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Abstract
In this paper, we study the Cauchy problem of a weakly dissipative
μ-Degasperis-Procesi equation. We first present several blow-up results of strong
solutions to the equation. Then, we give an improved global existence result to the
equation. The obtained results for the equation improve considerably the earlier
results. Finally, we discuss the global existence and uniqueness of weak solutions to
the equation.
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1 Introduction
The μ-Degasperis-Procesi equation

μ(u)t – utxx + μ(u)ux – uxuxx – uuxxx =  (μDP)

can be formally described as evolution equations on the space of tensor densities over
the Lie algebra of smooth vector fields on the circle [], where u(t,x) is a time-dependent
function on the unit circle S = R/Z and μ(u) =

∫
S
u(t,x)dx denotes its mean. This equa-

tion is originally derived and studied in []. Recently, a new geometric explanation to the
μDP equation has been given in []. It is notable that the physical significance of the μDP
equation is a left open problem [].
The μDP equation has close relation with the μ Burgers (μB) equation [, ]

–utxx – uxuxx – uuxxx =  (μB)

and the Degasperis-Procesi (DP) equation []

ut – utxx + uux – uxuxx – uuxxx = . (DP)

In fact, with y = Au, A = μ – ∂
x , one can rewrite the μDP equation as follows:

yt + uyx + uxy = .

If A = –∂
x , then the μDP equation becomes the μB equation and if A =  – ∂

x , then the
μDPequation becomes theDP equation.Moreover, theμB equation is the high-frequency
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limit of the DP equation. In [], the authors discussed the μB equation and its properties.
TheDP equation is amodel for nonlinear shallowwater dynamics. There are a lot of papers
about the DP equation, cf. [–].
After the μDP equation appeared, it has been studied in several works [, , ]. In [],

the authors established the local well-posedness to the μDP equation, proved it has not
only global strong solutions but also blow-up solutions. They also proved that the μDP
equation is integrable, has bi-Hamiltonian structure and corresponding infinite hierarchy
of conservation laws, admits shock-peakon solutions and multi-peakon solutions. More-
over, the shock-peakon solutions are similar to those of the DP equation formally []. In
[], the authors derived the precise blow-up scenario and the blow-up rate for strong so-
lutions to the equation, presented several blow-up results of strong solutions and gave a
geometric description to the equation.
In general, it is difficult to avoid energy dissipation mechanisms in the real world. So, it

is reasonable to study the model with energy dissipation. In [] and [], the authors dis-
cussed the energy dissipative KdV equation from different aspects. The weakly dissipative
Camassa-Holm (CH) equation and the weakly dissipative DP equation were studied in
[–] and [–], respectively. In [], the authors discussed the blow-up and blow-up
rate of solutions to a weakly dissipative periodic rod equation. In [], the authors inves-
tigated some properties of solutions to the weakly dissipative b-family equation. Recently,
some results for a weakly dissipative μDP equation were proved in []. The author estab-
lished local well-posedness for the weakly dissipative μDP equation by use of a geometric
argument, derived the precise blow-up scenario, discussed the blow-up phenomena and
global existence.
In this paper, we continue discussing the Cauchy problem of the following weakly dissi-

pative μDP equation:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
yt + uyx + uxy + λy = , t > ,x ∈R,
y = μ(u) – uxx, t > ,x ∈R,
u(,x) = u(x), x ∈ R,
u(t,x + ) = u(t,x), t ≥ ,x ∈R,

(.)

or in the equivalent form:

⎧⎪⎨
⎪⎩

μ(u)t – utxx + μ(u)ux – uxuxx – uuxxx + λ(μ(u) – uxx) = , t > ,x ∈R,
u(,x) = u(x), x ∈R,
u(t,x + ) = u(t,x), t ≥ ,x ∈ R.

(.)

Here the constant λ is assumed to be positive and the term λy = λ(μ(u) – uxx) models
energy dissipation. Firstly, based on the results in [] and some new results, we present
several new blow-up results of strong solutions and an improved global existence result
to the equation. Then, we discuss the global existence and uniqueness of weak solutions.
The paper is organized as follows. In Section , we recall some useful lemmas and derive

some new useful results to (.). In Section , we present some explosion criteria of strong
solutions to equation (.) with general initial data and give the blow-up rate of strong
solutions to the equation when blow-up occurs. In Section , we give an improved global
existence result of strong solutions to equation (.). In Section , we establish global ex-
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istence and uniqueness of weak solutions to equation (.) by use of smooth approximate
to initial data and Helly’s theorem.

Notation Throughout the paper, we denote by ∗ the convolution. Let ‖ · ‖Z denote the
norm of Banach space Z, and let 〈·, ·〉 denote the H(S), H–(S) duality bracket. Let M(S)
be the space of Radon measures on S with bounded total variation, and letM+(S) (M–(S))
be the subset of M(S) with positive (negative) measures. Finally, we write BV (S) for the
space of functions with bounded variation, V(f ) being the total variation of f ∈ BV (S).
Since all spaces of functions are over S =R/Z, for simplicity, we drop S in our notations if
there is no ambiguity.

2 Preliminaries
In this section, we recall some useful lemmas and derive some new useful results to (.).
Firstly, one can reformulate equation (.) as follows:

⎧⎪⎨
⎪⎩
ut + uux = –∂xA–(μ(u)u) – λu, t > ,x ∈ R,
u(,x) = u(x), x ∈R,
u(t,x + ) = u(t,x), t ≥ ,x ∈R,

(.)

where A = μ– ∂
x is an isomorphism betweenHs andHs– with the inverse v = A–w given

explicitly by [, ]

v(x) =
(
x


–
x

+



)
μ(w) +

(
x –




)∫ 



∫ y


w(s)dsdy

–
∫ x



∫ y


w(s)dsdy +

∫ 



∫ y



∫ s


w(r)dr dsdy. (.)

Since A– and ∂x commute, the following identities

A–∂xw(x) =
(
x –




)∫ 


w(x)dx –

∫ x


w(y)dy +

∫ 



∫ x


w(y)dydx (.)

and

A–∂
xw(x) = –w(x) +

∫ 


w(x)dx (.)

hold. If we rewrite the inverse of the operator A = μ – ∂
x in terms of Green’s function,

we find (A–m)(x) =
∫ 
 g(x – x′)m(x′)dx′ = (g ∗ m)(x) for all m ∈ L. So, we get another

equivalent form:

⎧⎪⎨
⎪⎩
ut + uux = –∂xg ∗ (μ(u)u) – λu, t > ,x ∈R,
u(,x) = u(x), x ∈R,
u(t,x + ) = u(t,x), t ≥ ,x ∈R,

(.)

where the Green’s function g(x) is given [] by

g(x) =


x(x – ) +




for x ∈ S, (.)
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and is extended periodically to the real line. In other words,

g
(
x – x′) = (x – x′)


–

|x – x′|


+



, x,x′ ∈ S.

In particular, μ(g) = .

Lemma . ([]) Given u ∈ Hs, s > 
 , then there exists a maximal T = T(λ,u) >  and

a unique solution u to (.) (or (.)) such that

u = u(·,u) ∈ C
(
[,T);Hs) ∩C([,T);Hs–).

Moreover, the solution depends continuously on the initial data, i.e., the mapping

u → u(·,u) :Hs → C
(
[,T);Hs) ∩C([,T);Hs–)

is continuous.

Remark . Similar to the proof of Theorem . in [], we have that the maximal time
of existence T >  in Lemma . is independent of the Sobolev index s > 

 .

Combining Remark . with Lemma  in [], we have the following results.

Lemma . ([]) Let u ∈ Hs, s > 
 be given, and u(t,x) is the solution of equation (.)

with the initial data u. Then we have

μ(u) = μe–λt

for t ≥  in the existence interval of u, where μ = μ(u) =
∫
S
u(x)dx.

Combining Lemma . and (.), we have another equivalent form of (.):

⎧⎪⎨
⎪⎩
ut + uux = –∂xg ∗ (μe–λtu) – λu, t > ,x ∈R,
u(,x) = u(x), x ∈R,
u(t,x + ) = u(t,x), t ≥ ,x ∈R.

(.)

Lemma . ([]) Let u ∈ Hs, s > 
 be given, and let T be the maximal existence time

of the corresponding solution u to (.) with the initial data u. Then the corresponding
solution blows up in finite time if and only if

lim inf
t→T

{
min
x∈S

ux(t,x)
}
= –∞.

Given u ∈ Hs with s > 
 , Lemma . ensures the existence of a maximal T >  and a

solution u to (.) such that

u = u(·,u) ∈ C
(
[,T);Hs) ∩C([,T);Hs–).
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Consider now the following initial value problem:

{
qt = u(t,q), t ∈ [,T),
q(,x) = x, x ∈R.

(.)

Lemma. ([]) Let u ∈ Hs with s > 
 ,T >  be themaximal existence time.Then equa-

tion (.) has a unique solution q ∈ C([,T) × R;R) and the map q(t, ·) is an increasing
diffeomorphism of R with

qx(t,x) = exp

(∫ t


ux

(
s,q(s,x)

)
ds

)
> , (t,x) ∈ [,T)×R.

Moreover, with y = μ(u) – uxx, we have

y
(
t,q(t,x)

)
qx(t,x) = y(x)e–λt .

Lemma . Let u ∈Hs, s > 
 be given, and u(t,x) is the solution of equation (.) with the

initial data u. Then we have

∫
S

u dx =
∫
S

u dx · e–λt := μ
e

–λt ,

where μ = (
∫
S
u dx)


 .

Proof Let v = (μ – ∂
x )–u. By the first equation in (.), we have



d
dt

∫
S

u dx =
∫
S

u
(
–uux – μ(u)∂x

(
μ – ∂

x
)–u – λu

)
dx

= –
∫
S

uux dx – μ(u)
∫
S

u∂x
(
μ – ∂

x
)–udx – λ

∫
S

u dx

= –μ(u)
∫
S

(
μ – ∂

x
)
v · ∂xvdx – λ

∫
S

u dx

= –μ(u)μ(v)
∫
S

vx dx + μ(u)
∫
S

vxxvx dx – λ

∫
S

u dx

= –λ

∫
S

u dx.

This completes the proof of Lemma .. �

Using Lemma ., we have the following useful result.

Lemma . Let u ∈Hs, s > 
 , be given and assume that T is the maximal existence time

of the corresponding solution u to (.) with the initial data u. Then we have

∥∥u(t,x)∥∥L∞ ≤ e–λt
((



μ
 + |μ|μ

)
t + ‖u‖L∞

)
.
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Proof Applying a simple density argument, Remark . implies that we only need to con-
sider the case s = . Combining the first equation in (.) with Lemma ., we have

ut + uux + λu = –μe–λt∂x
(
μ – ∂

x
)–u.

From (.) it follows that

du(t,q(t,x))
dt

+ λu
(
t,q(t,x)

)
= (ut + uux + λu)

(
t,q(t,x)

)
= –μe–λt(∂x(μ – ∂

x
)–u)(

t,q(t,x)
)
,

that is,

eλt du(t,q(t,x))
dt

+ λeλtu
(
t,q(t,x)

)
= –μ

(
∂x

(
μ – ∂

x
)–u)(

t,q(t,x)
)
.

Combining (.) with Lemma ., we have

∣∣–μ∂x
(
μ – ∂

x
)–u∣∣ ≤ 


μ
 + |μ|μ := C.

So we have

–C ≤ d
dt

(
eλtu

(
t,q(t,x)

)) ≤ C.

Integrating all sides of this inequality from  to t, we obtain

∣∣u(
t,q(t,x)

)∣∣ ≤ e–λt(Ct + ‖u‖L∞
)
.

Noting that the map q(t, ·) is an increasing diffeomorphism of R, we have

∥∥u(t,x)∥∥L∞ =
∥∥u(t,x)∥∥L∞(R) =

∥∥u(
t,q(t,x)

)∥∥
L∞(R) ≤ e–λt(Ct + ‖u‖L∞

)
.

This completes the proof of Lemma .. �

Lemma . Let u ∈ Hs, s > 
 , be given and assume that T is the maximal existence time

of the corresponding solution u to (.) with the initial data u. Let

E(t) =
∫
S

(


μ(u)

(
A–∂xu

) + 

u

)
dx,

then for ∀t ∈ [,T),we have E(t) = E(t)e–λ(t–t). In particular,we have E(t) = E()e–λt :=
μe–λt , where μ =

∫
S
( μ(A–∂xu) + 

u

)dx.

Proof Differentiating the first equation of (.) with respect to x, we have

utx + ux + uuxx = μ(u)u – μ(u) – λux. (.)

http://www.advancesindifferenceequations.com/content/2013/1/350
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It follows that

d
dt

E(t) =
∫
S

(


μ(u)t

(
A–∂xu

) + μ(u)
(
A–∂xu

)(
A–utx

)
+


uut

)
dx

=


μ(u)t

∫
S

(
A–∂xu

) dx + μ(u)
∫
S

(
A–∂xu

) ·A–(–ux – uuxx

+ μ(u)u – μ(u) – λux
)
dx +




∫
S

u
(
–uux – μ(u)∂xA–u – λu

)
dx

=


(
–λμ(u)

)∫
S

(
A–∂xu

) dx – 

μ(u)

∫
S

(
A–∂xu

)(
–u +μ

(
u

))
dx

– λμ(u)
∫
S

(
A–∂xu

) dx – 

μ(u)

∫
S

u∂xA–udx –
λ



∫
S

u dx

= –


λ

∫
S

μ(u)
(
A–∂xu

) dx – λ



∫
S

u dx = –λE(t),

here we used the relation uuxx + ux =

∂


x (u) and (.). Integrating this equality from t

to t for ∀t, t ∈ [,T), we know that the conclusions in Lemma . hold. �

3 Blow-up and blow-up rate
In this section, we discuss the blow-up phenomena of equation (.) and prove that there
exist strong solutions to (.) which do not exist globally in time. At first, we give the fol-
lowing useful lemma.

Lemma . ([]) Let t >  and v ∈ C([, t);H(R)). Then, for every t ∈ [, t), there
exists at least one point ξ (t) ∈R with

m(t) := inf
x∈R

{
vx(t,x)

}
= vx

(
t, ξ (t)

)
,

and the function m is almost everywhere differentiable on (, t) with

d
dt

m(t) = vtx
(
t, ξ (t)

)
a.e. on (, t).

Theorem . Let u ∈Hs, s > 
 , and T be the maximal time of the solution u to (.) with

the initial data u. If μμ ≤  and there is a point ξ ∈ S such that μu(ξ) ≤  and
u′
(ξ) < –λ, then the corresponding solution to (.) blows up in finite time.

Proof As mentioned earlier, here we only need to show that the above theorem holds for
s = .
Firstly, we claim that for any fixed t ∈ [,T), there is ξ (t) ∈ S such that μu(t, ξ (t)) ≤ .

By the assumption of the theorem μu(ξ) ≤ , we have that ξ () exists when t =  and
ξ () = ξ. Next, we claim that for any fixed t ∈ (,T), there is ξ (t) ∈ S such that μu(t,
ξ (t))≤ . If not, there exists t ∈ (,T) such thatμu(t,x) >  for any x ∈ S. By Lemma .,
we have

μE(t) = e–λ(t–t)μE(t)

= e–λ(t–t)
∫
S

(


μ
e

–λt
(
A–∂xu(t,x)

) + 


μu(t,x) · u(t,x)
)
dx > .

http://www.advancesindifferenceequations.com/content/2013/1/350
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From μE(t) = μμe–λt it follows that μμ > , which contradicts the assumption
μμ ≤ .
Since q(t, ·) is an increasing diffeomorphism of R and ξ (t) ∈ S for any fixed t ∈ [,T),

there is y(t) ∈R such that

q
(
t, y(t)

)
= ξ (t), t ∈ [,T).

Moreover, y() = ξ () = ξ. Define now f (t) = ux(t,q(t, y(t))). Evaluating (.) at (t,q(t,
y(t))), we obtain

df (t)
dt

= –f (t) + e–λtμu
(
t,q

(
t, y(t)

))
– 

(
μ(u)

) – λf (t)

= –f (t) + e–λtμu
(
t, ξ (t)

)
– 

(
μ(u)

) – λf (t)

≤ –f (t) – λf (t)

= –f (t)
(
f (t) + λ

)
.

Note that if f () = u′
(ξ) < –λ, then f (t) < –λ for all t ∈ [,T). From the above inequality

we obtain
(
 +

λ

f ()

)
eλt –  ≤ λ

f (t)
≤ .

Since f ()
f ()+λ

> , then there exists

 < T ≤ 
λ
ln

f ()
f () + λ

such that limt→T f (t) = –∞. Lemma . implies that the solution u blows up in finite
time. �

Theorem . Let ε >  and u ∈Hs, s > 
 , and T be the maximal time of the solution u to

(.) with the initial data u. If

min
x∈S

u′
(x)≤ –

λ


– ( + ε) ·

(λ + (
√
‖u‖L∞ + 

√
C ln( + 

ε
) +

√
‖u‖L∞ )) 



with C = 
μ


 + |μ|μ, then the corresponding solution to (.) blows up in finite time.

Proof As mentioned earlier, here we only need to show that the above theorem holds for
s = . Define now

m(t) :=min
x∈S

{
ux(t,x)

}
, t ∈ [,T),

and let ξ (t) ∈ S be a point where this minimum is attained by using Lemma .. It follows
that

m(t) = ux
(
t, ξ (t)

)
.

http://www.advancesindifferenceequations.com/content/2013/1/350
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Clearly, uxx(t, ξ (t)) =  since u(t, ·) ∈ H(S) ⊂ C(S). Evaluating (.) at (t, ξ (t)), by Lem-
ma . we obtain

dm(t)
dt

= –m(t) + μ(u)u – μ(u) – λm(t)

≤ –m(t) – λm(t) + ‖u‖L∞

≤ –m(t) – λm(t) + 
(
Ct + ‖u‖L∞

). (.)

For fixed ε > , taking

T =

√
‖u‖L∞ + 

√
C ln( + 

ε
) –

√
‖u‖L∞


√
C

and

K (T) =
√

(
CT + ‖u‖L∞

)
,

we find that

K (T)T = ln

(
 +


ε

)
.

From (.) it follows that

dm(t)
dt

≤ –
(
m(t) +A + B

)(
m(t) +A – B

)
, ∀t ∈ [,T],

where A = λ
 , B =

√
λ+(K (T))

 . Note that if m() ≤ –A – ( + ε)B < –A – B, then m(t) <
–A – B for all t ∈ [,T]∩ [,T). From the above inequality we obtain

m() +A + B
m() +A – B

eBt –  ≤ B
m(t) +A – B

≤ , ∀t ∈ [,T]∩ [,T).

Since  < m()+A+B
m()+A–B < ,m()≤ –A – ( + ε)B and K (T)T = ln( + 

ε
), then there exists

 < T ≤ 
B

ln
m() +A – B
m() +A + B

≤ T

such that limt→T m(t) = –∞. Lemma . implies that the solution u blows up in finite
time. �

Theorem . Let u ∈Hs, s > 
 , and T be the maximal time of the solution u to (.) with

the initial data u. If u(x) is odd satisfies u′
() < – λ

 –
√

λ+μ


 , then the corresponding
solution to (.) blows up in finite time.

Proof As mentioned earlier, here we only need to show that the above theorem holds for
s = . By μ(–u(t, –x)) = –μ(u(t,x)), we have (.) is invariant under the transformation

http://www.advancesindifferenceequations.com/content/2013/1/350
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(u,x) → (–u, –x). Thus we deduce that if u(x) is odd, then u(t,x) is odd with respect to x
for any t ∈ [,T). By continuity with respect to x of u and uxx, we have

u(t, ) = uxx(t, ) = , ∀t ∈ [,T).

Evaluating (.) at (t, ) and letting h(t) = ux(t, ), we obtain

dh(t)
dt

= –h(t) – λh(t) – μ(u)

≤ –h(t) – λh(t) + μ


= –
(
h(t) +A + B

)(
h(t) +A – B

)
,

where A = λ
 , B =

√
λ+μ


 . Note that if h() < –A – B, then h(t) < –A – B for all t ∈ [,T).

From the above inequality we obtain

h() +A + B
h() +A – B

eBt –  ≤ B
h(t) +A – B

≤ .

Since h()+A–B
h()+A+B > , then there exists

 < T ≤ 
B

ln
h() +A – B
h() +A + B

such that lim inft→T {minx∈S ux(t,x)} ≤ limt→T h(t) = –∞. Lemma . implies that the so-
lution u blows up in finite time. �

Similar to the proof of Theorem . in [], we have the following blow-up rate result.
This result shows that the blow-up rate of strong solutions to the weakly dissipative μDP
equation is not affected by the weakly dissipative term even though the occurrence of
blow-up of strong solutions to equation (.) is affected by the dissipative parameter, see
Theorems .-..

Theorem . Let u ∈Hs, s > 
 , and T be the maximal time of the solution u to (.) with

the initial data u. If T is finite, we obtain

lim
t→T

(T – t)min
x∈S

ux(t,x) = –.

4 Global existence
In this section, we present some global existence results. Firstly, we give a useful lemma.

Lemma . ([, ]) If f ∈H(S) is such that
∫
S
f (x)dx = , then we have

max
x∈S

f (x)≤ 


∫
S

f x (x)dx.

Theorem . If y(x) = μ – u,xx(x) ∈ H does not change sign, then the corresponding
solution u of the initial value u exists globally in time.
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Proof Note that given t ∈ [,T), there is ξ (t) ∈ S such that ux(t, ξ (t)) =  by the periodicity
of u to x-variable. If y(x) ≥ , then Lemma . implies that y(t,x)≥ . For x ∈ [ξ (t), ξ (t) +
], we have

–ux(t,x) = –
∫ x

ξ (t)
∂
x u(t,x)dx =

∫ x

ξ (t)

(
y –μ(u)

)
dx =

∫ x

ξ (t)
ydx –μ(u)

(
x – ξ (t)

)

≤
∫
S

ydx –μ(u)
(
x – ξ (t)

)
= μ(u)

(
 – x + ξ (t)

) ≤ |μ|.

It follows that ux(t,x) ≥ –|μ|. On the other hand, if y(x) ≤ , then Lemma . implies
that y(t,x)≤ . Therefore, for x ∈ [ξ (t), ξ (t) + ], we have

–ux(t,x) = –
∫ x

ξ (t)
∂
x u(t,x)dx =

∫ x

ξ (t)

(
y –μ(u)

)
dx =

∫ x

ξ (t)
ydx –μ(u)

(
x – ξ (t)

)
≤ –μ(u)

(
x – ξ (t)

) ≤ |μ|.

It follows that ux(t,x)≥ –|μ|. This completes the proof by using Theorem .. �

Corollary . If the initial value u ∈H such that

∥∥∂
x u

∥∥
L ≤ 

√
|μ|,

then the corresponding solution u of u exists globally in time.

Proof Note that
∫
S
∂
x u dx = , Lemma . implies that

∥∥∂
x u

∥∥
L∞ ≤

√



∥∥∂
x u

∥∥
L .

If μ ≥ , then

y(x) = μ – ∂
x u(x)≥ μ –

√



∥∥∂
x u

∥∥
L ≥ μ – |μ| = .

If μ ≤ , then

y(x) = μ – ∂
x u(x)≤ μ +

∥∥∂
x u

∥∥
L∞ ≤ μ +

√



∥∥∂
x u

∥∥
L ≤ μ + |μ| = .

Since μ =
∫
S
u(x)dx is a determined constant for given u ∈ H, y(x) ∈ H does not

change sign. This completes the proof by using Theorem .. �

5 Weak solutions
This section is concernedwith global existence of weak solutions for (.) by use of smooth
approximate to initial data and Helly’s theorem. Before giving the precise statement of the
main result, we first introduce the definition of a weak solution to problem (.).

Definition . A function u(t,x) ∈ C(R+ × S) ∩ L∞(R+;H) is said to be an admissible
global weak solution to (.) if u satisfies the equations in (.) and u(t, ·) → u as t → +

in the sense of distributions on R+ ×R. Moreover, μ(u) = μ(u)e–λt .

http://www.advancesindifferenceequations.com/content/2013/1/350
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The main result of this paper can be stated as follows.

Theorem . Let u ∈ H. Assume that y = (μ(u) – u,xx) ∈ M+, then equation (.) has
a unique admissible global weak solution in the sense of Definition ..Moreover,

u ∈ L∞
loc

(
R+;W ,∞) ∩H

loc
(
R

+ × S
)
.

Furthermore, y = (μ(u) – uxx(t, ·)) ∈M+ for a.e. t ∈R
+ is uniformly bounded on S.

Remark . If y = (μ(u) – u,xx) ∈ M–, then the conclusions in Theorem . also hold
with y = (μ(u) – uxx(t, ·)) ∈M–.

Firstly, we will give some useful lemmas.

Lemma . If y = μ – u,xx ∈H does not change sign, then the corresponding solution u
to (.) of the initial value u exists globally in time, that is, u ∈ C(R+,H) ∩ C(R+,H).
Moreover, the following properties hold:
() y(t,x), u(t,x) have the same sign with y(x), and ‖ux‖L∞(R+×S) ≤ |μ|,
() |μ|e–λt = ‖y‖Le–λt = ‖y(t, ·)‖L = ‖u(t, ·)‖L .

Proof Firstly, Lemma . and u = g ∗ y, g ≥  imply that y(t,x), u(t,x) have the same sign
with y(x). Moreover, from the proof of Theorem ., we have ux(t,x) ≥ –|μ|. Now note
that given t ∈ [,T), there is ξ (t) ∈ S such that ux(t, ξ (t)) =  by the periodicity of u to
x-variable. If y ≥ , then y ≥ . For x ∈ [ξ (t), ξ (t) + ], we have

ux(t,x) =
∫ x

ξ (t)
∂
x u(t,x)dx =

∫ x

ξ (t)

(
μ(u) – y

)
dx = μ(u)

(
x – ξ (t)

)
–

∫ x

ξ (t)
ydx

≤ μ(u)
(
x – ξ (t)

) ≤ |μ|.

It follows that ux(t,x) ≤ |μ|. On the other hand, if y ≤ , then y ≤ . Therefore, for x ∈
[ξ (t), ξ (t) + ], we have

ux(t,x) =
∫ x

ξ (t)
∂
x u(t,x)dx =

∫ x

ξ (t)

(
μ(u) – y

)
dx ≤ μ(u)

(
x – ξ (t)

)
–

∫
S

ydx

= μ(u)
(
x – ξ (t)

)
–

∫
S

(
μ(u) – uxx

)
dx = μ(u)

(
x – ξ (t) – 

) ≤ |μ|.

It follows that ux(t,x) ≤ |μ|. So we have ‖ux‖L∞(R+×S) ≤ |μ|, this completes the proof
of (). By the first equation of (.), we have

∫
S

y(t,x)dx =
(∫

S

y(x)dx
)
e–λt = μe–λt .

If y ≥ , then y≥  and μ ≥ , we have

‖y‖L(S) =
∫
S

y(t,x)dx =
(∫

S

y(x)dx
)
e–λt = ‖y‖L(S)e–λt = μe–λt .
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If y ≤ , then y≤  and μ ≤ , we have

‖y‖L(S) = –
∫
S

y(t,x)dx =
(∫

S

(
–y(x)

)
dx

)
e–λt = ‖y‖L(S)e–λt = –μe–λt .

Combining these two equalities above, we have |μ|e–λt = ‖y‖Le–λt = ‖y(t, ·)‖L . A similar
discussion implies ‖y(t, ·)‖L = ‖u(t, ·)‖L . This completes the proof of (). �

Lemma . ([]) Assume that X ⊂ B ⊂ Y with compact imbedding X → B (X, B and Y
are Banach spaces),  ≤ p ≤ ∞ and () F is bounded in Lp(,T ;X), () ‖τhf – f ‖Lp(,T–h;Y ) →
 as h →  uniformly for f ∈ F .Then F is relatively compact in Lp(,T ;B) (and in C(,T ;B)
if p = ∞), where (τhf )(t) = f (t + h) for h > , if f is defined on [,T], then the translated
function τhf is defined on [–h,T – h].

Lemma . (Helly’s theorem []) Let an infinite family of functions F = f (x) be defined
on the segment [a,b]. If all functions of the family and the total variation of all functions
of the family are bounded by a single number |f (x)| ≤ K ,

∨b
a(f ) ≤ K , then there exists a

sequence fn(x) in the family F which converges at very point of [a,b] to some function ϕ(x)
of finite variation.

Lemma . ([]) Assume that u(t, ·) ∈ W ,(R) is uniformly bounded in W ,(R) for all
t ∈R

+. Then, for a.e. t ∈R
+,

d
dt

∫
R

|φn ∗ u|dx =
∫
R

(φn ∗ ut) sgn(φn ∗ u)dx

and

d
dt

∫
R

|φn ∗ ux|dx =
∫
R

(φn ∗ uxt) sgn(φn ∗ ux)dx.

Lemma . ([]) Let f :R →R be uniformly continuous and bounded. If μ ∈M(R), then

[
ρn ∗ (fμ) – (ρn ∗ f )(ρn ∗ μ)

] →  in L(R) as n → ∞.

Lemma . ([]) Let f :R→R be uniformly continuous and bounded. If g ∈ L∞(R), then

[
ρn ∗ (fg) – (ρn ∗ f )(ρn ∗ g)

] →  in L∞(R) as n→ ∞.

Now we consider the approximate equation of (.) as follows:

⎧⎪⎨
⎪⎩
unt + ununx = –∂xg ∗ (μn

e–λtun) – λun, t > ,x ∈R,
un(,x) = un(x), x ∈R,
un(t,x + ) = un(t,x), t ≥ ,x ∈R,

(.)

where un(x) = φn ∗ u ∈H∞ for n≥  and μn
 =

∫
S
un(x)dx. Here {φn}n≥ are the mollifiers

φn(x) :=
(∫

R

φ(ξ )dξ

)–

nφ(nx), x ∈R,n≥ ,

http://www.advancesindifferenceequations.com/content/2013/1/350
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where φ ∈ C∞
c (R) is defined by

φ(x) =

{
e/(x–), |x| < ,
, |x| ≥ .

Obviously, ‖φn‖L(R) = . Clearly, we have

un → u in H as n→ ∞ (.)

and ∥∥un∥∥L ≤ ‖u‖L ,
∥∥un,x∥∥L ≤ ‖u,x‖L ,∥∥un∥∥H ≤ ‖u‖H ,
∥∥un∥∥L ≤ ‖u‖L

(.)

in view of Young’s inequality. Note that

μn
 = μ

(
un

)
=

∫
S

un(x)dx =
∫
S

∫
R

φn(y)u(x – y)dydx =
∫
R

∫
S

φn(y)u(x – y)dxdy

=
∫
R

φn(y) ·
(∫

S

u(x – y)dx
)
dy

=
∫
R

φn(y) ·
(∫

S

u(z)dz
)
dy

=
∫
R

φn(y)μ(u)(x – y)dy

= φn ∗ μ(u) = μ(u) = μ.

Using this identity, we can rewrite (.) as follows:

⎧⎪⎨
⎪⎩
unt + ununx = –∂xg ∗ (μe–λtun) – λun, t > ,x ∈R,
un(,x) = un(x), x ∈R,
un(t,x + ) = un(t,x), t ≥ ,x ∈R.

(.)

Moreover, for all n ≥ , yn = μ(un) – un,xx = μ – un,xx ∈H and

yn = μ
(
un

)
– un,xx = φn ∗ μ(u) – φn ∗ u,xx = φn ∗ y ≥ .

Thus, by Lemma ., we obtain the corresponding solution un ∈ C(R+;H)∩C(R+;H) to
(.)with the initial data un(x) and yn = μ(un)–unxx ≥ ,un = g∗yn ≥  for all (t,x) ∈R

+×S.
Furthermore, combining Lemma ., Lemmas .-., Lemma . and (.), we have:

μ
(
un

)
= μn

e
–λt = μe–λt , t ∈ [,∞), (.)∥∥un∥∥L =

∥∥un∥∥Le
–λt ≤ ‖u‖Le–λt = μe–λt , t ∈ [,∞), (.)

∥∥un(t, ·)∥∥L∞ ≤ e–λt
((



μ
 + |μ|μ

)
t + ‖u‖H

)
, (.)

∥∥unx∥∥L∞(R+×S) ≤
∣∣μn


∣∣ = |μ|, (.)

|μ|e–λt =
∥∥yn∥∥Le

–λt =
∥∥yn(t, ·)∥∥L =

∥∥un(t, ·)∥∥L . (.)
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Lemma . For any fixed T > , there exists a subsequence {unk (t,x)} of the sequence
{un(t,x)} and some function u(t,x) ∈ L∞(R+;H)∩H([,T]× S) such that

unk ⇀ u in H([,T]× S
)
as nk → ∞,∀T >  (.)

and

unk → u in L∞(
[,T]× S

)
as nk → ∞. (.)

Moreover, u(t,x) ∈ C(R+ × S).

Proof Firstly, we will prove that the sequence {un(t,x)} is uniformly bounded in the space
H([,T]× S). By (.) and (.), we have

∥∥un∥∥
L([,T]×S) =

∫ T



∫
S

(
un

) dxdt = ∫ T



∥∥un∥∥
L dx ≤ μ

T , (.)

∥∥unx∥∥L([,T]×S) ≤
∥∥unx∥∥L∞(R+×S) ≤ |μ|. (.)

Moreover, by (.) and (.), we obtain

∥∥ununx∥∥L([,T]×S) ≤
∥∥un∥∥L([,T]×S)

∥∥unx∥∥L∞([,T]×S) ≤ |μ|μ
√
T , (.)∥∥∂xg ∗ (

μe–λtun
)∥∥

L([,T]×S) ≤ ‖∂xg‖L([,T]×S)
∥∥μe–λtun

∥∥
L([,T]×S)

≤ T


· |μ|
∥∥un∥∥L([,T]×S)

≤ T


|μ|μ
√
T . (.)

Combining (.), (.)-(.) with (.), we know that {unt (t,x)} is uniformly bounded in
L([,T]× S). Thus, (.), (.) and this conclusion implies that

∫ T



∫
S

((
un

) + (
unx

) + (
unt

))dxdt ≤ K ,

where K = K (|μ|,μ,T ,λ) ≥ . It follows that {un(t,x)} is uniformly bounded in the space
H([,T]× S). Thus (.) holds for some u ∈H([,T]× S).
Observe that, for each  ≤ s, t ≤ T ,

∥∥un(t, ·) – un(s, ·)∥∥
L =

∫
S

(∫ t

s

∂un

∂τ
(τ ,x)dτ

)

dx ≤ |t – s|
∫ T



∫
S

(
unt

) dxdt.
Note that {un(t,x)} is uniformly bounded in L∞([,T];H), {unt (t,x)} is uniformly bounded
in L([,T] × S) and H ⊂⊂ C ⊂ L∞ ⊂ L, then (.) and u(t,x) ∈ C(R+ × S) is a conse-
quence of Lemma .. �

Proof of Theorem . Next, we will deal with unx and ∂xg ∗ (μe–λtun). By (.), (.)-(.),
we have that for fixed t ∈ [,T] the sequence unkx (t, ·) ∈ BV (S) satisfies

V
(
unkx (t, ·)) = ∥∥unkxx (t, ·)∥∥L =

∥∥μ
(
unk

)
– ynk

∥∥
L ≤ ∥∥μ

(
unk

)∥∥
L +

∥∥ynk∥∥L ≤ |μ|
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and

∥∥unkx (t, ·)∥∥L∞ ≤ ∥∥unkx (t,x)
∥∥
L∞(R+×S) ≤ |μ|.

Applying Lemma ., we obtain that there exists a subsequence, denoted again by
{unkx (t, ·)}, which converges at every point to some function v(t,x) of finite variation with
V(v(t, ·)) ≤ |μ|. Since for almost all t ∈ [,T], unkx (t, ·) → ux(t, ·) in D′(S) in view of
Lemma ., it follows that v(t, ·) = ux(t, ·) for a.e. t ∈ [,T]. So we have

unkx (t, ·)→ ux(t, ·) a.e. on [,T]× S as nk → ∞, (.)

and for a.e. t ∈ [,T],

V
(
ux(t, ·)

)
=

∥∥uxx(t, ·)∥∥M(S) ≤ |μ|. (.)

Therefore,

∥∥∂xg ∗ (
μe–λtunk

)
– ∂xg ∗ (

μe–λtu
)∥∥

L∞([,T]×S)

≤ ‖∂xg‖L([,T]×S)
∥∥μe–λt(unk – u

)∥∥
L∞([,T]×S)

≤ T


· |μ|
∥∥unk – u

∥∥
L∞([,T]×S).

By (.), we have

∂xg ∗ (
μe–λtunk

) → ∂xg ∗ (
μe–λtu

)
(.)

a.e. on [,T] × S. The relations (.), (.) and (.) imply that u satisfies (.) in
D′([,T] × S). Moreover, by (.)-(.), (.) and (.), we obtain u ∈ L∞

loc(R
+,W ,∞) in

view of T being arbitrary.
Now, we prove that μ(u) = μe–λt and (μ(u) –uxx(t, ·)) ∈M+ is uniformly bounded on S.
On the one hand, by (.), we have

∫
S

unk (t,x)dx→
∫
S

u(t,x)dx = μ(u) as nk → ∞.

On the other hand,
∫
S

unk (t,x)dx = μ
(
unk

)
= μe–λt .

Obviously, μ(u) = μ(u)e–λt by the uniqueness of limit.
Note that L ⊂M. By (.) and μ(u) = μe–λt , we have

∥∥μ(u) – uxx(t, ·)
∥∥
M ≤ ∥∥μ(u)

∥∥
L +

∥∥uxx(t, ·)∥∥M ≤ |μ|.

It follows that for all t ∈R
+, (μ(u) –uxx(t, ·)) ∈M is uniformly bounded on S. For any fixed

T > , in view of (.) and (.), we have for all t ∈ [,T],

[
μ

(
unk

)
– unkxx (t, ·)

] → [
μ(u) – uxx(t, ·)

]
inD′(S) for nk → ∞.
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Since μ(unk ) – unkxx (t, ·) = ynk (t, ·) ≥  for all (t,x) ∈ R
+ × S, we have (μ(u) – uxx(t, ·)) ∈

L∞
loc(R

+,M+).
Then we prove the uniqueness of global weak solutions.
Let u, v ∈ L∞

loc(R
+;W ,∞) ∩ L∞(R+;H) be two global weak solutions of (.) with the

initial data u. By (μ(u) – uxx(t, ·)) ∈M+ and (μ(v) – vxx(t, ·)) ∈M+ are uniformly bounded
on S, for fixed T > , we set

K (T) = sup
≤t≤T

{∥∥μ(u) – uxx(t, ·)
∥∥
M+ +

∥∥μ(v) – vxx(t, ·)
∥∥
M+

}
< +∞.

For all (t,x) ∈ [,T]× S, it follows that

∣∣u(t,x)∣∣ = ∣∣g ∗ (
μ(u) – uxx(t,x)

)∣∣ ≤ ‖g‖L∞
∥∥μ(u) – uxx(t,x)

∥∥
M+ ≤ 


K (.)

and

∣∣ux(t,x)∣∣ = ∣∣gx ∗ (
μ(u) – uxx(t,x)

)∣∣ ≤ ‖gx‖L∞
∥∥μ(u) – uxx(t,x)

∥∥
M+ ≤ 


K . (.)

Similarly, we get

∣∣v(t,x)∣∣ ≤ 


K ,
∣∣vx(t,x)∣∣ ≤ 


K . (.)

We define w(t,x) = u(t,x) – v(t,x), (t,x) ∈ [,T]× S. Since u, v are global weak solutions
of (.), we have

φn ∗ ut + φn ∗ (uux) + φn ∗ ∂xg ∗ (
μe–λtu

)
+ λφn ∗ u = 

and

φn ∗ vt + φn ∗ (vvx) + φn ∗ ∂xg ∗ (
μe–λtv

)
+ λφn ∗ v = .

It follows that

φn ∗wt + φn ∗ (uwx +wvx) + φn ∗ ∂xg ∗ (
μe–λtw

)
+ λφn ∗w = .

By Lemma ., a direct computation implies

d
dt

∫
S

|φn ∗w|dx

=
∫
S

(φn ∗wt) sgn(φn ∗w)dx

= –
∫
S

(
φn ∗ (uwx)

)
sgn(φn ∗w)dx –

∫
S

(
φn ∗ (wvx)

)
sgn(φn ∗w)dx

– μe–λt
∫
S

(φn ∗ ∂xg ∗w) sgn(φn ∗w)dx

– λ

∫
S

(φn ∗w) sgn(φn ∗w)dx. (.)
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Then we estimate the right-hand side of (.) term by term,

∣∣∣∣
∫
S

(
φn ∗ (uwx)

)
sgn(φn ∗w)dx

∣∣∣∣
≤

∫
S

∣∣φn ∗ (uwx)
∣∣dx

≤
∫
S

∣∣(φn ∗ u)(φn ∗wx)
∣∣dx + ∫

S

∣∣φn ∗ (uwx) – (φn ∗ u)(φn ∗wx)
∣∣dx

≤ ‖φn ∗ u‖L∞(S)

∫
S

|φn ∗wx|dx +
∫
S

∣∣φn ∗ (uwx) – (φn ∗ u)(φn ∗wx)
∣∣dx

≤ 


K
∫
S

|φn ∗wx|dx +
∫
S

∣∣φn ∗ (uwx) – (φn ∗ u)(φn ∗wx)
∣∣dx,

here we used Young’s inequality and (.),

∣∣∣∣
∫
S

(
φn ∗ (wvx)

)
sgn(φn ∗w)dx

∣∣∣∣
≤

∫
S

∣∣φn ∗ (wvx)
∣∣dx

≤
∫
S

∣∣(φn ∗w)(φn ∗ vx)
∣∣dx + ∫

S

∣∣φn ∗ (wvx) – (φn ∗w)(φn ∗ vx)
∣∣dx

≤ ‖φn ∗ vx‖L∞(S)

∫
S

|φn ∗w|dx +
∫
S

∣∣φn ∗ (wvx) – (φn ∗w)(φn ∗ vx)
∣∣dx

≤ 


K
∫
S

|φn ∗w|dx +
∫
S

∣∣φn ∗ (wvx) – (φn ∗w)(φn ∗ vx)
∣∣dx,

here we used Young’s inequality and (.),

∣∣∣∣
∫
S

(φn ∗ ∂xg ∗w) sgn(φn ∗w)dx
∣∣∣∣

≤
∫
S

|φn ∗ ∂xg ∗w|dx

≤ ‖gx‖L(S)
∫
S

|φn ∗w|dx

≤ 


∫
S

|φn ∗w|dx.

Combining those three inequalities with (.), we have

d
dt

∫
S

|φn ∗w|dx

≤
(



K +



|μ| + λ

)∫
S

|φn ∗w|dx + 


K
∫
S

|φn ∗wx|dx + Rn(t). (.)

By Lemmas .-., we get

Rn(t)→  as n→ ∞ and
∣∣Rn(t)

∣∣ ≤ C, n≥ , t ∈ [,T], (.)
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where C is a positive constant depending on K and the H-norms of u() and v(). In the
same way, convoluting (.) for u and v with φn,x and using Lemma ., we obtain

d
dt

∫
S

|φn ∗wx|dx = –
∫
S

(
φn ∗ (

wx(ux + vx)
))
sgn(φn,x ∗w)dx

–
∫
S

(
φn ∗ (uwxx)

)
sgn(φn,x ∗w)dx

–
∫
S

(
φn ∗ (wvxx)

)
sgn(φn,x ∗w)dx

– μe–λt
∫
S

(φn,x ∗ ∂xg ∗w) sgn(φn,x ∗w)dx

– λ

∫
S

(φn ∗wx) sgn(φn,x ∗w)dx. (.)

Next, we estimate the right-hand side of (.) term by term,

∣∣∣∣
∫
S

(
φn ∗ (

wx(ux + vx)
))
sgn(φn,x ∗w)dx

∣∣∣∣
≤

∫
S

∣∣φn ∗ (
wx(ux + vx)

)∣∣dx
≤

∫
S

∣∣(φn ∗wx)
(
φn ∗ (ux + vx)

)∣∣dx
+

∫
S

∣∣φn ∗ (
wx(ux + vx)

)
– (φn ∗wx)

(
φn ∗ (ux + vx)

)∣∣dx
≤ ∥∥φn ∗ (ux + vx)

∥∥
L∞(S)

∫
S

|φn ∗wx|dx

+
∫
S

∣∣φn ∗ (
wx(ux + vx)

)
– (φn ∗wx)

(
φn ∗ (ux + vx)

)∣∣dx
≤ 


K

∫
S

|φn ∗wx|dx +
∫
S

∣∣φn ∗ (
wx(ux + vx)

)
– (φn ∗wx)

(
φn ∗ (ux + vx)

)∣∣dx,
here we used Young’s inequality and (.)-(.),

–
∫
S

(
φn ∗ (uwxx)

)
sgn(φn,x ∗w)dx

= –
∫
S

(φn ∗ u)(φn ∗wxx) sgn(φn,x ∗w)dx

–
∫
S

(
φn ∗ (uwxx) – (φn ∗ u)(φn ∗wxx)

)
sgn(φn,x ∗w)dx

≤ –
∫
S

(φn ∗ u)
d
dx

|φn ∗wx|dx +
∫
S

∣∣φn ∗ (uwxx) – (φn ∗ u)(φn ∗wxx)
∣∣dx

=
∫
S

(φn ∗ ux)|φn ∗wx|dx +
∫
S

∣∣φn ∗ (uwxx) – (φn ∗ u)(φn ∗wxx)
∣∣dx

≤ 


K
∫
S

|φn ∗wx|dx +
∫
S

∣∣φn ∗ (uwxx) – (φn ∗ u)(φn ∗wxx)
∣∣dx,
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here we used Young’s inequality and (.),

∣∣∣∣
∫
S

(
φn ∗ (wvxx)

)
sgn(φn,x ∗w)dx

∣∣∣∣
≤

∫
S

∣∣φn ∗ (wvxx)
∣∣dx

≤
∫
S

∣∣(φn ∗w)(φn ∗ vxx)
∣∣dx + ∫

S

∣∣φn ∗ (wvxx) – (φn ∗w)(φn ∗ vxx)
∣∣dx

≤ ‖φn ∗w‖L∞(S)‖φn ∗ vxx‖L(S) +
∫
S

∣∣φn ∗ (wvxx) – (φn ∗w)(φn ∗ vxx)
∣∣dx.

Note that W , ↪→ L∞, ‖f ‖W , = ‖f ‖L + ‖f ′‖L and ‖φn ∗ vxx‖L ≤ ‖vxx‖M . It follows from
(.) that

∣∣∣∣
∫
S

(
φn ∗ (wvxx)

)
sgn(φn,x ∗w)dx

∣∣∣∣
≤ |μ|

∫
S

|φn ∗w|dx + |μ|
∫
S

|φn ∗wx|dx

+
∫
S

∣∣φn ∗ (wvxx) – (φn ∗w)(φn ∗ vxx)
∣∣dx.

Now, we estimate the fourth term,
∣∣∣∣
∫
S

(φn,x ∗ ∂xg ∗w) sgn(φn,x ∗w)dx
∣∣∣∣

≤
∫
S

|φn,x ∗ ∂xg ∗w|dx =
∫
S

|φn ∗ ∂xg ∗wx|dx

≤ ‖gx‖L(S)
∫
S

|φn ∗wx|dx ≤ 


∫
S

|φn ∗wx|dx.

Combining the estimates with (.), we get

d
dt

∫
S

|φn ∗wx|dx

≤ |μ|
∫
S

|φn ∗w|dx +
(



K +



|μ| + λ

)∫
S

|φn ∗wx|dx + Rn(t), (.)

where Rn(t) satisfies (.).
Adding (.) and (.), we have

d
dt

∫
S

(|φn ∗w|+ |φn ∗wx|
)
dx≤

(


K +




|μ|+λ

)∫
S

(|φn ∗w|+ |φn ∗wx|
)
dx+Rn(t).

In view of Gronwall’s inequality, we find

∫
S

(|φn ∗w| + |φn ∗wx|
)
dx

≤ e(

 K+ 

 |μ|+λ)t
[∫

S

(|φn ∗w| + |φn ∗wx|
)
(,x)dx +

∫ t


Rn(s)ds

]
.
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Note that w = u – v ∈ W , and (.) holds. Letting n → ∞ in the above inequality, we
have∫

S

(|φn ∗w| + |φn ∗wx|
)
dx ≤ e(


 K+ 

 |μ|+λ)t
∫
S

(|φn ∗w| + |φn ∗wx|
)
(,x)dx.

Since w(,x) = wx(,x) = , we obtain u(t,x) = v(t,x) for a.e. (t,x) ∈ [,T] × S. In view of
T is chosen arbitrarily, this completes the proof of uniqueness. �
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