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Abstract
Assuming

∫ ∞

t0

�t

r1/γ (t)
< ∞,

a new oscillation criterion for a half-linear second-order neutral dynamic equation

(r(t)((x(t) + p(t)x(t – τ ))�)
γ
)
� + q(t)

∣∣x(t – δ)
∣∣γ –1

x(t – δ) = 0

is presented. An interesting example is provided to show that the delayed function
δ(t) = t – δ plays an important role in the oscillatory behavior.
MSC: 34K11; 34N05; 39A10
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1 Introduction
This work is concerned with the oscillatory behavior of solutions to a second-order half-
linear neutral delay dynamic equation

(
r(t)

((
x(t) + p(t)x(t – τ )

)�)γ )� + q(t)
∣∣x(t – δ)

∣∣γ–x(t – δ) =  (.)

on a time scale T, where t ∈ [t,∞)T := [t,∞)∩T. In what follows, we assume that γ ≥ 
is a quotient of oddpositive integers, τ ≥ , δ ≥ , t–τ : T → T, t–δ : T→ T, r, p, and q are
real-valued rd-continuous functions defined on T such that r(t) > ,

∫ ∞
t

r–/γ (t)�t < ∞,
 ≤ p(t) ≤ p < ∞, and q(t) >  for t ∈ [t,∞)T.
By a solution of (.) we mean a nontrivial real-valued function x which has the prop-

erties x(t) + p(t)x(t – τ ) ∈ C
rd [tx,∞)T and r(t)((x(t) + p(t)x(t – τ ))�)γ ∈ C

rd [tx,∞)T, tx ∈
[t,∞)T and satisfying (.) for all t ∈ [tx,∞)T. Our attention is restricted to those solu-
tions of (.) which exist on some half-line [tx,∞)T and satisfy sup{|x(t)| : t ∈ [t,∞)T} > 
for any t ∈ [tx,∞)T. A solution x of (.) is said to be oscillatory if it is neither eventually
positive nor eventually negative; otherwise, it is called nonoscillatory. Equation (.) is said
to be oscillatory if all its solutions are oscillatory.
The theory of time scales, which has recently received a lot of attention, was introduced

byHilger in order to unify continuous and discrete analysis (seeHilger []). Several authors
have expounded on various aspects of this new theory; see the survey paper by Agarwal
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et al. [] and the references cited therein. The books on the subject of time scales, by
Bohner and Peterson [, ], summarize and organize much of time scale calculus and
some applications of dynamic equations on time scales.
In recent years, there has been much research activity concerning the oscillatory and

nonoscillatory behavior of solutions to various classes of differential, difference, and dy-
namic equations. We refer the reader to [–] and the references therein. If T =R, then
σ (t) = t,μ(t) = , x�(t) = x′(t),

∫ b
a f (t)�t =

∫ b
a f (t) dt, and equation (.) becomes a second-

order neutral delay differential equation

(
r(t)

((
x(t) + p(t)x(t – τ )

)′)γ )′ + q(t)
∣∣x(t – δ)

∣∣γ–x(t – δ) = . (.)

IfT = Z, then σ (t) = t+,μ(t) = , x�(t) = x(t+)–x(t),
∫ b
a f (t)�t =

∑b–
t=a f (t), and equation

(.) reduces to a second-order neutral delay difference equation

�
(
r(t)

(
�

(
x(t) + p(t)x(t – τ )

))γ )
+ q(t)

∣∣x(t – δ)
∣∣γ–x(t – δ) = . (.)

If T = hZ where h > , then σ (t) = t + h, μ(t) = h, x�(t) = �hx(t) = (x(t + h) – x(t))/h,∫ b
a f (t)�t =

∑(b–a–h)/h
k= f (a+ kh)h, and equation (.) becomes a second-order neutral delay

difference equation

�h
(
r(t)

(
�h

(
x(t) + p(t)x(t – τ )

))γ )
+ q(t)

∣∣x(t – δ)
∣∣γ–x(t – δ) = . (.)

In what follows, we present some background details that motivate the contents of
this note. Jiang and Li [] studied oscillatory properties of equation (.) in the case∫ ∞
t

r–/γ (t) dt = ∞. Saker [] and Sun and Saker [] considered oscillation of equation
(.) and established some criteria under the assumption that

∑∞
t=t r

–/γ (t) = ∞. To the
best of our knowledge, there are few results for oscillation of equation (.) in the case
where

∑∞
i=t/h r

–/γ (ih) < ∞. Agarwal et al. [], Saker [], and Tripathy [] studied oscil-
latory behavior of (.) in the case where

∫ ∞
t

r–/γ (t)�t = ∞. In particular, Tripathy []
established some oscillation tests for (.) assuming that ≤ p(t) ≤ p < ∞.
The purpose of this paper is to obtain a new sufficient condition for oscillation of (.).

The result obtained is essentially new for equations (.)-(.). This paper is organized
as follows. In Section , we use the Riccati transformation technique to prove the main
results. In Section , we apply our criterion in equations (.)-(.) to establish some new
oscillation criteria.

2 Oscillation results
To prove the main results, we use the formula

(
yγ

)�(t) = γ

∫ 



[
hyσ (t) + ( – h)y(t)

]γ–y�(t) dh, (.)

which is a simple consequence of Keller’s chain rule (see [, Theorem .]). We also need
the following lemma.

Lemma . (See [, Lemma ]) Assume γ ≥  and a,b ∈R. If a ≥ , b≥ , then

aγ + bγ ≥ (a + b)γ

γ– . (.)
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In what follows, all functional inequalities are assumed to be satisfied for all sufficiently
large t.

Theorem . Let T̃ := {t – τ : t ∈ T}. Suppose also that
∫ ∞

t
Q(t)�t =∞ (.)

and

lim sup
t→∞

∫ t

t

[
f γ (σ (s))Q(s)

γ– –
(
 + pγ


)( γ

γ + 

)γ+ (f (s))γ –

f γ  (σ (s))r/γ (s)

]
�s =∞, (.)

where

Q(t) :=min
{
q(t),q(t – τ )

}
and f (t) :=

∫ ∞

t

�s
r/γ (s)

.

Then equation (.) is oscillatory.

Proof Suppose to the contrary that (.) has a nonoscillatory solution x. Without loss of
generality, we may assume that there exists t ∈ [t,∞)T such that x(t – N) >  for all
t ∈ [t,∞)T, where N :=max{τ , δ}. Set

z(t) := x(t) + p(t)x(t – τ ).

Then z(t) >  and

(
r(t)

(
z�(t)

)γ )� = –q(t)xγ (t – δ) < 

for t ∈ [t,∞)T. Hence, r(z�)γ is of one sign. On the other hand, we have by (.) and [,
Theorem .] that

(
r(t)

(
z�(t)

)γ )� + q(t)xγ (t – δ) + pγ
q(t – τ )xγ (t – τ – δ)

+ pγ

(
r(t – τ )

(
z�(t – τ )

)γ )� = .

Thus, we get by (.) that

(
r(t)

(
z�(t)

)γ )� + pγ

(
r(t – τ )

(
z�(t – τ )

)γ )� +
Q(t)
γ– z

γ (t – δ) ≤ . (.)

If z� > , then by (.) there exist a constant k >  and t ∈ [t,∞)T such that for t ∈
[t,∞)T,

Q(t)≤ –k
(
r(t)

(
z�(t)

)γ )� – kpγ

(
r(t – τ )

(
z�(t – τ )

)γ )�.
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Integrating the latter inequality from t to t, we have

∫ t

t
Q(s)�s≤ k

(
r(t)

(
z�(t)

)γ – r(t)
(
z�(t)

)γ )

+ kpγ

(
r(t – τ )

(
z�(t – τ )

)γ – r(t – τ )
(
z�(t – τ )

)γ )
≤ kr(t)

(
z�(t)

)γ + kpγ
 r(t – τ )

(
z�(t – τ )

)γ ,

which contradicts (.).
Assume now that z� < . Define a Riccati substitution

ω(t) :=
r(t)(z�(t))γ

zγ (t)
. (.)

Then ω(t) < . Noticing that r(z�)γ is decreasing, we have

(
r(s)

)/γ z�(s) ≤ (
r(t)

)/γ z�(t), s ≥ t.

Dividing the latter inequality by (r(s))/γ and integrating the resulting inequality from t to
l, we get

z(l)≤ z(t) +
(
r(t)

)/γ z�(t)
∫ l

t

(

r(s)

)/γ

�s.

Note that liml→∞ z(l) ≥ . Letting l → ∞ in the above inequality, we obtain  ≤ z(t) +
(r(t))/γ z�(t)f (t), which implies that

(r(t))/γ z�(t)
z(t)

f (t) ≥ –.

Then we have by (.) that

– ≤ ω(t)f γ (t)≤ . (.)

Similarly, we define another Riccati transformation

u(t) :=
r(t – τ )(z�(t – τ ))γ

zγ (t)
. (.)

Then u(t) < . Noting that r(z�)γ is decreasing, we have r(t – τ )(z�(t – τ ))γ ≥ r(t)(z�(t))γ ,
and so u(t) ≥ ω(t). From (.), we have

– ≤ u(t)f γ (t)≤ . (.)

Differentiating (.), we get

ω�(t) =
(r(t)(z�(t))γ )�zγ (t) – r(t)(z�(t))γ (zγ (t))�

zγ (t)zγ (σ (t))
. (.)

http://www.advancesindifferenceequations.com/content/2013/1/340
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By virtue of (.), we obtain

(
zγ (t)

)� ≤ γ z�(t)
(
zσ (t)

)γ–. (.)

Using (.) in (.), we have

ω�(t) ≤ (r(t)(z�(t))γ )�

zγ (σ (t))
– γ

r(t)(z�(t))γ+

zγ (t)z(σ (t))
.

By (.) and the latter inequality, we find

ω�(t) ≤ (r(t)(z�(t))γ )�

zγ (σ (t))
– γ

(ω(t))(γ+)/γ

(r(t))/γ
(.)

due to z(t) ≥ z(σ (t)). Differentiating (.), we obtain

u�(t) =
(r(t – τ )(z�(t – τ ))γ )�zγ (t) – r(t – τ )(z�(t – τ ))γ (zγ (t))�

zγ (t)zγ (σ (t))
. (.)

Using (.) in (.), we have

u�(t) ≤ (r(t – τ )(z�(t – τ ))γ )�

zγ (σ (t))

– γ
r(t – τ )(z�(t – τ ))γ z�(t)

zγ (t)z(σ (t))
. (.)

From (.), (.), and the fact that r(t)(z�(t))γ ≤ r(t – τ )(z�(t – τ ))γ , we get

u�(t) ≤ (r(t – τ )(z�(t – τ ))γ )�

zγ (σ (t))
– γ

(u(t))(γ+)/γ

(r(t))/γ
. (.)

Thus, by (.) and (.), we have

ω�(t) + pγ
u

�(t) ≤ (r(t)(z�(t))γ )� + pγ
 (r(t – τ )(z�(t – τ ))γ )�

zγ (σ (t))

– γ
(ω(t))(γ+)/γ

(r(t))/γ
– pγ

γ
(u(t))(γ+)/γ

(r(t))/γ
.

Using z(t – δ) ≥ z(σ (t)) and (.) yields

ω�(t) + pγ
u

�(t) ≤ –
Q(t)
γ– – γ

(ω(t))(γ+)/γ

(r(t))/γ
– pγ

γ
(u(t))(γ+)/γ

(r(t))/γ
.

Multiplying the latter inequality by f γ (σ (t)) and integrating the resulting inequality on
[t, t]T (t ∈ [t,∞)T sufficiently large), we obtain

ω(t)f γ (t) –ω(t)f γ (t) –
∫ t

t

(
f γ (s)

)�
ω(s)�s + pγ

u(t)f
γ (t)

– pγ
u(t)f

γ (t) – pγ


∫ t

t

(
f γ (s)

)�u(s)�s

http://www.advancesindifferenceequations.com/content/2013/1/340
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≤ –
∫ t

t

f γ (σ (s))Q(s)
γ– �s – γ

∫ t

t

(ω(s))(γ+)/γ

(r(s))/γ
f γ

(
σ (s)

)
�s

– γ pγ


∫ t

t

(u(s))(γ+)/γ

(r(s))/γ
f γ

(
σ (s)

)
�s. (.)

Hence, by (.) and f � = –r–/γ < , we get

∫ t

t

(
f γ (s)

)�
ω(s)�s≤ –γ

∫ t

t

(
f (s)

)γ– ω(s)
(r(s))/γ

�s.

Similarly, we have

∫ t

t

(
f γ (s)

)�u(s)�s≤ –γ

∫ t

t

(
f (s)

)γ– u(s)
(r(s))/γ

�s.

Therefore, we obtain by (.) that

γ

∫ t

t

(
f (s)

)γ– ω(s)
(r(s))/γ

�s + γ

∫ t

t

(ω(s))(γ+)/γ

(r(s))/γ
f γ

(
σ (s)

)
�s

+ γ pγ


∫ t

t

(
f (s)

)γ– u(s)
(r(s))/γ

�s + γ pγ


∫ t

t

(u(s))(γ+)/γ

(r(s))/γ
f γ

(
σ (s)

)
�s

+
∫ t

t

f γ (σ (s))Q(s)
γ– �s

≤ –ω(t)f γ (t) +ω(t)f γ (t) – pγ
u(t)f

γ (t) + pγ
u(t)f

γ (t). (.)

Let χ = –ω(t),

A =
γ f γ (σ (s))
(r(s))/γ

, and B =
γ (f (s))γ–

(r(s))/γ
.

Using the inequality

Aχ (γ+)/γ – Bχ ≥ –
γ γ

(γ + )γ+
Bγ+

Aγ
,

where A >  is a constant, we get

γ

∫ t

t

(
f (s)

)γ– ω(s)
(r(s))/γ

�s + γ

∫ t

t

(ω(s))(γ+)/γ

(r(s))/γ
f γ

(
σ (s)

)
�s

≥ –
(

γ

γ + 

)γ+ ∫ t

t

(f (s))γ –

f γ  (σ (s))r/γ (s)
�s.

Similarly, we have

γ

∫ t

t

(
f (s)

)γ– u(s)
(r(s))/γ

�s + γ

∫ t

t

(u(s))(γ+)/γ

(r(s))/γ
f γ

(
σ (s)

)
�s

≥ –
(

γ

γ + 

)γ+ ∫ t

t

(f (s))γ –

f γ  (σ (s))r/γ (s)
�s.
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Therefore, (.) implies that

∫ t

t

[
f γ (σ (s))Q(s)

γ– –
(
 + pγ


)( γ

γ + 

)γ+ (f (s))γ –

f γ  (σ (s))r/γ (s)

]
�s

≤ –ω(t)f γ (t) – pγ
u(t)f

γ (t)≤  + pγ


due to (.) and (.), which contradicts (.). The proof is complete. �

Remark . Theorem. complements the results obtained in [] since it can be applied
in the case where γ > .

3 Applications
Due to Theorem ., we present the following results for oscillation of equations (.)-
(.).

Corollary . Assume T =R and let

∫ ∞

t
Q(t) dt =∞

and

lim sup
t→∞

∫ t

t

[
θγ (s)Q(s)

γ– –
(
 + pγ


)( γ

γ + 

)γ+ 
θ (s)r/γ (s)

]
ds =∞,

where Q is defined as in Theorem . and

θ (t) :=
∫ ∞

t

ds
r/γ (s)

.

Then equation (.) oscillates.

Corollary . Assume T = Z and let

∞∑
t=t

Q(t) =∞

and

lim sup
t→∞

t–∑
s=t

[
βγ (s + )Q(s)

γ– –
(
 + pγ


)( γ

γ + 

)γ+ (β(s))γ –

βγ  (s + )r/γ (s)

]
=∞,

where Q is defined as in Theorem . and

β(t) :=
∞∑
s=t


r/γ (s)

.

Then equation (.) oscillates.
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Corollary . Assume T = hZ, h > , and let

∞∑
i= t

h

Q(ih) = ∞

and

lim sup
t→∞

t
h–∑
i= t

h

[
ξγ ((i + )h)Q(ih)

γ– –
(
 + pγ


)( γ

γ + 

)γ+ (ξ (ih))γ –

ξγ  ((i + )h)r/γ (ih)

]
=∞,

where Q is defined as in Theorem . and

ξ (t) :=
∞∑
i= t

h


r/γ (ih)

.

Then equation (.) oscillates.

Example . For t ≥ , consider a second-order neutral delay differential equation

(
et

(
x(t) +



x(t – )

)′)′
+

(
et +



et+

)
x(t – ) = . (.)

It is not difficult to verify that all conditions of Theorem . are satisfied. Hence, equation
(.) is oscillatory. However, the equation

(
et

(
x(t) +



x(t – )

)′)′
+

(
et +



et+

)
x(t) = 

has a nonoscillatory solution x(t) = e–t . Therefore, the delayed argument δ(t) = t – δ plays
an important role in oscillation of equation (.).

Remark . It would be of interest to find another method to study the equation

(
r(t)

((
x(t) + p(t)x

(
τ (t)

))�)γ )� + q(t)
∣∣x(δ(t))∣∣γ–x(δ(t)) = ,

where p(t) <  or p(t) > .
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