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Abstract
In this work we investigate a model which describes diffusion in petroleum
engineering. The original model, which already generalizes the standard one (usual
diffusion equation) to a non-local model taking into account the memory effects, is
here further extended to cope with many other different possible situations. Namely,
we consider the Hilfer fractional derivative which by its nature interpolates the
Riemann-Liouville fractional derivative and the Caputo fractional derivative (the one
that has been studied previously). At the same time, this kind of derivative provides us
with a whole range of other types of fractional derivatives. We treat both the
Neumann boundary conditions case and the Dirichlet boundary conditions case and
find explicit solutions. In addition to that, we also discuss the case of an infinite
reservoir.

1 Introduction
In order to modernize the public water service of the town of Dijon, France, Henry Darcy
made several experiments and wrote an interesting document which soon formed the
basis of the theory of fluid conduction. His work was about the download flow of wa-
ter through filter sands. He established a (diffusion) equation, well known nowadays as
‘Darcy’s law’, which plays the same role as Fourier’s law in heat conduction theory and
Ohm’s law in the electricity conduction theory (see [, ]). Of course, this law has its limi-
tations. It is restricted to the situations where the flow through the pores can be modeled
as Stokes flows. In particular, for large values of the Reynolds number (or at high values of
flow rates) Darcy’s law is not valid anymore. It losses its accuracy. Apart from that, Darcy’s
law has proved its usefulness in many applications such as the recovery of fuel from un-
derground oil reservoirs. It defines the rock permeability (which controls the directional
movement of the flow rate).
Many researchers have shown interest in this law and have worked extensively on ex-

tending and generalizing it to more complicated situations and in different contexts. For
instance, they observed that this flow is ‘linear’: Darcy himself assumed that the flow is
weak and as such the pressure drop is linearly related to the flow discharge rate. This
motivated them to extend this law to the ‘nonlinear’ case. They also considered the case
when the inertial forces (and/or the deformation of the solid) are not negligible as com-
pared with those arising from viscosity. In particular, they generalized the law from Stokes
to ‘non-Stokes’ flows in porous media. In fact, it has been found that more general physi-
cal formulations may be obtained by including new parameters and forces in the equation
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itself. Moreover, we may mention here the transition from a single phase to multiphase
and from fixed to growing porous media.
In [] Caputo modified the standard diffusion equation

∂p
∂t

= k
∂p
∂x

by introducing a fractional derivative (in the sense of Caputo) in Darcy’s law [] to take
into account the memory effects that may prevail in the fluid. The equation became

∂p
∂t

= k
∂

∂x
(cDα

+p
)
,  < α < , ()

where cDα
+ denotes the Caputo fractional derivative defined by

(CDα
+ f

)
(t) =


�( – α)

∫ t


(t – s)–αf ′(s)ds, t > , < α < .

Similar equations have been derived in other situations like the one in [] which describes
anomalous subdiffusion particles (and p is the probability density function) and in []
when studying the Stokes first problem (see also []). A natural question which arises is:
what about the commonly used Riemann-Liouville fractional derivative,

(RLDα
+ f

)
(t) =


�( – α)

d
dt

∫ t


(t – s)–αf (s)ds, t > , < α < ,

or other types of fractional derivatives?
It is well known by now that the Caputo fractional derivative is often preferred over

the Riemann-Liouville fractional derivative at least for two main reasons. The Caputo
derivative allows us to use the usual initial data (like p(x, ) = f (x)), whereas the Riemann-
Liouville derivative requires the prior knowledge of Dα–p(x, ) = g(x) when the order of
the equation is α (say  < α < ). In addition to that, the Caputo derivative of a constant is
zero which is not the case for the Riemann-Liouville derivative.
In the present note, we consider a generalized fractional derivative which encompasses

both fractional derivatives as special cases and provides a whole range of other types of
fractional derivatives in between. This derivative was introduced by Hilfer in [–]

(
Dα,β

+ f
)
(t) =

(
Iβ(–α) d

dt
I(–α)(–β)f

)
(t),  < α < ,  ≤ β ≤ ,

where

(
Iα+ f

)
(t) =


�(α)

∫ t


(t – s)α–f (s)ds, t > ,α > ,

and therefore we name it after him. This kind of fractional derivative has already proved
its usefulness (see [–]), and we are witnessing a growing interest in it. The parameter β

when equal to zero gives the Riemann-Liouville derivative and when it takes the value one
gives the Caputo derivative. For  < β < , we obtain many fractional derivatives interpo-
lating these two types of well-known derivatives.

http://www.advancesindifferenceequations.com/content/2013/1/349


Al-Homidan et al. Advances in Difference Equations 2013, 2013:349 Page 3 of 14
http://www.advancesindifferenceequations.com/content/2013/1/349

Using the Laplace-Fourier transform, we find the explicit solution for our equation un-
der appropriate boundary conditions.We prove here that, in our case, all these derivatives
when considered in diffusion equation () lead to similar solutions. Consequently, there
is no major benefit in treating separately these derivatives unless there is a need to unify
these treatments.
Formore on fractional calculus andmore on interesting fractional differential equations

and treatments, we refer the reader to [–].
In the next section, we present somematerial needed in our arguments. In Section  we

consider the modified diffusion equation with Neumann boundary conditions and indi-
cate how to find an explicit solution. Section  contains the Dirichlet boundary conditions
case. Finally, in Section  we treat the infinite reservoir case. Our results are illustrated by
some graphs.

2 Preliminaries
In this section we present some definitions and results which will be needed later in our
arguments (see [–] for more).

Definition  The Riemann-Liouville fractional integral of order α of f is defined by

(
Iα+ f

)
(t) =


�(α)

∫ t


(t – s)α–f (s)ds, t > ,α > 

when the right-hand side exists.

Definition  The Riemann-Liouville fractional derivative of order α of f is defined by

(RLDα
+ f

)
(t) =


�( – α)

d
dt

∫ t


(t – s)–αf (s)ds, t > , < α < 

when the right-hand side exists. Note that

(RLDα
+ f

)
(t) =

d
dt

(
I–αf

)
(t).

Definition  The Caputo fractional derivative of order α of f is defined by

(CDα
+ f

)
(t) =


�( – α)

∫ t


(t – s)–αf ′(s)ds, t > , < α < 

(the prime here is for the derivative) when the right-hand side exists. Note that

(CDα
+ f

)
(t) =

(
I–α d

dt
f
)
(t).

The relationship between these two types of derivatives is given by the following theo-
rem.

Theorem  [] We have

(RLDα
+ f

)
(t) =

(CDα
+ f

)
(t) +

t–α

�( – α)
f
(
+

)
, t > , < α < .
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Definition  The Hilfer fractional derivative of f of order α and type β is defined by

(
Dα,β

+ f
)
(t) =

(
Iβ(–α) d

dt
I(–α)(–β)f

)
(t),  < α < ,  ≤ β ≤ 

whenever the right-hand side exists.

Note that when β = ,

(
Dα,

+ f
)
(t) =

d
dt

(
I–αf

)
(t),

which is the Riemann-Liouville fractional derivative (see Definition ), and when β = ,

(
Dα,

+ f
)
(t) =

(
I–α d

dt
f
)
(t),

which is the Caputo fractional derivative (see Definition ).
For  < α < , the Laplace transforms of these derivatives are given by

L
[(RLDα

+ f
)
(t)

]
(s) = sαL

[
f (t)

]
(s) –

(
I–α
+ f

)(
+

)
, ()

L
[(CDα

+ f
)
(t)

]
(s) = sαL

[
f (t)

]
(s) – sα–f

(
+

)
, ()

L
[(
Dα,β

+ f
)
(t)

]
(s) = sαL

[
f (t)

]
(s) – sβ(α–)

(
I(–α)(–β)
+ f

)(
+

)
,  ≤ β ≤ . ()

It is clear that the differences in these Laplace transforms are in the ‘initial’ data f (+),
(I–α
+ f )(+) and (I(–α)(–β)

+ f )(+) (this last one is natural initial data for theHilfer derivative).
The natural space for the Hilfer fractional derivative is

Cα,β
–γ [a,b] =

{
f ∈ C–γ [a,b],Dα,β

a+ f ∈ C–γ [a,b]
}
,

where

C–γ (a,b] =
{
g : (a,b]→ R : (t – a)–γ g(t) ∈ C[a,b]

}
.

However, here, since our problem is of order one, solutions must be much smoother.

3 The problem
We shall investigate the following linear generalized fractional diffusion problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂p
∂t (x, t) =

k
μφCt

∂

∂x (D
α,β
+ p(x, t)),  ≤ x ≤ L, t > ,

p(x, ) = pi,  ≤ x≤ L,
q = –[ kA

μ
∂
∂x (D

α,β
+ p)]x=, t > ,

qL = –[ kA
μ

∂
∂x (D

α,β
+ p)]x=L, t > .

()

The different parametersμ, φ,Ct , k andA are positive constants which account for the vis-
cosity, porosity, total compressibility, permeability and the area, respectively. This model
describes the flow of oil in a finite reservoir. A closely related and interesting work is in
[] but for the normal form of the diffusion.
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This problem, for the Caputo fractional derivative, was derived and studied in []. Here
we consider the more general (Hilfer) fractional derivative Dα,β

+ which covers both the
Riemann-Liouville derivative and the Caputo derivative (in addition to many others for
β in the interval (, )). Following the argument in [], we introduce the dimensionless
variables: PD = pi–p

pi
, tD = ηt

L and XD = x
L , where η = k

μφCt
.

The next two lemmas will, in particular, show that we obtain the same explicit solution
using the Laplace transform as in the case of Caputo derivative (see []).

Lemma  If t = CtD, then Dμ,ν
t p(x, t) = C–μDμ,ν

tD p(x, t),  < μ < ,  ≤ ν ≤ ,  ≤ x≤ L, t > .

Proof From Definition , we have, for  < μ < ,  ≤ ν ≤ ,

Dμ,ν
t p(x, t)

= Iν(–μ)DI(–μ)(–ν)p(x, t)

=
∫ t



(t – τ )ν(–μ)–

�[ν( –μ)]
∂

∂τ

[


�[( –μ)( – ν)]

∫ τ


(τ – s)(–μ)(–ν)–p(x, s)ds

]
dτ .

Let t = CtD, we see that

Dμ,ν
t p(x, t) = A

∫ CtD


(CtD – t)ν(–μ)– ∂

∂τ

[∫ τ


(τ – s)(–μ)(–ν)–p(x, s)ds

]
dτ .

Put τ = Cξ , then clearly

Dμ,ν
t p(x, t)

= ACν(–μ)–
∫ tD


(tD – ξ )ν(–μ)– ∂

∂(Cξ )

[∫ Cξ


(Cξ – s)(–μ)(–ν)–p(x, s)ds

]
C dξ

= ACν(–μ)–
∫ tD


(tD – ξ )ν(–μ)– ∂

∂ξ

[∫ Cξ


(Cξ – s)(–μ)(–ν)–p(x, s)ds

]
dξ .

Put also s = Cu, it appears that

Dμ,ν
t p(x, t) = ACν(–μ)–C(–μ)(–ν)–

×
∫ tD


(tD – ξ )ν(–μ)– ∂

∂ξ

[∫ ξ


(ξ – u)(–μ)(–ν)–p(x,Cu)C du

]
dξ

= C–μA
∫ tD


(tD – ξ )ν(–μ)– ∂

∂ξ

[∫ ξ


(ξ – u)(–μ)(–ν)–p̃(x,u)du

]
dξ

= C–μIν(–μ)DI(–μ)(–ν)p̃(x, tD) = C–μDμ,ν
tD p(x, t).

The proof is complete. �

Lemma  Assume that f (t) is continuous on [,A] for some A > , then

lim
t→+

Iα+ f (t) = , α > .

http://www.advancesindifferenceequations.com/content/2013/1/349
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Proof Let  ≤ t ≤ A, then

∣∣∣∣
∫ t


(t – s)α–f (s)ds

∣∣∣∣ ≤
∫ t


(t – s)α–

∣∣f (s)∣∣ds
≤ M

∫ t


(t – s)α– ds≤M

–(t – s)
α

α∣∣∣∣t

=
M
α
tα ,

whereM is a bound for f (t) on [,A]. �

In view of our problem (), the solution p(x, t) must be at least absolutely continuous. Its
continuity nearby zero implies by Lemma  that I–α

+ f (+) = I(–α)(–β)
+ f (+) = . Therefore

all three derivatives have equal Laplace transforms (see ()-()) (if in addition f (+) = ).
This fact together with Lemma  shows that the argument in [] is valid without any
changes.
Observe that the change of variables has lead to p(xD, ) = , which byTheorem  implies

that both the Riemann-Liouville derivative and the Caputo derivative are equal. Another
way to see this fact is from the next two lemmas.

Definition  A function f (t) ∈ L(a,b) (the space of summable functions) is said to have a
summable fractional derivative Dα

+ f if I
–α
+ f ∈ AC([a,b]) (the space of absolutely contin-

uous functions).

Lemma  [, p.] If f (t) has a summable fractional derivative RLDβ

+ f with  < β < ,
then we have

Iα+
RLDβ

+ f (t) = Iα–β
+ f (t) –

I–β f (+)
�(α)

tα–.

Lemma  [, p.] If f (t) ∈ C[a,b],  < α < , then (CDα
+ Iαf )(t) = f (t), t ∈ [a,b].

Now, Definition , Definition  and Lemma  imply that

Dα,β f (t) = Iβ(–α)DI(–α)(–β)f (t) = CD–β(–α)I(–α)(–β)f (t)

= CD–β(–α)I–β(–α)–αf (t)

= CD–β(–α)
[
I–β(–α)RLDαf (t) +

I–αf (+)
�( – β( – α))

t–β(–α)
]
. ()

This holds if f (t) has a summable fractional derivative Dα
+ f (t) that is I

–α
+ f ∈ AC([,T]),

which is the case when f itself is absolutely continuous on [,T] for some T > . In our
case, p(x, t) is absolutely continuous. Lemma  ensures that I–α

+ f () = . Therefore,

Dα,β
+ f (t) =

CD–β(–α)I–β(–α)RLDα
+f (t) =

RLDα
+f (t)

by Lemma  if RLDα
+f (t) is continuous. This is the case if f (+) =  and f is continuously

differentiable because I–α
+ maps C[,T] into C[,T] (it also maps Cγ [,T] into C[,T],

see []).

http://www.advancesindifferenceequations.com/content/2013/1/349
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4 Dirichlet boundary conditions
Consider the problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂p
∂t = k ∂

∂x (D
α,βp) + f (x, t),  ≤ x ≤ L, t > ,

p(x, ) = pi,  ≤ x≤ L,
p(, t) = g(t), t > ,
p(L, t) = h(t), t > ,

()

where g(t), h(t) are continuously differentiable and f (x, t) is a forcing term.
Putting p(x, t) = P(x, t) + u(x, t), with

u(x, t) = g(t) +
x
L

[
h(t) – g(t)

]
,

we see that

∂

∂t
[
P(x, t) + u(x, t)

]
= k

∂

∂x
(
Dα,βP(x, t) +Dα,βu(x, t)

)
+ f (x, t)

implies

∂P
∂t

(x, t) = k
∂

∂x
(
Dα,βP(x, t)

)
+ kDα,β ∂u

∂x
–

∂u
∂t

+ f (x, t). ()

Clearly,

∂u
∂x

=  and
∂u
∂t

= g ′(t) +
x
L

[
h′(t) – g ′(t)

]
. ()

Moreover,

pi = p(x, ) = P(x, ) + u(x, ) = P(x, ) + g() +
x
L

[
h() – g()

]
.

So

P(x, ) = pi – u(x, ) = pi – g() –
x
L

[
h() – g()

]
. ()

In addition to that, we have

P(, t) = P(L, t) = . ()

Therefore from ()-(), P(x, t) satisfies

⎧⎪⎨
⎪⎩

∂P
∂t = k ∂

∂x (D
α,βP) + f ∗(x, t),  ≤ x ≤ L, t > ,

P(x, ) = P∗(x),  ≤ x≤ L,
P(, t) = P(L, t) = , t > ,

()

where

f ∗(x, t) = f (x, t) –
∂u
∂t

= f (x, t) – g ′(t) –
x
L

[
h′(t) – g ′(t)

]

http://www.advancesindifferenceequations.com/content/2013/1/349
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and

P∗(x) = pi – g() –
x
L

[
h() – g()

]
.

Definition  The finite Fourier sine transform of f (x),  < x < L, is defined by

Fs(n) =
∫ L


f (x) sin

nπx
L

dx,

and its inverse is

f (x) =

L

∞∑
n=

Fs(n) sin
nπx
L

.

Theorem  The following holds:

Fs
(

∂v
∂x

)
= –

nπ

L
Fc(v),

where Fc is the finite Fourier cosine transform and

Fs
(

∂v
∂x

)
= –

nπ

L
Fc

(
∂v
∂x

)
= –

nπ

L
Fs(v) +

nπ

L
[
v(, t) – v(L, t) · cosnπ

]
.

Applying first the Laplace transform to the equation in (), we find

sP(x, s) – P(x, ) = k
∂

∂x
[
sαP(x, s) – sβ(α–)

(
I(–α)(–β)P

)(
+

)]
+ f̄ ∗(x, s), ()

where P and f̄ ∗ denote the Laplace transforms of P and f ∗, respectively.

In view of Lemma , equation () reduces to

sP(x, s) = ksα
∂P
∂x

(x, s) + f̄ ∗(x, s) + P∗(x). ()

Next, we apply the Fourier sine transform to () to get

ŝP(n, s) = –
nπk
L

sαP̂(n, s) + Fs
[
f̄ ∗(x, s) + P∗(x)

]
,

where the ‘hat’ is for the Fourier sine transform. Therefore,

P̂(n, s) =
s–αFs[f̄ ∗(x, s) + P∗(x)]

s–α + nπk
L

. ()

From the relation

Fs(a + bx) =
L
nπ

[
a – (–)n(a + bL)

]

http://www.advancesindifferenceequations.com/content/2013/1/349
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it follows that

Fs
(
P∗(x)

)
=

L
nπ

[
pi – g() – (–)n

(
pi – h()

)]
. ()

Furthermore, it is easy to see that

Fs
[
f̄ ∗(x, s)

]
= Fs

[
f̄ (x, s) – ḡ ′(s) –

x
L

(
h̄′(s) – ḡ ′(s)

)]

= ˆ̄f (n, s) – Fs
[
ḡ ′(s) +

x
L

(
h̄′(s) – ḡ ′(s)

)]

= ˆ̄f (n, s) – L
nπ

[
ḡ ′(s) – (–)nh̄′(s)

]
. ()

Using the inverse of the Fourier sine transform, we find

P(x, s) =

L

∞∑
n=

P̂(n, s)sin
nπx
L

,

and then, inverting the Laplace transform, we obtain

P(x, t) =

L

∞∑
n=

L–
(
P̂(n, s)sin

nπx
L

)
. ()

In view of () we have

L–[̂P(n, s)] = L–
[
s–αFs[f̄ ∗(x, s)]
s–α + nπk

L

]
+L–

[
s–αFs[P∗(x)]
s–α + nπk

L

]

= L–
[

s–α ˆ̄f (n, s)
s–α + nπk

L

]
–L–

[
Ls–α

nπ

(ḡ ′(s) – (–)nh̄′(s))
s–α + nπK

L

]

+L–
[

L
nπ

(
pi – g() – (–)n

(
pi – h()

)) s–α

s–α + nπk
L

]
. ()

Now, appealing to the formula

L
[
tβ–Eα,β

(±atα
)]

=
sα–β

sα ∓ a
,

we see that

L–
[

s–α

s–α + nπk
L

]
= E–α,

(
–
nπk
L

t–α

)
. ()

Further

L–
[

s–α ˆ̄f (n, s)
s–α + nπk

L

]
=

∫ t


f̂ (n, t – s)E–α,

(
–
nπk
L

s–α

)
ds ()

http://www.advancesindifferenceequations.com/content/2013/1/349
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and

L–
[
s–α(ḡ ′(s) – (–)nh̄′(s))

s–α + nπk
L

]

=
∫ t



[
g ′(t – s) – (–)nh′(t – s)

]
E–α,

(
–
nπk
L

s–α

)
ds. ()

Taking into account ()-() in (), we obtain

L–[̂P(n, s)] = ∫ t



{
f̂ (n, t – s) –

[
g ′(t – s) – (–)nh′(t – s)

]}
E–α,

(
–
nπk
L

s–α

)
ds

+
L
nπ

[
pi – g() – (–)n

(
pi – h()

)]
E–α,

(
–
nπk
L

t–α

)
. ()

Finally, relation () leads to

P(x, t) =

L

∞∑
n=

∫ t



{
f̂ (n, t – s) –

[
g ′(t – s) – (–)nh′(t – s)

]}

× E–α,

(
–
nπk
L

s–α

)
ds sin

nπx
L

+

L

∞∑
n=

L
nπ

[
pi – g() – (–)n

(
pi – h()

)]

× E–α,

(
–
nπk
L

t–α

)
sin

nπx
L

, ()

and p(x, t) = P(x, t) + u(x, t) gives the explicit solution of problem ().

5 Explicit solution in an infinite reservoir
In this section we consider a similar problem but in an infinite reservoir, which is the case
in many practical situations.

⎧⎪⎨
⎪⎩

∂p
∂t (x, t) = k ∂

∂x (D
α,βp(x, t)) + f (x, t), –∞ < x <∞, t > ,

p(x, ) = g(x), –∞ < x <∞,
p(±∞, t) = , t > .

()

Figure 1 The graph of P(x, t) when α = 0.2.
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Figure 2 The graph of P(x, t) when α = 0.5.

Figure 3 The graph of P(x, t) when α = 0.8.

Figure 4 The graph of P(x, t) when α = 0.95.

The Laplace transform with respect to the time variable applied to the equation in ()
gives

sp̄(x, s) – p(x, ) = k
∂

∂x
[
sαp̄(x, s) – sβ(α–)

(
I(–α)(–β)p

)(
x, +

)]
+ f̄ (x, s).

As p(x, ) = g(x) and (I(–α)(–β)p)(x, ) = , by the continuity of p(x, t) nearby t =  (see
Lemma ), we get

sp̄(x, s) = ksα
∂p̄
∂x

(x, s) + f̄ (x, s) + g(x). ()
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Figure 5 The pressure curve at various distances from the well.

Figure 6 The pressure curve at various times.

Next, we apply the Fourier transform (f̂ (y) = √
π

∫ +∞
–∞ f (x)eixy dx) to this last equation ()

to arrive at

s ˆ̄p(y, s) = –ksαy ˆ̄p(y, s) + ˆ̄f (y, s) + ĝ(y).

Therefore

[
s + ksαy

] ˆ̄p(y, s) = ˆ̄f (y, s) + ĝ(y),
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and hence

ˆ̄p(y, s) =
ˆ̄f (y, s)

s + ksαy
+

ĝ(y)
s + ksαy

. ()

Now, the inverse Laplace transform of () yields

p̂(y, t) =
∫ t


E–α,

(
–ky(t – s)–α

)
f̂ (y, s)ds + ĝ(y)E–α,

(
–kyt–α

)
,

and the inverse Fourier transform gives

p(x, t) =
∫ ∞

–∞

(∫ t


E–α,

(
–ky(t – s)–α

)
f̂ (y, s)ds

)
· e–iyx dy

+
∫ ∞

–∞
ĝ(y)E–α,

(
–kyt–α

)
e–iyx dy.

Finally we mention that this type of fractional derivative was also studied in [] and
refer the reader to [, ] for other interesting problems and methods.
The graphs in Figures - correspond to different orders and the following data: f (x, t) =

, P(x, ) = ,, P(, t) = ,, P(,, t) = ,, k = .e+.
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