a|m

a +
∑
a|m

a + · · · +
∑
a|m

ra

=
(
– +  +  + · · · + r

)∑
a|m

a

=
(
r+ – 

)
σ(m).

Thus, () becomes

∑
ax+by=RM
ax=rm
m odd

(–)aab =
∑

m<R–rM
�m

(
r+ – 

)
σ(m) · (r+ – 

)
σ

(
R–rM –m

)

=
(
r+ – 

)(
r+ – 

) ∑
m<R–rM

�m

σ(m)σ
(
R–rM –m

)
.

Then by (), we get our result.
(b) We sketch the proof as follows:

∑
ax+by=RM
ax=rm
m odd

(–)a+bab =
∑

ax+by=RM
ax=rm
m odd

(–)aa · (–)bb

=
∑

m<R–rM
�m

( ∑
a|rm

(–)aa
)( ∑

b|r (R–rM–m)

(–)bb
)
.

�

Proof of Corollary . Firstly, from (), we note that

A(R, r) =


(
R–r

)(
r+ – 

)
σ(M).

If r ≥ , then

A(R, r)≥ 

(
R–r

)
σ(M)

>



(
R–r – 
 – 

)
σ(M).

It is easily checked that σ(R–r–) = R–r–
– . So we obtain

A(R, r) >


σ

(
R–r–M

)

with (,M) = . Secondly, by (), we deduce that

A(r, r, r) = r–
(
r+ – 

r

)(

r

)(
r+ – 

r

)

σ(m).
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t – t = –(t – ) +  and  < t – t ≤ 
 with  < t ≤ t

 . Put t = (  )
r then

 <
r+ – 

r
≤ 


. ()

Thirdly, we consider f (t) = t( – t) with  < t < . Then, we easily check that  < f (t) ≤ 


so

 <
r+ – 

r
≤ 


. ()

Consider

r


–
r – 
 – 

=
 – ()r–


<  ()

with r > . From (), we deduce that

r– < σ
(
r–

)

and

r– <


σ

(
r–

)
. ()

From (), () and (), we compute that A(r, r, r) < 
σ(r–m). �

5 A study of
∑

ax+by+cz+du=n abcd
Corollary . Let m be an odd positive integer. Let r, r, r ∈ N and r ∈ N ∪ {} with
r > r > r > r. If r, r, r �≡ – (mod ), then we have

r+σ(m) ≡ (–)r–r+ · r+rb(m) (mod  · r+r+r+).

Proof From Theorem ., we have

∑
ax+by+cz+du=rm
ax+by+cz=rm
ax+by=rm
ax=rm
m odd
m odd
m odd

abcd =



· –r–r–r–(r+ – 
)(
r+ – 

)(
r+ – 

)

× {
rσ(m) + (–)r–rr+r–b(m)

}
. ()

Since r, r, r �≡ – (mod ) by the assumption, therefore, r+ –  �≡  (mod ). So from
(), we have

–r–r–r–
{
rσ(m) + (–)r–rr+r–b(m)

} ≡  (mod ). ()

By multiplying () by r+r+r+, we obtain the proof. �

Remark . This is a similar result to that in [, Theorem .].
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6 Another convolution sums
Theorem . Let M ∈N with  �M. Let R ∈N and r ∈ N∪ {} with R≥ r. Then we have

A∗
 (R, r) :=

∑
ax+by=RM
ax=rm
�m

ab =



· R–r–(r+ – 
)

σ(M) ()

and if R > r, then

A∗
 (R, r) >




· σ
(
R–r–M

)
.

Proof It is similar to Theorem .. So we obtain that

∑
ax+by=RM
ax=rm
�m

ab =



(
r+ – 

) ∑
m<R–rM

�m

σ(m)σ
(
R–rM –m

)

=



(
r+ – 

){ ∑
m<R–rM

σ(m)σ
(
R–rM –m

)

–
∑

m<R–rM
|m

σ(m)σ
(
R–rM –m

)}

=



(
r+ – 

){ ∑
m<R–rM

σ(m)σ
(
R–rM –m

)

–
∑

m<R–r–M

σ(m)σ
(
R–rM – m

)}
.

Then we refer to

∑
m< n



σ(m)σ(n – m) =



{
σ(n) + ( – n)σ(n) + σ

(
n


)}
,

if n≡  (mod ) in [, Theorem ]. Therefore, we get (). By (), we note that

A∗
 (R, r) =



R–r–

(
r+ – 

)
σ(M)

=



· 

(R–r)

(
r+ – 

)
σ(M). ()

It is well known that

(
r+ – 

) ≥  ()

http://www.advancesindifferenceequations.com/content/2013/1/277
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Table 2 Values of b(n) (1≤ n ≤ 12)

n b(n) n b(n)

1 1 7 1,016
2 –8 8 –512
3 12 9 –2,043
4 64 10 1,680
5 –210 11 1,092
6 –96 12 768

with r ≥ . Combine () and (),

A∗
 (R, r) >




· (R–r)σ(M)

>



·  · (
(R–r) – )
 – 

σ(M)

=



· σ
(
R–r–M

)

with (,M) = . This completes the proof of this theorem. �

Appendix
The first twelve values of b(n) for n ∈N are given in Table .
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