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Abstract
In this paper, by using the fixed-point theorem in the cone of strict-set-contraction
operators, we study a class of higher-order boundary value problems of nonlinear
fractional differential equation in a Banach space. The sufficient conditions for the
existence of at least two positive solutions is obtained. In addition, an example to
illustrate the main results is given.
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1 Introduction
Fractional calculus is a generalization of ordinary differentiation and integration to arbi-
trary noninteger order. The fractional differential equations have been of great interest
recently. This is because of both the intensive development of the theory of fractional
calculus itself and its numerous applications in various fields of science and engineering
including fluid flow, rheology, control, electrochemistry, electromagnetic, porous media
and probability, etc. (see [–]).
In recent years, the existence and uniqueness of solutions of the initial and boundary

value problems for fractional equations have been extensively studied (see [–] and the
references therein). But there are few works that deal with the existence of solutions of
nonlinear fractional differential equations in Banach spaces; see [–]. In [], Hussein
investigated the existence of pseudo solutions for the following nonlinearm-point bound-
ary value problem of fractional type:

⎧⎨
⎩D

q
+u(t) + a(t)f (t,u(t)) = ,  < t < ,

u() = u′() = · · · = u(n–)() = , u() =
∑m–

i= ζiu(ηi)

in a reflexive Banach space E, where Dq
+ is the pseudo fractional differential operator of

order n –  < q ≤ n, n≥ .
In [], by the monotone iterative technique and the Mönch fixed point theorem, Lv et

al. investigated the existence of a solution to the following Cauchy problem for the differ-
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ential equation with fractional order in a real Banach space E:

CDqu(t) = f
(
t,u(t)

)
, u() = u,

where CDqu(t) is the Caputo derivative of order  < q < .
By means of Darbo’s fixed point theorem, Su [] established the existence result of

solutions to the following boundary value problem of fractional differential equation on
unbounded domain [,+∞):

⎧⎨
⎩D

q
+u(t) = f (t,u(t)), t ∈ [, +∞),  < q ≤ ,

u() = θ , Dq–
+ u(∞) = u∞

in a Banach space E. Dq
+ is the Riemann-Liouville fractional derivative.

Being directly inspired by [, , , ] but taking quite a different method from that
in [, –], we discuss in this paper the following high-order boundary value problem
(BVP for short) in a Banach space E:

⎧⎪⎪⎨
⎪⎪⎩
Dq

+u(t) + f (t,u,u′, . . . ,u(n–)) = θ , ∀t ∈ (, ),q ∈ (n – ,n],

u(i)() = ,  ≤ i≤ n – ,

αu(n–)() – βu(n–)() = θ , γu(n–)() + δu(n–)() = θ ,

(.)

where θ is the zero element of E, n≥ , α, β , γ and δ are nonnegative constants satisfying
ρ– = αγ +αδ+βγ > , andDq

+ is theCaputo fractional derivative. Note that the nonlinear
term f depends on u and its derivatives u′,u′′, . . . ,u(n–).
The paper is organized as follows. In Section  we give some basic definitions in

Riemann-Liouville fractional calculus and the Kuratowski noncompactness. In Section 
we present the expression and properties of Green’s function associated with BVP (.),
and by using the fixed-point theorem for strict-set-contraction operators and introducing
a new cone
, we obtain the existence of at least two positive solutions for BVP (.) under
certain conditions on the nonlinearity. Moreover, an example illustrating our main result
is given in Section .

2 Preliminaries and lemmas
For convenience of the reader, we present here some definitions and preliminaries which
are used throughout the paper. These definitions and lemmas can be found in the recent
literature such as [, ].

Definition . ([]) The Riemann-Liouville fractional integral of order q >  of a function
y(t) is given by

Iq+y(t) =


�(q)

∫ t


(t – s)q–y(s)ds,

provided that the right-hand side is defined pointwise.
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Definition . ([]) The fractional derivative of order q >  of a function y : R+
 → R is

given by

Dq
+y(t) =


�(n – q)

(
d
dt

)n ∫ t


(t – s)n–q–y(s)ds,

where n = [q] + , [q] denotes the integer part of number q, provided that the right-hand
side is defined pointwise. In particular, for q = n, Dq

+y(t) = y(n)(t).

Lemma . ([]) Let q > . Then the fractional differential equation

Dq
+y(t) = 

has the unique solution y(t) = ctq– + ctq– + · · · + cntq–n, ci ∈ R, i = , , . . . ,n, here n –  <
q ≤ n.

Lemma . ([]) Let q > . Then the following equality holds for y ∈ L(, ), Dq
+y ∈ L(, ):

Iq+D
q
+y(t) = y(t) + ctq– + ctq– + · · · + cNtq–N

for some ci ∈ R, i = , , . . . ,N , here N is the smallest integer greater than or equal to q.

Let the real Banach space E with the norm ‖ · ‖ be partially ordered by a cone P of E, i.e.,
u ≤ v if and only if v – u ∈ P, and P is said to be normal if there exists a positive constant
N such that θ ≤ u ≤ v implies ‖u‖ ≤ N‖v‖, where the smallest N is called the normal
constant of P. For details on cone theory, see [].
The basic space used in this paper isC[I,E]. For any u ∈ C[I,E], evidently, (C[I,E],‖ ·‖C)

is a Banach space with the norm ‖u‖C = supt∈I |u(t)|, and P = {u ∈ C[I,E] : u(t) ≥ θ for t ∈
I} is a cone of the Banach space C[I,E]. We use α, αC to denote the Kuratowski non-
compactness measure of bounded sets in the spaces E, C(I,E), respectively. As for the
definition of the Kuratowski noncompactness measure, we refer to Ref. [].

Definition . ([], Strict-set contraction operator) Let E, E be real Banach spaces,
S ⊂ E. T : S → E is a continuous and bounded operator. If there exists a constant k such
that α(T(S))≤ kα(S), then T is called a k-set contraction operator. When k < , T is called
a strict-set contraction operator.

Lemma . ([]) If D ⊂ C[I,E] is bounded and equicontinuous, then α(D(t)) is continu-
ous on I and

αC(D) =max
t∈I

α
(
D(t)

)
, α

({∫
I
u(t)dt : u ∈D

})
≤
∫
I
α
(
D(t)

)
dt,

where D(t) = {u(t) : u ∈D, t ∈ I}.

Lemma . ([]) Let K be a cone in a Banach space E. Assume that 
, 
 are open
subsets of E with θ ∈ 
, 
̄ ⊂ 
. If T : K ∩ (
̄ \ 
) → K is a strict-set contraction
operator such that either
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(i) ‖Tx‖ ≤ ‖x‖, x ∈ K ∩ ∂
 and ‖Tx‖ ≥ ‖x‖, x ∈ K ∩ ∂
, or
(ii) ‖Tx‖ ≥ ‖x‖, x ∈ K ∩ ∂
 and ‖Tx‖ ≤ ‖x‖, x ∈ K ∩ ∂
,

then T has a fixed point in K ∩ (
̄ \ 
).

In the paper, we always assume that the following three assumptions hold:
(H)  < ρ∗ := ρ

∫ 
 ϕ(s)ds < +∞, where ϕ(s) is defined as

ϕ(s) =


�(q – n + )
(β + αs)

[
γ ( – s) + δ(q – n + )

]
( – s)q–n.

(H) There exist a ∈ C[I,R+] and h ∈ C[Rn–
+ ,R+] such that

∥∥f (t,u, . . . ,un–)∥∥≤ a(t)h
(‖u‖, . . . ,‖un–‖),

∀t ∈ I,uk ∈ P,k = , . . . ,n – . (.)

(H) f : I × Pn–
r → P for any r > , f is uniformly continuous on I × Pn–

r and there
exist nonnegative constants Lk , k = , . . . ,n – , with


ρ∗

( n–∑
k=

Lk
(n –  – k)!

+ Ln–

)
<  (.)

such that

α
(
f (t,D,D, . . . ,Dn–)

)≤ n–∑
k=

Lkα(Dk), ∀t ∈ I, bounded Dk ∈ Pr , (.)

where Pr = {u ∈ P : ‖u‖ ≤ r}.

3 Main results
Lemma . Given y ∈ C[I,E], then the unique solution of

⎧⎨
⎩D

q–n+
+ x(t) + y(t) = ,  < t < ,n –  < q ≤ n,n > ,

αx() – βx′() = , γ x() + δx′() = 
(.)

is

x(t) =
∫ 


G(t, s)y(s)ds, (.)

where

G(t, s) =

⎧⎨
⎩G(t, s) = – (t–s)q–n+

�(q–n+) +G(t, s),  ≤ s≤ t ≤ ,

G(t, s),  ≤ t ≤ s≤ ,
(.)

and

G(t, s) =
ρ(β + αt)

�(q – n + )
[
γ ( – s) + δ(q – n + )

]
( – s)q–n.
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Proof Deduced from Lemma ., we have

x(t) = –Iq–n++ y(t) + c + ct

for some c, c ∈ R. Then we get

x(t) = –


�(q – n + )

∫ t


(t – s)q–n+y(s)ds + c + ct,

x′(t) = –


�(q – n + )

∫ t


(t – s)q–ny(s)ds + c.

By boundary conditions αx()–βx′() = , γ x()+δx′() = , and noting that�(q–n+) =
(q – n + )�(q – n + ), we have

c =
ρβ

�(q – n + )

∫ 



[
γ ( – s) + δ(q – n + )

]
( – s)q–ny(s)ds

and

c =
ρα

�(q – n + )

∫ 



[
γ ( – s) + δ(q – n + )

]
( – s)q–ny(s)ds.

Thus

x(t) = –
∫ t



(t – s)q–n+

�(q – n + )
y(s)ds

+
ρβ

�(q – n + )

∫ 



[
γ ( – s) + δ(q – n + )

]
( – s)q–ny(s)ds

+
ραt

�(q – n + )

∫ 



[
γ ( – s) + δ(q – n + )

]
( – s)q–ny(s)ds

= –
∫ t



(t – s)q–n+

�(q – n + )
y(s)ds + ρ(β + αt)

∫ 



[γ ( – s) + δ(q – n + )]( – s)q–n

�(q – n + )
y(s)ds

=
∫ 


G(t, s)y(s)ds,

where G(t, s) is Green’s function defined by (.). This completes the proof. �

Moreover, there is one paper [] in which the following statement was shown.

Lemma . ([]) The function G(t, s) defined by Lemma . has the following properties:
(i) G(t, s) is continuous on [, ]× [, ];
(ii) if β > n–q

q–n+α, then  <G(t, s)≤G(s, s) for any t, s ∈ [, ].

Lemma . If β > n–q
q–n+α, then the function G(t, s) satisfies:

λϕ(s)≤G(t, s)≤ ρϕ(s) for t, s ∈ [, ],

http://www.advancesindifferenceequations.com/content/2013/1/344
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where

λ :=min

{
ραγ δ[β(q – n + ) + α(q – n)]

ζ
,
ραβγ δ(q – n + )

ζ

}
,

ζ :=
[
αγ – βγ + αδ(q – n + )

] + αβγ
[
γ + δ(q – n + )

]
.

Proof According to (.) and Lemma ., we have

G∗(s)≤G(t, s)≤ ρϕ(s),

where

G∗(s) =

⎧⎨
⎩G(, s),  ≤ s < βγ–αδ(q–n)

αδ+βγ
,

G(, s), βγ–αδ(q–n)
αδ+βγ

≤ s < .

Since

inf
<s<

G(, s)
ϕ(s)

= inf
<s<

–ρ–( – s) + (β + α)[γ ( – s) + δ(q – n + )]
ρ–(β + αs)[γ ( – s) + δ(q – n + )]

≥ ρδ[β(q – n + ) + α(q – n)]
(β + αs)[γ ( – s) + δ(q – n + )]

≥ ραγ δ[β(q – n + ) + α(q – n)]
[αγ – βγ + αδ(q – n + )] + αβγ [γ + δ(q – n + )]

=
ραγ δ[β(q – n + ) + α(q – n)]

ζ
,

and

inf
<s<

G(, s)
ϕ(s)

= inf
<s<

ρ[βγ ( – s) + βδ(q – n + )]
(β + αs)[γ ( – s) + δ(q – n + )]

≥ ρ–αβγ δ(q – n + )
[αγ – βγ + αδ(q – n + )] + αβγ [γ + δ(q – n + )]

=
ραβγ δ(q – n + )

ζ
,

then we get

λϕ(s)≤G(t, s)≤G(s, s)≤ ρϕ(s). �

Lemma . Let u(t) = In–+ x(t), x ∈ C[I,E]. Then problem (.) can be transformed into the
following modified problem:

⎧⎨
⎩D

q–n+
+ x(t) + f (s, In–+ x(s), . . . , I+x(s),x(s)) = θ ,

αx() – βx′() = θ , γ x() + δx′() = θ ,
(.)

where  < t < , n –  < q ≤ n, n ≥ . Moreover, if x ∈ C[I,E] is a solution of problem (.)
and x ≥ θ , x ≡ θ , then the function u(t) = In–+ x(s) is a positive solution of (.).

http://www.advancesindifferenceequations.com/content/2013/1/344
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To obtain a positive solution, we construct a cone 
 by


 =
{
x(t) ∈ P : x(t)≥ λ

ρ
x(s),∀t, s ∈ I

}
, (.)

where P = {x ∈ C[I,E] : x(t)≥ θ , t ∈ I}.
Define an integral operator T :
 → E by

(Tx)(t) =
∫ 


G(t, s)f

(
s, In–+ x(s), In–+ x(s), . . . , I+x(s),x(s)

)
ds,  ≤ t ≤ . (.)

Lemma . Assume that (H)-(H) hold. Then T : 
 → 
 is a strict-set contraction op-
erator.

Proof From Lemma . and (.), we obtain

(Tx)(t)≥ λ

∫ 


ϕ(s)f

(
s, In–+ xj(s), . . . , I+xj(s),xj(s)

)
ds.

On the other hand,

(Tx)(s) =
∫ 


G(s, s)f

(
s, In–+ xj(s), . . . , I+xj(s),xj(s)

)
ds

≤ ρ

∫ 


ϕ(s)f

(
s, In–+ xj(s), . . . , I+xj(s),xj(s)

)
ds

=
ρ

λ

∫ 


λϕ(s)f

(
s, In–+ xj(s), . . . , I+xj(s),xj(s)

)
ds≤ ρ

λ
(Tx)(t).

Then (Tx)(t)≥ λ
ρ
(Tx)(s), which implies (Tx) ∈ 
, i.e., T(
) ⊂ 
.

Next we prove that T is continuous on 
. Let {xj}, {x} ⊂ 
 and ‖xj – x‖
 →  (j → ∞).
Hence {xj} is a bounded subset of 
. Thus, there exists r >  such that r = supj ‖xj‖
 < ∞
and ‖x‖
 ≤ r.
According to the properties of f , for ∀ε > , there exists J >  such that

∥∥f (s, In–+ xj(s), . . . , I+xj(s),xj(s)
)
– f
(
s, In–+ x(s), . . . , I+x(s),x(s)

)∥∥≤ ε

ρ∗

for j ≥ J , ∀t ∈ I .
Then

∥∥(Txj)(t) – (Tx)(t)
∥∥ ≤

∫ 


G(t, s)

∥∥f (s, In–+ xj(s), . . . , I+xj(s),xj(s)
)

– f
(
s, In–+ x(s), . . . , I+x(s),x(s)

)∥∥ds
≤ ρ

∫ 


ϕ(s)ds · ∥∥f (s, In–+ xj(s), . . . , I+xj(s),xj(s)

)
– f
(
s, In–+ x(s), . . . , I+x(s),x(s)

)∥∥ < ε.

http://www.advancesindifferenceequations.com/content/2013/1/344
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Therefore, ∀ε >  for any t ∈ I and j ≥ J . We get

∥∥(Txj)(t) – (Tx)(t)
∥∥→ .

This implies T is continuous on 
.
By the properties of continuity of G(t, s), it is easy to see that T is equicontinuous on I .
Finally, we are going to show that T is a strict-set contraction operator. Let D ⊂ 
 be

bounded. Then, by condition (H), Lemma . implies αC(TD) =maxt∈I α((TD)(t)). It fol-
lows from (.) that

α
(
(TD)(t)

)
= α

({∫ 


G(t, s)f

(
s, (Tx)(s), . . . , (Tn–x)(s),x(s)

)
ds ∈ D

})

≤
∫ 


α
({
G(t, s)f

(
s, (Tx)(s), . . . , (Tn–x)(s),x(s)

)
ds ∈D

})

≤ ρ

∫ 


ϕ(s)α

(
f
(
I × (In–+ D

)
(I)× · · · × (I+D)(I)×D(I)

))
ds

≤ ρ∗
( n–∑

k=

Lkα
((
In––k+ D

)
(I)
)
+ Ln–α

(
D(I)

))
,

which implies

αC(TD)≤ ρ∗
( n–∑

k=

Lkα
((
In––k+ D

)
(I)
)
+ Ln–α

(
D(I)

))
. (.)

Obviously,

α
(
In––k+ D

)
(I) = α

({∫ s



(s – ν)n––k

(n –  – k)!
x(s)ds : ν ∈ [, s], s ∈ I,k = , . . . ,n – 

})

≤ 
(n –  – k)!

α
(
D(I)

)
. (.)

Using a similar method as in the proof of Theorem .. in [], we have

α
(
D(I)

)≤ αC(D). (.)

Therefore, it follows from (.), (.) and (.) that

αC(TD)≤ 
ρ∗

( n–∑
k=

Lk
(n –  – k)!

+ Ln–

)
αC(D).

Noticing that (.), we obtain that T is a strict-set contraction operator. This completes
the proof. �

Now we are in a position to give the main result of this work.

Theorem . Let the cone P be normal and conditions (H)-(H) hold. In addition, as-
sume that the following conditions are satisfied:

http://www.advancesindifferenceequations.com/content/2013/1/344
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(H) There exist u∗ ∈ P\{θ}, c ∈ C[I,R+] and h ∈ C[Pn–,R+] such that

f (t,u, . . . ,un–) ≥ c(t)h(u, . . . ,un–)u∗, ∀t ∈ I,uk ∈ P,

and

h∞
 = lim∑n–

k= ‖uk‖→∞
h(u, . . . ,un–)∑n–

k= ‖uk‖
> �–, as uk ∈ P,

where � :=N–ρ–(λ ∫ 
 ϕ(s)c(s)ds‖u∗‖).

(H) There exist u∗ ∈ P\{θ}, c ∈ C[I,R+] and h ∈ C[Pn–,R+] such that

f (t,u, . . . ,un–) ≥ c(t)h(u, . . . ,un–)u∗, ∀t ∈ I,uk ∈ P,

and

h = lim∑n–
k= ‖uk‖→

h(u, . . . ,un–)∑n–
k= ‖ui‖

>∇–, as uk ∈ P,

where ∇ :=N–ρ–(λ ∫ 
 ϕ(s)c(s)ds‖u∗‖).

(H) There exists ξ >  such that

ρNMξ

∫ 


ϕ(s)a(s)ds < ξ ,

where Mξ =maxuk∈Pξ
{h(‖u‖, . . . ,‖un–‖)}.

Then problem (.) has at least two different positive solutions.

Proof Consider condition (H), there exists r >  such that

h(u, . . . ,un–)≥
(
h∞
 – ε

) n–∑
k=

‖uk‖, ∀uk ∈ P,
n–∑
k=

‖uk‖ ≥ r,

where ε >  satisfies (h∞
 – ε)� ≥ .

Therefore,

f (t,u, . . . ,un–) ≥
(
h∞
 – ε

) n–∑
k=

‖uk‖ · c(t)u∗, ∀uk ∈ P,
n–∑
k=

‖uk‖ ≥ r.

Take

R >max
{
Nρλ–r, ξ

}
.

Then, for t ∈ I , x ∈ 
, ‖x‖
 = R, we have by (.)

∥∥x(t)∥∥≥ λ(ρN)–‖x‖
 ≥ λ(ρN)–R > r.

http://www.advancesindifferenceequations.com/content/2013/1/344
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Thus

(Tx)(t) =
∫ 


G(t, s)f

(
s, In–+ x(s), . . . , I+x(s),x(s)

)
ds

≥
∫ 


λϕ(s)f

(
s, In–+ x(s), . . . , I+x(s),x(s)

)
ds

≥ (h∞
 – ε

)
λ

∫

uϕ(s)

( n–∑
k=

∥∥In––k+ x(s)
∥∥ + ∥∥x(s)∥∥

)
c(s)ds · u∗

≥ (h∞
 – ε

)
λ

∫ 


ϕ(s)c(s)

∥∥x(s)∥∥ds · u∗

≥ (h∞
 – ε

)
λ(ρN)–‖x‖


(∫ 


ϕ(s)c(s)ds

)
· u∗

=
(
h∞
 – ε

) λ

ρN

(∫ 


ϕ(s)c(s)ds

∥∥u∗∥∥) · N‖x‖


‖u∗‖ u∗

≥ N‖x‖


‖u∗‖ · u∗, (.)

and consequently,

‖Tx‖
 ≥ ‖x‖
, ∀x ∈ 
,‖x‖
 = R. (.)

Similarly, by condition (H), there exists r >  such that

h(u, . . . ,un–) ≥
(
h – ε

) n–∑
k=

‖uk‖, ∀uk ∈ P,  <
n–∑
k=

‖uk‖ ≤ r,

where ε >  satisfies (h – ε)∇ ≥ .
Therefore,

f (t,u, . . . ,un–) ≥
(
h – ε

) n–∑
k=

‖uk‖ · c(t)u∗, ∀uk ∈ P,  <
n–∑
k=

‖uk‖ ≤ r.

Choose

 < r <min

{( n–∑
k=


k!

)–

r, ξ

}
.

Then, for t ∈ Iτ , x ∈ 
, ‖x‖
 = r, similar to (.), we have

(Tx)(t)≥ (h – ε
)
λ

∫ 


ϕ(s)c(s)

∥∥x(s)∥∥ds · u∗

≥ (h – ε
)
λ(ρN)–‖x‖


(∫ 


ϕ(s)c(s)ds

)
· u∗

=
(
h – ε

) λ

ρN

(∫ 


ϕ(s)c(s)ds‖u∗‖

)
· N‖x‖


‖u∗‖ u∗

≥ N‖x‖


‖u∗‖ · u∗,
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which implies

‖Tx‖
 ≥ ∥∥x(s)∥∥


, ∀x ∈ 
,‖x‖
 = r. (.)

On the other hand, according to Lemma . and (.), we get

(Tx)(t)≤ ρ

∫ 


ϕ(s)f

(
s, In–+ x(s), . . . , I+x(s),x(s)

)
ds. (.)

By condition (H), for t ∈ I , x ∈ 
, ‖x‖
 = ξ , we have

∥∥f (t,u, . . . ,un–)∥∥≤ a(t)h
(‖u‖, . . . ,‖un–‖)≤Mξa(t).

Therefore,

∥∥(Tx)(t)∥∥



≤ ρNMξ ·
∫ 


ϕ(s)a(s)ds < ξ = ‖x‖
. (.)

Applying Lemma . to (.), (.) and (.) yields that T has a fixed point x ∈ 
̄r,ξ ,
r ≤ ‖x‖ ≤ ξ , and a fixed point x ∈ 
̄ξ ,R, ξ ≤ ‖x‖ ≤ R. Noticing (.), we get ‖x‖ = ξ

and ‖x‖ = ξ . This and Lemma . complete the proof. �

Theorem . Let the cone P be normal and conditions (H) ∼ (H) hold. In addition,
assume that the following condition is satisfied:
(H)

h(‖u‖, . . . ,‖un–‖)∑n–
k= ‖uk‖

→ , as uk ∈ P,
n–∑
k=

‖uk‖ → +. (.)

Then problem (.) has at least one positive solution.

Proof By (H), we can choose R > Nρλ–r. As in the proof of Theorem ., it is easy to
see that (.) holds. On the other hand, considering (.), there exists r >  such that

h
(‖u‖, . . . ,‖un–‖)≤ ε

n–∑
k=

‖uk‖, for t ∈ I,uk ∈ P,  <
n–∑
k=

‖uk‖ ≤ r,

where ε >  satisfies

ε =

(
Nρ

n–∑
k=


k!

∫ 


ϕ(s)a(s)ds

)–

.

Choose  < r∗ <min{(∑n–
k=


k! )

–r,R}. For t ∈ I , x ∈ 
, ‖x‖
 = r∗, it follows from (.) that

 < (ρN)–λr∗ ≤ ‖x‖ < r,

 < (ρN)–λr∗ ≤
n–∑
k=

∥∥In––k+ x(t)
∥∥≤

n–∑
k=


k!

‖x‖ < r.
(.)

http://www.advancesindifferenceequations.com/content/2013/1/344
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Then, for t ∈ I , x ∈ 
, ‖x‖
 = r∗, we have

∥∥(Tx)(t)∥∥ ≤ ρ

∫ 


ϕ(s)
∥∥f (s, In–+ x(s), . . . , I+x(s),x(s)

)∥∥ds
≤ ρ

∫ 


ϕ(s)a(s)h

(∥∥In–+ x(s)
∥∥, . . . ,∥∥I+x(s)∥∥,∥∥x(s)∥∥)ds

≤ ερ

∫ 


ϕ(s)a(s)

( n–∑
k=

∥∥In––k+ x(s)
∥∥ + ∥∥x(s)∥∥

)
ds

≤ Nερ

n–∑
k=


k!
r∗
∫ 


ϕ(s)a(s)ds = r∗,

and consequently,

∥∥(Tx)(t)∥∥



≤ ‖x‖
, ∀x ∈ 
,‖x‖ ≤ r∗. (.)

Since  < r∗ < R, applying Lemma . to (.) and (.) yields that T has a fixed point
x ∈ 
̄r∗ ,R, r∗ ≤ ‖x‖ ≤ R. This and Lemma . complete the proof. �

4 An example
Consider the following system of scalar differential equations of fractional order:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–D 
 uk(t) = 

uk(t) +
+t

k {[uk+(t) + u′
k+(t) +

∑∞
j= uj(t) +

∑∞
j= u′

j(t)]

+
√
uk(t) + u′

k+(t) +
∑∞

j= uj(t) +
∑∞

j= u′
j(t)}, t ∈ I,

uk() = u′
k() = , 

uk() –

u

′
k() = ,

uk() + 
u

′
k() = , k = , , , . . . .

(.)

Conclusion Problem (.) has at least two positive solutions.

Proof Let E = l = {u = (u,u, . . . ,uk , . . .) :
∑∞

k= |uk| < ∞} with the norm ‖u‖ =
∑∞

k= |uk|,
and P = {(u, . . . ,uk , . . .) : uk ≥ ,k = , , , . . .}. Then P is a normal cone in E with a normal
constant N = , and system (.) can be regarded as a boundary value problem of the
form (.). In this situation, q = 

 , n = , α = 
 , β = 

 , γ = , δ = 
 , u = (u, . . . ,un, . . .),

f = (f, f, . . . , fn, . . .), in which

fk
(
t,uk ,u′

k
)
=




uk(t) +
 + t
k

{[
uk+(t) + u′

k+(t) +
∞∑
j=

uj(t) +
∞∑
j=

u′
j(t)

]

+

√√√√uk(t) + u′
k+(t) +

∞∑
j=

uj(t) +
∞∑
j=

u′
j(t)

}
. (.)

By calculating, we have ρ = 
 , λ ≈ ., and



= β >

n – q
q – n + 

α =


,
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and

ρ∗ = ρ

∫ 


ϕ(s)ds =



√

π

∫ 


( + s)

(√
 – s +



√
 – s

)
ds =




√
π

≈ .,

which implies that condition (H) is satisfied. Observing the inequality
∑∞

k=

k < , we

get, by (.),

∥∥f (t,u, v)∥∥ = ∞∑
k=

∣∣fk(t,uk , vk)∣∣≤  + t


(


‖u‖+ 


(‖u‖+‖v‖) + 


√‖u‖ + ‖v‖

)
. (.)

Hence (H) is satisfied for a(t) = +t
 , and

h(x, y) =


x +



(x + y) +




√
x + y.

Now, we check condition (H). Obviously, f : I × P
r → P for any r > , and f is uni-

formly continuous on I × P
r . Let f = f () + f (), where f () = (f () , . . . , f ()k , . . .) and f () =

(f () , . . . , f ()k , . . .), in which

f ()k (t,u, v) =
 + t
k

{[
uk+(t) + u′

k+(t) +
∞∑
j=

uj(t) +
∞∑
j=

u′
j(t)

]

+

√√√√uk(t) + u′
k+(t) +

∞∑
j=

uj(t) +
∞∑
j=

u′
j(t)

}
(k = , , , . . .), (.)

and

f ()k (t,u, v) =



uk(t) (k = , , , . . .). (.)

For any t ∈ I and bounded subsets D,D ⊂ E, by (.), (.), we know

α
(
f ()(I,D,D)

)≤ 


α(D), ∀t ∈ I,D,D ⊂ E, (.)

and

 ≤ ∥∥f ()(t,u, v)∥∥ = ∞∑
k=

∣∣f ()k (t,uk , vk)
∣∣

≤ (‖u‖ + ‖v‖) + 

√‖u‖ + ‖v‖, ∀t ∈ I,u, v ∈ E.

Similar to the proof of [, Example .], we have

α
(
f ()(t,D,D)

)
= , ∀t ∈ I, bounded sets D,D ⊂ E. (.)

It follows from (.) and (.) that

α
(
f (I,D,D)

)≤ 


α(D), ∀t ∈ I,D,D ⊂ E,
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and


ρ∗

( n–∑
k=

Lk
(n –  – k)!

+ Ln–

)
=




√
π

≈ . < ,

i.e., condition (H) holds for L = 
 , L = .

On the other hand, by (.), we have

fk(t,u, v) ≥  + t
k

(‖u‖ + ‖v‖), ∀t ∈ Iτ ,u, v ∈ P (k = , , , . . .),

and

fk(t,u, v) ≥  + t
k

√‖u‖ + ‖v‖, ∀t ∈ Iτ ,u, v ∈ P (k = , , , . . .).

Hence condition (H) is satisfied for

c(t) =
 + t
k

, h,k(u, v) =
(‖u‖ + ‖v‖), and u∗ =

(
, . . . ,


k

, . . .
)
,

in this situation,

h∞
,k = lim‖u‖+‖v‖→∞

(‖u‖ + ‖v‖)
‖u‖ + ‖v‖ =∞ > �–.

And condition (H) is also satisfied for

c(t) =
 + t
k

, h,k(u, v) =
√‖u‖ + ‖v‖, and u∗ =

(
, . . . ,


k

, . . .
)
,

in this situation,

h∞
,k = lim‖u‖+‖v‖→

√‖u‖ + ‖v‖
‖u‖ + ‖v‖ =∞ >∇–.

Finally, choose ξ = . It is easy to check that condition (H) is satisfied. In this case,
Mξ ≈ ., and so

ρNMξ

∫ 


ϕ(s)a(s)ds≈ . < ξ = .

From Theorem ., the conclusion follows and the proof is complete. �
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