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Abstract
The aim of the present paper is to introduce a Kantorovich-type modification of the
q-discrete beta operators and to investigate their statistical and weighted statistical
approximation properties. Rates of statistical convergence by means of the modulus
of continuity and the Lipschitz-type function are also established for operators. Finally,
we construct a bivariate generalization of the operator and also obtain the statistical
approximation properties.
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1 Introduction
Gupta et al. [] introduced discrete q-Beta operators as follows:

Vn,q
(
f (t);x

)
= Vn(f ;q;x) =


[n]q

∞∑
k=

pn,k(q;x)f
(

[k]q
[n + ]qqk–

)
, (.)

where

pn,k(q;x) =
qk(k–)/

Bq(k + ,n)
xk

( + x)n+k+q
.

In the above paper, Gupta et al. [] introduced and studied some approximation properties
of these operators. They also obtained some global direct error estimates for the above
operators using the second-order Ditzian-Totik modulus of smoothness and defined and
studied the limit discrete q-Beta operator. Also, they gave the following equalities:

Vn(;q;x) = , Vn(t;q;x) = x for every n ∈ N and

Vn
(
t;q;x

)
=

(


q[n + ]q
+ 

)
x +

x
[n + ]q

.

In the recent years, applications of q-calculus in approximation theory is one of the inter-
esting areas of research. Several authors have proposed the q analogues of Kantorovich-
typemodification of different linear positive operators and studied their statistical approx-
imation behaviors.
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In , Khan [] studied approximation of functions in various classes using different
types of operators.
On the other hand, statistical convergence was first introduced by Fast [], and it has

become an area of active research. Also, statistical convergence was introduced byGadjiev
andOrhan [], Doğru [], Duman [], Gupta andRadu [], Ersan andDoğru [] andDoğru
and Örkcü [].
In , Örkcü and Doğru obtained weighted statistical approximation properties of

Kantorovich-type q-Szász-Mirakjan operators [].
Recently, Doğru and Kanat [] defined the Kantorovich-typemodification of Lupas op-

erators as follows:

R̃n(f ;q;x) = [n + ]
n∑

k=

(∫ [k+]/[n+]

[k]/[n+]
f (t)dqt

)(
n
k

)
q–kqk(k–)/xk( – x)n–k

( – x + qx) · · · ( – x + qn–x)
. (.)

In [], Doğru and Kanat proved the following statistical Korovkin-type approximation
theorem for operators (.).

Theorem  Let q := (qn),  < q < , be a sequence satisfying the following conditions:

st-lim
n
qn = , st-lim

n
qnn = a (a < ) and st-lim

n


[n]

= , (.)

then if f is any monotone increasing function defined on [, ], for the positive linear oper-
ator R̃n(f ;q;x), then

st-lim
n

∥∥R̃n(f ;q; ·) – f
∥∥
C[,] = 

holds.

In [], Doğru gave some example so that (qn) is statistically convergent to  in ordinary
case. Throughout the present paper, we consider  < q < . Following [, ], for each
non-negative integer n, we have

[n]q =

{
–qn
–q , q �= ,
n, q = ,

[n]q! =

{
[n]q[n – ]q[n – ]q · · · []q, n = , , . . . ,
, n = ,

and
(
n
k

)
q
=

[n]q!
[k]q![n – k]q!

.

Further, we use the q-Pochhammer symbol, which is defined as

( + x)nq =
n–∏
j=

(
 + qjx

)
.
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The q-derivative Dqf of a function f is defined by

(Dqf )(x) =
f (x) – f (qx)
( – q)x

if x �= .

The q-Jackson integral is defined as (see [])

∫ b


f (x)dqx = ( – q)b

∞∑
n=

f
(
bqn

)
qn,  < q < , (.)

and over a general interval [a,b], one defines

∫ b

a
f (x)dqx =

∫ b


f (x)dqx –

∫ a


f (x)dqx. (.)

Now, let us consider the following Kantorovich-type modification of discrete q-Beta op-
erators for each positive integer n and q ∈ (, ):

V ∗
n (f ;q;x) =

[n + ]q
[n]q

∞∑
k=

(∫ [k+]q/[n+]q

[k]q/[n+]q
f (t)dqt

)
pn,k(q;x)
qk–

, (.)

where f is a continuous and non-decreasing function on the interval [,∞), x ∈ [,∞).
It is seen that the operators V ∗

n are linear from the definition of q-integral, and since f
is a non-decreasing function, q-integral is positive, so V ∗

n are positive.
To obtain the statistical convergence of operators (.), we need the following basic re-

sult.

2 Basic result
Lemma  The following equalities hold:

(i) V ∗
n (;q;x) = ,

(ii) V ∗
n (t;q;x) = x + q

[]q[n+]q ,

(iii) V ∗
n (t;q;x) =

qn–[n+]qx
[n+]q x + ( qn–

[n+]q +
(q+)

[n+]q[]q )x +
q

[n+]q[]q
.

Proof By using (.), (.) and the equality [k + ]q =  + [k]q, we have

∫ [k+]q/[n+]q

[k]q/[n+]q
dqt =

qk

[n + ]q
, (.)

∫ [k+]q/[n+]q

[k]q/[n+]q
t dqt =

qk

[n + ]q

(
[k]q +


[]q

)
, (.)

∫ [k+]q/[n+]q

[k]q/[n+]q
t dqt =

qk

[n + ]q

(
[k]q +

q + 
[]q

[k]q +


[]q

)
. (.)

Hence, by using Vn(;q;x) =  and (.), we get

V ∗
n (;q;x) = .
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Similarly, using (.), Vn(;q;x) =  and Vn(t;q;x) = x, we obtain

V ∗
n (t;q;x) = Vn(t;q;x) +Vn(;q;x)

q
[n + ]q[]q

= x +
q

[]q[n + ]q
.

Finally, using (.), Vn(;q;x) = , Vn(t;q;x) = x and Vn(t;q;x) = ( 
q[n+]q + )x + x

[n+]q , we
obtain

V ∗
n (t;q;x) = qn–Vn

(
t;q;x

)
+

(q + )
[n + ]q[]q

Vn(t,q;x) +
q

[n + ]q[]q
Vn(,q;x)

=
qn–[n + ]q
[n + ]q

x +
(

qn–

[n + ]q
+

(q + )
[n + ]q[]q

)
x +

q
[n + ]q[]q

. �

Remark  From Lemma , we have

αn(x) = V ∗
n (t – x;q;x) =

q
[]q[n + ]q

,

δn(x) = V ∗
n
(
(t – x);q;x

)
= V ∗

n
(
t;q;x

)
– xV ∗

n (t;q;x) + x

=
(
qn–[n + ]q
[n + ]q

– 
)
x +

(
qn–

[n + ]q
+

(q + )
[n + ]q[]q

–
q

[n + ]q[]q

)
x

+
q

[n + ]q[]q
.

Remark  If we put q = , we get the moments of Kantorovich-type modification of dis-
crete beta operators as

V ∗
n (t; ;x) = x +


(n + )

,

V ∗
n
(
t; ;x

)
=
(n + )
(n + )

x +
x

(n + )
+


(n + )

,

V ∗
n (t – x; ;x) =


(n + )

,

and

V ∗
n
(
(t – x); ;x

)
= V ∗

n
(
t; ;x

)
– xV ∗

n (t; ;x) + x

=
x

(n + )
+

x
(n + )

+


(n + )
.

3 Korovkin-type statistical approximation properties
The study of Korovkin-type statistical approximation theory is a well-established area of
research, which deals with the problem of approximating a function with the help of a
sequence of positive linear operators (see [, , ] for details). The usual Korovkin theo-
rem is devoted to approximation by positive linear operators on finite intervals. The main
aim of this paper is to obtain the Korovkin-type statistical approximation properties of
our operators defined in (.), with the help of Theorem .
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Let us recall the concept of a limit of a sequence extended to a statistical limit by using
the natural density δ of a set K of positive integers:

δ(K) = lim
n


n

{the number k ≤ n such that k ∈ K}

whenever the limit exists (see []). So, the sequence x = (xk) is said to be statistically
convergent to a number L, meaning that for every ε > ,

δ
{
k : |xk – L| ≥ ε

}
= 

and it is denoted by st-limk xk = L.
In this part, we will use the notation ‖f ‖ instead of ‖f ‖C[,μ] for abbreviation.

Theorem  Let q = (qn) be a sequence satisfying (.) for  < qn ≤  and a Kantorovich-
type modification of discrete q-Beta operators given by (.). Then, for any function f ∈
C[,μ] ⊂ C[,∞) and x ∈ [,μ] ⊂ [,∞), where μ > , we have

st-lim
n

∥∥V ∗
n (f ;qn; ·) – f

∥∥ = ,

where C[,μ] denotes the space of all real bounded functions f which are continuous in
[,μ].

Proof Using V ∗
n (;qn;x) = , it is clear that

st-lim
n

∥∥V ∗
n (;qn;x) – 

∥∥ = .

Now, by Lemma (ii), we have

∥∥V ∗
n (t;qn;x) – x

∥∥ =
∥∥∥∥x + qn

[]qn [n + ]qn
– x

∥∥∥∥ ≤ qn
[]qn [n + ]qn

. (.)

For a given ε > , we define the following sets:

U =
{
k :

∥∥V ∗
n (t;qk ;x) – x

∥∥ ≥ ε
}

and

U =
{
k :

qk
[]qk [k + ]qk

≥ ε

}
.

From (.), one can see that U ⊂U. So, we get

δ
{
k ≤ n :

∥∥V ∗
n (t,qk ;x) – x

∥∥ ≥ ε
} ≤ δ

{
k ≤ n :

qk
[]qk [k + ]qk

≥ ε

}
.

By using (.), it is clear that

st-lim
n

(
qn

[]qn [n + ]qn

)
= .
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So,

δ

{
k ≤ n :

qk
[]qk [k + ]qk

≥ ε

}
= ,

then

st-lim
n

∥∥V ∗
n (t;qn;x) – x

∥∥ = .

Finally, by Lemma (iii), we have

∥∥V ∗
n
(
t;qn;x

)
– x

∥∥
=

∥∥∥∥qn–n [n + ]qn
[n + ]qn

x +
(

qn–n
[n + ]qn

+
(qn + )

[n + ]qn []qn

)
x +

qn
[n + ]qn []qn

– x
∥∥∥∥

≤
∣∣∣∣qn–n [n + ]qn

[n + ]qn
– 

∣∣∣∣μ +
∣∣∣∣ qn–n
[n + ]qn

+
(qn + )

[n + ]qn []qn

∣∣∣∣μ +
∣∣∣∣ qn
[n + ]qn []qn

∣∣∣∣
= A

((

qn

– 
)
+


[n + ]qn

(
qn–n + qn–n +

(qn + )
[]qn

)
+

qn
[n + ]qn []qn

)
,

where A =max{μ,μ, } = μ.
If we choose αn = ( 

qn – ), βn = 
[n+]qn

(qn–n + qn–n + (qn+)
[]qn

), γn = qn
[n+]qn []qn

, then one can
write

st-lim
n

αn = st-lim
n

βn = st-lim
n

γn = , (.)

by (.). Now, given ε > , we define the following four sets:

S =
{
k :

∥∥V ∗
n
(
t;qk ;x

)
– x

∥∥ ≥ ε

A

}
,

S =
{
k : αk ≥ ε

A

}
, S =

{
k : βk ≥ ε

A

}
, S =

{
k : γk ≥ ε

A

}
.

It is obvious that S ⊆ S ∪ S ∪ S. So, we get

δ

{
k ≤ n :

∥∥V ∗
n (t;qk ;x) – x

∥∥ ≥ ε

A

}
≤ δ

{
k ≤ n : αk ≥ ε

A

}
+ δ

{
k ≤ n : βk ≥ ε

A

}

+ δ

{
k ≤ n : γk ≥ ε

A

}
.

So, the right-hand side of the inequalities is zero by (.), then

st-lim
n

∥∥V ∗
n
(
t;qn;x

)
– x

∥∥ = .

So, the proof is completed. �
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4 Weighted statistical approximation
Let Bx [,∞) be the set of all functions f defined on [,∞) satisfying the condition
f (x) ≤ Mf ( + x), where Mf is a constant depending only on f . By Cx [,∞), we denote
the subspace of all continuous functions belonging to Bx [,∞). Also, let C∗

x [,∞) be
the subspace of all functions f ∈ Cx [,∞), for which limx→∞ f (x)

+x is finite. The norm on
C∗
x [,∞) is ‖f ‖x = supx∈[,∞)

|f (x)|
+x .

Theorem  Let q = (qn) be a sequence satisfying (.) for  < qn ≤ . Then, for all nonde-
creasing functions f ∈ C∗

x [,∞), we have

st-lim
n

∥∥V ∗
n (f ;qn; ·) – f

∥∥
x = .

Proof As a consequence of Lemma , since V ∗
n (x;qn;x) ≤ Cx, where C is a positive

constant, V ∗
n (f ;qn;x) is a sequence of linear positive operators acting from C∗

x [,∞) to
Bx [,∞). Using V ∗

n (;qn;x) = , it is clear that

st-lim
n

∥∥V ∗
n (;qn;x) – 

∥∥
x = .

Now, by Lemma (ii), we have

∥∥V ∗
n (t;qn;x) – x

∥∥
x = sup

x∈[,∞)

|V ∗
n (t;qn;x) – x|

 + x
≤ qn

[]qn [n + ]qn
. (.)

By using (.), it is clear that

st-lim
n

(
qn

[]qn [n + ]qn

)
= ,

then

st-lim
n

∥∥V ∗
n (t;qn;x) – x

∥∥
x = .

Finally, by Lemma (iii), we have

∥∥V ∗
n
(
t;qn;x

)
– x

∥∥
x

≤
(
qn–n [n + ]qn
[n + ]qn

– 
)

sup
x∈[,∞)

x

 + x
+

(
qn–n

[n + ]qn
+

(qn + )
[n + ]qn []qn

)

× sup
x∈[,∞)

x
 + x

+
qn

[n + ]qn []qn

≤
(
qn–n [n + ]qn
[n + ]qn

– 
)
+

(
qn–n

[n + ]qn
+

(qn + )
[n + ]qn []qn

)
+

qn
[n + ]qn []qn

=
(


qn

– 
)
+


[n + ]qn

(
qn–n + qn–n +

(qn + )
[]qn

)
+

qn
[n + ]qn []qn

.

If we choose αn = ( 
qn – ), βn = 

[n+]qn
(qn–n + qn–n + (qn+)

[]qn
), γn = qn

[n+]qn []qn
, then one can

write

st-lim
n

αn = st-lim
n

βn = st-lim
n

γn = , (.)
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by (.). Now, given ε > , we define the following four sets:

P =
{
k :

∥∥V ∗
n
(
t;qk ;x

)
– x

∥∥
x ≥ ε

}
,

P =
{
k : αk ≥ ε



}
, P =

{
k : βk ≥ ε



}
, P =

{
k : γk ≥ ε



}
.

It is obvious that P ⊆ P ∪ P ∪ P. So, we get

δ
{
k ≤ n :

∥∥V ∗
n (t;qk ;x) – x

∥∥
x ≥ ε

} ≤ δ

{
k ≤ n : αk ≥ ε



}
+ δ

{
k ≤ n : βk ≥ ε



}

+ δ

{
k ≤ n : γk ≥ ε



}
.

So, the right-hand side of the inequalities is zero by (.), then

st-lim
n

∥∥V ∗
n
(
t;qn;x

)
– x

∥∥
x = .

So, the proof is completed. �

5 Rates of statistical convergence
In this part, rates of statistical convergence of operator (.) by means of modulus of con-
tinuity and Lipschitz functions are introduced.

Lemma  [] Let  < q <  and a ∈ [,bq], b > . The inequality

∫ b

a
|t – x|dqt ≤

(∫ b

a
|t – x| dqt

)/(∫ b

a
dqt

)/

is satisfied.

Let CB[,∞), the space of all bounded and continuous functions on [,∞), and x ≥ .
Then, for δ > , the modulus of continuity of f denoted by ω(f ; δ) is defined to be

ω(f ; δ) = sup
x–δ≤t≤x+δ;t∈[,∞)

∣∣f (t) – f (x)
∣∣.

Then it is known that limδ→ ω(f ; δ) =  for f ∈ CB[,∞), and also, for any δ >  and each
t,x≥ , we have

∣∣f (t) – f (x)
∣∣ ≤ ω(f ; δ)

(
 +

|t – x|
δ

)
. (.)

Theorem  Let (qn) be a sequence satisfying (.). For every non-decreasing f ∈ CB[,∞),
x ≥  and n ∈N, we have

∣∣V ∗
n (f ;qn;x) – f (x)

∣∣ ≤ ω
(
f ;

√
δn(x)

)
,

http://www.advancesindifferenceequations.com/content/2013/1/345
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where

δn(x) =
(
qn–n [n + ]qn
[n + ]qn

– 
)
x +

(
qn–n

[n + ]qn
+

(qn + )
[n + ]qn []qn

–
qn

[n + ]qn []qn

)
x

+
qn

[n + ]qn []qn
. (.)

Proof Let non-decreasing f ∈ CB[,∞) and x ≥ . Using linearity and positivity of the
operators V ∗

n (f ;qn;x) and then applying (.), we get for δ >  and n ∈N that

∣∣V ∗
n (f ;qn;x) – f (x)

∣∣ ≤ V ∗
n
(∣∣f (t) – f (x)

∣∣;qn;x)
≤ ω(f ; δ)

{
V ∗
n (;qn;x) +


δ
V ∗
n
(|t – x|;qn;x

)}
.

Taking into account V ∗
n (;qn;x) =  and then applying Lemma  with a = [k]q/[n + ]q and

b = [k + ]q/[n + ]q, we may write

∣∣V ∗
n (f ;qn;x) – f (x)

∣∣ ≤ ω(f ; δ)

{
 +


δ

[n + ]q
[n]q

∞∑
k=

pn,k(q;x)
qk–

(∫ [k+]q/[n+]q

[k]q/[n+]q
(t – x) dqt

)/

×
(∫ [k+]q/[n+]q

[k]q/[n+]q
dqt

)/
}
.

By using the Cauchy-Schwarz inequality, we have

∣∣V ∗
n (f ;qn;x) – f (x)

∣∣ = ω(f ; δ)

{
 +


δ

(
[n + ]q
[n]q

∞∑
k=

pn,k(q;x)
qk–

∫ [k+]q/[n+]q

[k]q/[n+]q
(t – x) dqt

)/

×
(
[n + ]q
[n]q

∞∑
k=

pn,k(q;x)
qk–

∫ [k+]q/[n+]q

[k]q/[n+]q
dqt

)/}

≤ ω(f ; δ)
{
 +


δ

(
V ∗
n
(
(t – x);qn;x

))/(V ∗
n (;qn;x)

)/}.
Taking q = qn, a sequence satisfying (.), and using δn(x) = V ∗

n ((t – x);qn;x) and then
choosing δ = δn(x) as in (.), the theorem is proved. �

Notice that by the conditions in (.), st-limn δn = . By (.), we have

st-lim
n

ω(f ; δn) = .

This gives us the pointwise rate of statistical convergence of the operators V ∗
n (f ;qn;x) to

f (x).
Now we will study the rate of convergence of the operator V ∗

n (f ;qn;x) with the help of
functions of the Lipschitz class LipM(α), whereM >  and  < α ≤ . Recall that a function
f ∈ CB[,∞) belongs to LipM(α) if the inequality

∣∣f (t) – f (x)
∣∣ ≤ M|t – x|α ; ∀t,x ∈ [,∞).

We have the following theorem.

http://www.advancesindifferenceequations.com/content/2013/1/345
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Theorem  Let the sequence q = (qn) satisfy the conditions given in (.), and let f ∈
LipM(α), x ≥  with  < α ≤ . Then

∣∣V ∗
n (f ;qn;x) – f (x)

∣∣ ≤ Mδα/
n (x), (.)

where δn(x) is given as in (.).

Proof Since V ∗
n (f ;qn;x) are linear positive operators and f ∈ LipM(α), on x ≥  with  <

α ≤ , we can write

∣∣V ∗
n (f ;qn;x) – f (x)

∣∣ ≤ V ∗
n
(∣∣f (t) – f (x)

∣∣;qn;x)
≤ MV ∗

n
(|t – x|α ;qn;x

)
.

If we take p = 
α
, q = 

–α
, applying Lemma  and Hölder’s inequality, we obtain

∣∣V ∗
n (f ;qn;x) – f (x)

∣∣ ≤ M
[n + ]q
[n]q

∞∑
k=

pn,k(q;x)
qk–

(∫ [k+]q/[n+]q

[k]q/[n+]q
(t – x) dqt

)α/

×
(∫ [k+]q/[n+]q

[k]q/[n+]q
dqt

)(–α)/

},

∣∣V ∗
n (f ;qn;x) – f (x)

∣∣ =M

(
[n + ]q
[n]q

∞∑
k=

pn,k(q;x)
qk–

∫ [k+]q/[n+]q

[k]q/[n+]q
(t – x) dqt

)α/

×
(
[n + ]q
[n]q

∞∑
k=

pn,k(q;x)
qk–

∫ [k+]q/[n+]q

[k]q/[n+]q
dqt

)(–α)/

≤ M
(
V ∗
n
(
(t – x);qn;x

))α/(V ∗
n (;qn;x)

)(–α)/

≤ M
(
V ∗
n
(
(t – x);qn;x

))α/.

Taking δn(x) = (V ∗
n ((t – x);qn;x)), as in (.), we get the desired result. �

6 The construct of the bivariate operators of Kantorovich type
The purpose of this part is to give a representation for the bivariate operators of Kan-
torovich type (.), introduce the statistical convergence of the operators to the function
f and show the rate of statistical convergence of these operators.
For f : C([,∞) × [,∞)) → C([,∞) × [,∞)) and  < qn ,qn ≤ , let us define the

bivariate case of operators (.) as follows:

V ∗
n,n (f ;qn ,qn ,x, y)

=
[n + ]qn [n + ]qn

[n]qn [n]qn

×
∞∑

k=

∞∑
k=

(∫ [k+]qn /[n+]qn

[k]qn /[n+]qn

∫ [k+]qn /[n+]qn

[k]qn /[n+]qn

f (s, t)dqn s dqn t
)

× pn,n (qn ,qn ,x, y)
qk–n qk–n

, (.)
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where

pn,n,k,k (qn ,qn ,x, y) =
qk(k–)/n qk(k–)/n

Bqn (k + ,n)Bqn (k + ,n)
xkyk

( + x)n+k+qn ( + y)n+k+qn

.

In [], Erkuş and Duman proved the statistical Korovkin-type approximation theorem
for the bivariate linear positive operators to the functions in space Hω .
In , Doğru and Gupta [] introduced a bivariate generalization of the q-MKZ op-

erators and investigated its Korovkin-type approximation properties.
Recently, Ersan and Doğru [] obtained the statistical Korovkin-type theorem and

lemma for the bivariate linear positive operators defined in the space Hω as follows.

Theorem  [] Let Ln,n be the sequence of linear positive operators acting from Hω (R
+)

into CB(R+), where R+ = [,∞). Then, for any f ∈Hω ,

st- lim
n,n

∥∥Ln,n (f ) – f
∥∥ = .

Lemma  [] The bivariate operators defined in [] satisfy the following items:
(i) Ln,n (f;qn ,qn ,x, y) = qnqn ,
(ii) Ln,n (f;qn ,qn ,x, y) = qnqn

[n]qn
[n+]qn

x
+x ,

(iii) Ln,n (f;qn ,qn ,x, y) = qnqn
[n]qn

[n+]qn

y
+y ,

(iv) Ln,n (f;qn ,qn ,x, y) = qnqn
[n]qn [n–]qn

[n+]qn

x
(+x)(+qnx)

+ qnqn
[n]qn

[n+]qn

x
+x +

qnqn
[n]qn [n–]qn

[n+]qn

y
(+y)(+qn y)

+ qnqn
[n]qn

[n+]qn

y
+y .

In order to obtain the statistical convergence of operator (.), we need the following
lemma.

Lemma  The bivariate operators defined in (.) satisfy the following equalities:
(i) V ∗

n,n (f;qn ,qn ,x, y) = ,
(ii) V ∗

n,n (f;qn ,qn ,x, y) = x + qn
[]qn [n+]qn

,

(iii) V ∗
n,n (f;qn ,qn ,x, y) = y + qn

[]qn [n+]qn
,

(iv) V ∗
n,n (f;qn ,qn ,x, y) =

qn–n [n+]qn
[n+]qn

x + ( qn–n
[n+]qn

+ (qn +)
[n+]qn []qn

)x + qn
[n+]qn []qn

+

qn–n [n+]qn
[n+]qn

y + ( qn–n
[n+]qn

+ (qn+)
[n+]qn []qn

)y + qn
[n+]qn []qn

.

Proof By the help of the proofs for the bivariate operator in [], the conditions may be
easily obtained. So, the proof can be omitted.
Let q = (qn ) and q = (qn ) be the sequence that converges statistically to  but does not

converge in ordinary sense, so for  < qn ,qn ≤ , it can be written as

st-lim
n

qn = st-lim
n

qn = . (.)

Now, under the condition in (.), let us show the statistical convergence of bivariate op-
erator (.) with the help of the proof of Theorem . �
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Theorem  Let q = (qn ) and q = (qn ) be a sequence satisfying (.) for  < qn ,qn ≤ ,
and let V ∗

n,n be a sequence of linear positive operators from C(K) into C(K) given by (.).
Then, for any function f ∈ C(K × K) ⊂ C(K × K) and x ∈ K × K ⊂ K × K , where K =
[,∞)× [,∞), K = [,μ]× [,μ], we have

st- lim
n,n

∥∥V ∗
n,n (f ) – f

∥∥
C(K×K)

= .

Proof Using Lemma , the proof can be obtained similar to the proof of Theorem . So,
we shall omit this proof. �

7 Rates of convergence of bivariate operators
Let K = [,∞)× [,∞). Then the sup norm on CB(K) is given by

‖f ‖ = sup
(x,y)∈K

∣∣f (x, y)∣∣, f ∈ CB(K).

We consider the modulus of continuity ω(f ; δ, δ) for bivariate case given by δ, δ > ,

ω(f ; δ, δ) =
{
sup

∣∣f (x′, y′) – f (x, y)
∣∣ : (x′, y′), (x, y) ∈ K and

∣∣x′ – x
∣∣ ≤ δ,

∣∣y′ – y
∣∣ ≤ δ

}
.

It is clear that a necessary and sufficient condition for a function f ∈ CB(K) is

lim
δ,δ→

ω(f ; δ, δ) = ,

and ω(f ; δ, δ) satisfy the following condition:

∣∣f (x′, y′) – f (x, y)
∣∣ ≤ ω(f ; δ, δ)

(
 +

|x′ – x|
δ

)(
 +

|y′ – y|
δ

)
(.)

for each f ∈ CB(K). Then observe that any function in CB(K) is continuous and bounded
on K . Details of the modulus of continuity for bivariate case can be found in [].
Now, the rate of statistical convergence of bivariate operator (.) by means of modulus

of continuity in f ∈ CB(K) will be given in the following theorem.

Theorem  Let q = (qn ) and q = (qn ) be a sequence satisfying the condition in (.). So,
we have

∣∣V ∗
n,n (f ;qn ,qn ,x, y) – f (x, y)

∣∣ ≤ ω(f ;
√

δn(x),
√

δn(x)),

where

δn (x) =
(qn–n [n + ]qn

[n + ]qn
– 

)
x +

(
qn–n

[n + ]qn
+

(qn + )
[n + ]qn []qn

–
qn

[n + ]qn []qn

)
x +

qn
[n + ]qn []qn

, (.)
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δn (y) =
(qn–n [n + ]qn

[n + ]qn
– 

)
y +

(
qn–n

[n + ]qn
+

(qn + )
[n + ]qn []qn

–
qn

[n + ]qn []qn

)
y +

qn
[n + ]qn []qn

. (.)

Proof By using the condition in (.), we get for δn , δn >  and n ∈N that

∣∣V ∗
n,n (f ;qn ,qn ,x, y) – f (x, y)

∣∣
≤ V ∗

n,n

(∣∣f (x′, y′) – f (x, y)
∣∣;qn ,qn ,x, y)

≤ ω(f ; δn(x), δn(x))
{
V ∗
n,n (f;qn ,qn ,x, y) +


δn

V ∗
n
(∣∣x′ – x

∣∣;qn ,qn ,x, y)
}

×
{
V ∗
n,n (f;qn ,qn ,x, y) +


δn

V ∗
n
(∣∣y′ – y

∣∣;qn ,qn ,x, y)
}
.

If the Cauchy-Schwarz inequality is applied, we have

V ∗
n
(∣∣x′ – x

∣∣;qn ,qn ,x, y) ≤ (
V ∗
n
((
x′ – x

);qn ,qn ,x, y))/(V ∗
n,n (f;qn ,qn ,x, y)

)/.
So, if it is substituted in the above equation, the proof is completed. �

At last, the following theorem represents the rate of statistical convergence of bivariate
operator (.) by means of Lipschitz LipM(α,α) functions for the bivariate case, where
f ∈ CB[,∞) andM >  and  < α ≤ ,  < α ≤ , then let us define LipM(α,α) as

∣∣f (x′, y′) – f (x, y)
∣∣ ≤ M

∣∣x′ – x
∣∣α ∣∣y′ – y

∣∣α ; ∀x,x′, y, y′ ∈ [,∞).

We have the following theorem.

Theorem  Let the sequence q = (qn ) and q = (qn ) satisfy the conditions given in (.),
and let f ∈ LipM(α,α), x ≥  and  < α ≤ ,  < α ≤ . Then

∣∣V ∗
n,n (f ;qn ,qn ,x, y) – f (x, y)

∣∣ ≤ Mδn
α/(x)δn

α/(x),

where δn (x) and δn (x) are defined in (.), (.).

Proof Since V ∗
n,n (f ;qn ,qn ,x, y) are linear positive operators and f ∈ LipM(α,α), x ≥ 

and  < α ≤ ,  < α ≤ , we can write

∣∣V ∗
n,n (f ;qn ,qn ,x, y) – f (x, y)

∣∣ ≤ V ∗
n,n

(∣∣f (x′, y′) – f (x, y)
∣∣;qn ,qn ,x, y)

≤ MV ∗
n,n

(∣∣x′ – x
∣∣α ∣∣y′ – y

∣∣α ;qn ,qn ,x, y)
= MV ∗

n,n

(∣∣x′ – x
∣∣α ;qn ,qn ,x, y)

×V ∗
n,n

(∣∣y′ – y
∣∣α ;qn ,qn ,x, y).
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If we take p = 
α
, p = 

α
, q = 

–α
, q = 

–α
, applying Hölder’s inequality, we obtain

∣∣V ∗
n,n (f ;qn ,qn ,x, y) – f (x, y)

∣∣ ≤ M
(
V ∗
n,n

(
x′ – x

);qn ,qn ,x, y)α/

× (
V ∗
n,n (f;qn ,qn ,x, y)

)–α/

× (V ∗
n,n

((
y′ – y

)α ;qn ,qn ,x, y
)α/

× (
V ∗
n,n (f;qn ,qn ,x, y)

)–α/

=Mδn
α/(x)δn

α/(x).

So, the proof is completed. �
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