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Abstract
By applying the coincidence degree theorem due to Mawhin, we show the existence
of at least one solution to the nonlinear second-order differential equation

u�∇ (t) = f (t,u(t),u�(t)), t ∈ [0, 1]T,

subject to one of the following multi-point boundary conditions:

u(0) =
m∑
i=1

αiu(ξi), u�(1) = 0,

and

u(0) =
m∑
i=1

αiu(ξi), u(1) = 0,

where T is a time scale such that 0 ∈ T, 1 ∈ T
k , ξi ∈ (0, 1)∩T, i = 1, 2, . . . ,m,

f : [0, 1]T × R2 → R is continuous and satisfies the Carathéodory-type growth
conditions.
MSC: 34B15; 39A10; 47G20

Keywords: multi-point BVP; time scale; resonance; coincidence degree

1 Introduction
We assume that the reader is familiar with some notations and basic results for dynamic
equations on time scales. Otherwise, the reader is referred to the introductory book on
time scales by Bohner and Peterson [, ].
There is much current activity focused on dynamic equations on time scales, and a good

deal of this activity is devoted to boundary value problems.We refer the readers toAgarwal
[], Morelli [], Amster [] and the references therein.
In [], Anderson studied

–u�∇ (t) = ηa(t)f
(
u(t)

)
, t ∈ (t, tn)T, (.)
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subject to one of the following boundary conditions:

u(t) =
n–∑
i=

αiu(ti), u�(tn) = , (.)

u�(t) = , u(tn) =
n–∑
i=

αiu(ti). (.)

By using a functional-type cone expansion-compression fixed point theorem, the authors
get the existence of at least one positive solution to BVP (.), (.) and BVP (.), (.)
when

∑n–
i= αi �= .

When
∑n–

i= αi = , the operator L = u�∇ is non-invertible, this is the so-called resonance
case, and the theory used in [] cannot be used. And to the best knowledge of the authors,
the resonant case on time scales has rarely been considered. So, motivated by the papers
mentioned above, in this paper, by making use of the coincidence degree theory due to
Mawhin [], we study

u�∇ (t) = f
(
t,u(t),u�(t)

)
, t ∈ [,a]T, (.)

subject to the following two sets of nonlocal boundary conditions:

u() =
m∑
i=

αiu(ξi), u�() = , (.)

u() =
m∑
i=

αiu(ξi), u() = , (.)

where T is a time scale such that  ∈ T,  ∈ T
k , ξi ∈ (, ) ∩ T, i = , , . . . ,m,

∑m
i= αi = 

holds when (.), (.) are studied. While
∑m

i= αi( – ξi) =  when (.), (.) are studied.
f : [, ]T × R → R is continuous. We impose Carathéodory-type growth assumptions
on f . It is possible, by other methods, to allow nonlinear growth on f , we refer to [, ]
and the references therein when a time scale is R. A different m-point boundary value
problem at resonance is studied in [].
Themain features in this paper are as follows. First, we study two newmulti-point BVPs

on time scales at resonance, which have rarely been considered, and thus we need to over-
come some new difficulties. Second, we give reasons for every important step, which in
turn makes this paper easier to be understood. Last but not the least, at the end of this
paper, we give examples to illustrate our main results.
We will adopt the following notations throughout:
(i) by [a,b]T we mean that [a,b]∩T, where a,b ∈ R, and (a,b)T is similarly defined.
(ii) by u ∈ L[a,b] we mean

∫ b
a |u|∇t < ∞.

2 Some definitions and some important theorems
For the convenience of the readers, we provide some background definitions and theo-
rems.
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Theorem . ([, p.]) If f , g : T→ R are rd-continuous, then

∫ b

a
f (t)g�(t)�t +

∫ b

a
f �(t)g

(
σ (t)

)
�t = (fg)(b) – (fg)(a). (.)

Theorem . ([, p.]) If f , g : T → R are ld-continuous, then

∫ b

a
f (t)g∇ (t)∇t +

∫ b

a
f ∇ (t)g

(
ρ(t)

)∇t = (fg)(b) – (fg)(a). (.)

Theorem . ([, p.]) The following formulas hold:
(i) (

∫ t
a f (t, s)�s)� = f (σ (t), t) +

∫ t
a f

�(t, s)�s;
(ii) (

∫ t
a f (t, s)�s)∇ = f (ρ(t),ρ(t)) +

∫ t
a f

∇ (t, s)�s;
(iii) (

∫ t
a f (t, s)∇s)� = f (σ (t),σ (t)) +

∫ t
a f

�(t, s)∇s;
(iv) (

∫ t
a f (t, s)∇s)∇ = f (ρ(t), t) +

∫ t
a f

∇ (t, s)∇s.

Theorem . ([, p.]) If f : T → R is �-differentiable on T
k and if f � is continuous

on T
k , then f is ∇-differentiable on Tk and

f ∇ (t) = f �ρ(t) for t ∈ Tk .

If g : T → R is ∇-differentiable on Tk and if g∇ is continuous on Tk , then g is �-
differentiable on T

k and

g�(t) = g∇σ (t) for t ∈ T
k .

Theorem . [] If f is ∇-integral on [a,b], then so is |f |, and
∣∣∣∣
∫ t


f (t)∇t

∣∣∣∣ ≤
∫ t



∣∣f (t)∣∣∇t. (.)

Definition . Let X and Y be normed spaces. A linear mapping L : domL ⊂ X → Y is
called a Fredholm operator with index , if the following two conditions hold:

(i) ImL is closed in Y ;
(ii) dim KerL = codim ImL <∞.

Consider the supplementary subspaces X and Y such that X = KerL ⊕ X and Y =
ImL⊕Y, and let P : X →KerL andQ : Y → Y be the natural projections. Clearly,KerL∩
(domL ∩ X) = {}; thus the restriction LP := L|domL∩X is invertible. The inverse of LP :=
L|domL∩X we denote by KP : ImL→ domL∩KerP.
If L is a Fredholm operator with index zero, then, for every isomorphism J : ImQ →

KerL, themapping JQ+KP(I–Q) : Y → domL is an isomorphism and, for every u ∈ domL,

(
JQ +Kp(I –Q)

)–u =
(
L + J–P

)
u.

Definition . Let L : domL ⊂ X → Y be a Fredholm mapping, E be a metric space, and
N : E → Y be amapping.We say thatN is L-compact on E ifQN : E → Z and KP(I –Q)N :
E → X are compact on E.
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Theorem . [] Suppose that X and Y are two Banach spaces, and L : domL ⊂ X → Y
is a Fredholm operator with index . Furthermore, � ⊂ X is an open bounded set and
N : �̄ → Y is L-compact on �̄. If:

(i) Lx �= λNx, ∀x ∈ ∂� ∩ (domL \KerL), λ ∈ (, );
(ii) Nx /∈ ImL, ∀x ∈ ∂� ∩KerL;
(iii) deg{JQN ,� ∩KerL, } �= ,

then Lx =Nx has a solution in �̄ ∩ domL.

3 Related lemmas
Let

X =
{
u : [, ] → R : u� ∈ AC[, ],u�∇ ∈ L[, ]

}

with the norm ‖u‖ = sup{‖u‖,‖u�‖}, where ‖u‖ = supt∈[,]T |u(t)|.
Let Y = L[, ] with the norm ‖u‖ =

∫ 
 |u(t)|∇t.

Define the linear operator L : domL ∩ X → Y by Lu = u�∇ , with domL = {u ∈
X,u satisfies (.)}, and the linear operator L : domL ∩ X → Y by Lu = u�∇ , with
domL = {u ∈ X,u satisfies (.)}.
For any open and bounded � ⊂ X, we define N : �̄ → Y by

N = f
(
t,u(t),u�(t)

)
, t ∈ [, ]T. (.)

Then (.), (.) (respectively (.), (.)) can be written as

Lx =Nx (respectively Lx =Nx).

Lemma . The mappings L : domL ⊂ X → Y and L : domL ⊂ X → Z are Fredholm
operators with index zero.

Proof Wefirst show that L is a Fredholm operator with index zero.We divide this process
into two steps.
Step : Determine the image of L.
Let y ∈ Y and for t ∈ [, ]T,

u(t) =
∫ 

t
(s – t)y(s)∇s + c,

then by Theorem .,

u�(t) =
(∫ 

t
(s – t)y(s)∇s + c

)�

=
(∫ t


(t – s)y(s)∇s

)�

=
(
σ (t) – σ (t)

)
y
(
σ (t)

)
+

∫ t


(t – s)�y(s)∇s

=
∫ t


y(s)∇s,
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and consequently, u�() =  and u�∇ (t) = y(t). If, in addition, y(s) satisfies

∫ 


sy(s)∇s =

m∑
i=

αi

∫ 

ξi

(s – ξi)y(s)∇s, (.)

then u(t) satisfies the multi-point boundary condition (.). That is, u ∈ domL, and we
conclude that

{
y ∈ Y , y satisfies (.)

} ⊆ ImL.

Let u ∈ X, then, by Theorem .,

∫ 

t
(s – t)u�∇ (s)∇s =

∫ t


(t – s)u�∇ (s)∇s

= (t – s)u�(s)|t +
∫ t


u�

(
ρ(s)

)∇s

= –(t – )u�() +
∫ t


u∇ (s)∇s

= ( – t)u�() + u(t) – u(), (.)

that is, u(t) = u()–(– t)u�()+
∫ 
t (s– t)u

�∇ (s)∇s. If y ∈ ImL, there exists u ∈ domL ⊂ X
such that

u�∇ (t) = y(t),

and the boundary conditions (.) are satisfied. Then the expression above becomes

u(t) = u() +
∫ 

t
(s – t)y(s)∇s.

Since
∑m

i= αi =  and u() =
∑m

i= αiu(ξi), it follows that (.) holds. Hence,

ImL =
{
y ∈ Y : y satisfies (.)

}
.

Step : Determine the index of L.
Let a continuous linear operator Q : Y → Y be defined by

Qy =

C

(∫ 


sy(s)∇s –

m∑
i=

αi

∫ 

ξi

(s – ξi)y(s)∇s

)
, (.)

where C =
∫ 
 s∇s –

∑m
i= αi

∫ 
ξi
(s – ξi)∇s �= .

It is clear that Q
y = Qy, that is, Q : Y → Y is a continuous linear projector. Further-

more, ImL =KerQ. Let y = (y–Qy) +Qy ∈ Y . It is easy to see that Q(y–Qy) = , thus
y – Qy ∈ KerQ = ImL and Qy ∈ ImQ and so Y = ImL + ImQ. If y ∈ ImL ∩ ImQ,
then y(t) ≡ . Hence, we have Y = ImL ⊕ ImQ.
It is clear that KerL = {u = a,a ∈ R}. Now, IndL = dim KerL – codim ImL =

dim KerL – dim ImQ = , and so L is a Fredholm operator with index zero.
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Next, we show that L is also a Fredholm operator with index zero.We also divide it into
two steps.
Step : Determine the image of L.
Let y ∈ Y and for t ∈ [, ]T,

u(t) =
∫ 

t
(s – t)y(s)∇s + c( – t),

it is obvious that u() = , and then

u�(t) =
(∫ 

t
(s – t)y(s)∇s + c( – t)

)�

=
(∫ t


(t – s)y(s)∇s – c

)�

=
(
σ (t) – σ (t)

)
y
(
σ (t)

)
+

∫ t


(t – s)�y(s)∇s – c

=
∫ t


y(s)∇s – c,

consequently, u�∇ (t) = y(t). If, in addition, y(s) satisfies (.), then u(t) satisfies the multi-
point boundary conditions (.). That is, u ∈ domL, and we conclude that

{
y ∈ Y , y satisfies (.)

} ⊆ ImL.

Let u ∈ X, by (.), we have u(t) = u() – ( – t)u�() +
∫ 
t (s – t)u�∇ (s)∇s. If y ∈ ImL,

there exists u ∈ domL ⊂ X such that u�∇ (t) = y(t) and the boundary conditions (.) are
satisfied. The expression above becomes

u(t) =
∫ 

t
(s – t)y(s)∇s – ( – t)u�().

Since
∑m

i= αi( – ξi) =  and u() =
∑m

i= αiu(ξi), it follows that (.) holds. Hence,

ImL =
{
y ∈ Y : y satisfies (.)

}
.

Step : Determine the index of L.
Let a continuous linear operator Q : Y → Y be defined by

Qy =

C

(∫ 


sy(s)∇s –

m∑
i=

αi

∫ 

ξi

(s – ξi)y(s)∇s

)
(t – ), (.)

where C = (
∫ 
 s(s – )∇s –

∑m
i= αi

∫ 
ξi
(s – ξi)(s – )∇s) �= .

It is clear that Q
y = Qy, that is, Q : Y → Y is a continuous linear projector. Further-

more, ImL = KerQ. The remainder of the argument is identical to that concerning L
and the proof is completed. �

Lemma . N is L-compact and L-compact.

Proof Let P : X → X and P : X → X be continuous linear operators defined by Pu(t) =
u(), t ∈ [, ]T, and Pu(t) = –u�()( – t), t ∈ [, ]T, respectively.

http://www.advancesindifferenceequations.com/content/2013/1/351
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By taking u ∈ X in the form u(t) = u() + (u(t) – u()), it is clear that X =KerL ⊕KerP.
Letting u(t) = –u�()( – t) + (u(t) + u�()( – t)), we derive X =KerL ⊕KerP. Note that
the two pairs of projectors P, Q and P, Q are exact, that is, satisfy the relationships as
desired.
Define KP : ImL → domL ∩KerP by

KPy(t) =
∫ 

t
(s – t)y(s)∇s. (.)

And KP : ImL → domL ∩KerP is defined by

KPy(t) =
∫ 

t
(s – t)y(s)∇s. (.)

Then, by Theorem .,

sup
t∈[,]T

∣∣KPy(t)
∣∣ = sup

t∈[,]T

∣∣∣∣
∫ 

t
(s – t)y(s)∇s

∣∣∣∣ ≤ sup
t∈[,]T

∫ 

t

∣∣(s – t)y(s)
∣∣∇s ≤ ‖y‖,

so that

sup
t∈[,]T

∣∣(KPy(t)
)�∣∣ = sup

t∈[,]T

∣∣∣∣
∫ 

t
y(s)∇s

∣∣∣∣ ≤ sup
t∈[,]T

∫ 

t

∣∣y(s)∣∣∇s ≤ ‖y‖.

Therefore,

‖KPu‖ ≤ ‖y‖. (.)

And similarly,

‖KPu‖ ≤ ‖y‖. (.)

It is clear that KP = (L|domL∩KerP )– and KP = (L|domL∩KerP )–.
Now, by using (.) and (.), we have

QNu =

C

(∫ 


sf

(
s,u(s),u�(s)

)∇s –
m∑
i=

αi

∫ 

ξi

(s – ξi)f
(
s,u(s),u�(s)

)∇s

)
, (.)

QNu =

C

(∫ 


sf

(
s,u(s),u�(s)

)∇s

–
m∑
i=

αi

∫ 

ξi

(s – ξi)f
(
s,u(s),u�(s)

)∇s

)
(t – ). (.)

And consequently,

KP (I –Q)Nu(t) =
∫ 

t
(s – t)(N –QN)u(s)∇s, (.)

KP (I –Q)Nu(t) =
∫ 

t
(s – t)(N –QN)u(s)∇s. (.)

http://www.advancesindifferenceequations.com/content/2013/1/351
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Obviously, bothQN and KP(I –Q)N are compact, thus,N is L-compact and L-compact.
The proof is complete. �

4 Existence of solution to BVP (1.4), (1.5)
For the existence result concerning (.), (.), we have the following assumptions.

(H) There exists a constant A >  such that for any u ∈ domL \KerL satisfying |u(t)| > A
for all t ∈ [, ]T, QNu �=  holds;

(H) There exist functions p,q, r, δ ∈ L[, ] and a constant ε ∈ (, ) such that for (u, v) ∈
R and all t ∈ [, ]T, we have

∣∣f (t,u, v)∣∣ ≤ δ(t) + p(t)|u| + q(t)|v| + r(t)|v|ε , (.a)

or

∣∣f (t,u, v)∣∣ ≤ δ(t) + p(t)|u| + q(t)|v| + r(t)|u|ε ; (.b)

(H) There exists a constant B >  such that, for every b ∈ R with |b| > B, we have either

b

(∫ 


sf (s,b, )∇s –

m∑
i=

αi

∫ 

ξi

(s – ξi)f (s,b, )∇s

)
< , (.a)

or

b

(∫ 


sf (s,b, )∇s –

m∑
i=

αi

∫ 

ξi

(s – ξi)f (s,b, )∇s

)
> . (.b)

Theorem . If (H)-(H) hold, then the boundary value problem (.), (.) has at least
one solution provided

‖p‖ + ‖q‖ < 

. (.)

Proof Firstly, we define an open bounded subset � of X. It is based upon four steps to
obtain �.
Step : Let

� =
{
u ∈ domL \KerL : Lu = λNu,λ ∈ (, )

}
,

then for u ∈ �, Lu = λNu. Thus, we have Nu ∈ ImL =KerQ and

∫ 


sf

(
s,u(s),u�(s)

)∇s –
m∑
i=

αi

∫ 

ξi

(s – ξi)f
(
s,u(s),u�(s)

)∇s = .

It follows from (H) that there exists t ∈ [, ]T such that |u(t)| ≤ A. Hence, by Theo-
rems . and ., we have

∣∣u()∣∣ = ∣∣∣∣u(t) +
∫ 

t
u∇ (s)∇s

∣∣∣∣ =
∣∣∣∣u(t) +

∫ 

t
u�

(
ρ(s)

)∇s
∣∣∣∣ ≤ A +

∥∥u�
∥∥
. (.)

http://www.advancesindifferenceequations.com/content/2013/1/351
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Also, u�(t) = –
∫ 
t u

�∇ (s)∇s implies

∥∥u�
∥∥
 ≤ ∥∥u�∇∥∥

 = ‖Lu‖ < ‖Nu‖. (.)

Combining (.), (.), one gets

∣∣u()∣∣ ≤ A + ‖Nu‖. (.)

Observe that (I – P)u ∈ ImKP = domL ∩KerP for u ∈ �, then we obtain

∥∥(I – P)u
∥∥ =

∥∥KPL(I – P)u
∥∥ ≤ ∥∥L(I – P)u

∥∥
 = ‖Lu‖ < ‖Nu‖. (.)

Using (.), (.), we get

‖u‖ = ∥∥Pu + (I – P)u
∥∥ ≤ ‖Pu‖ + ∥∥(I – P)u

∥∥ <
∣∣u()∣∣ + ‖Nu‖ < A + ‖Nu‖, (.)

that is, for all u ∈ �,

‖u‖ < A + ‖Nu‖. (.)

If (.a) holds, then

‖u‖,
∥∥u�

∥∥
 ≤ ‖u‖ ≤ A + 

(‖δ‖ + ‖p‖‖u‖ + ‖q‖
∥∥u�

∥∥
 + ‖r‖

∥∥u�
∥∥ε



)
, (.)

and consequently,

‖u‖ ≤ 
 – ‖p‖

(
‖δ‖ + ‖q‖

∥∥u�
∥∥
 + ‖r‖

∥∥u�
∥∥ε

 +
A


)
. (.)

Further, by (.) and (.),

∥∥u�
∥∥
 ≤ ‖p‖‖u‖ + 

(
‖δ‖ + ‖q‖

∥∥u�
∥∥
 + ‖r‖

∥∥u�
∥∥ε

 +
A


)

≤ 
(

‖δ‖ + ‖q‖
∥∥u�

∥∥
 + ‖r‖

∥∥u�
∥∥ε

 +
A


)(
‖p‖

 – ‖p‖ + 
)

=
‖q‖

 – ‖p‖
∥∥u�

∥∥
 +

‖r‖
 – ‖p‖

∥∥u�
∥∥ε

 +
‖δ‖ +A
 – ‖p‖ , (.)

that is,

∥∥u�
∥∥
 ≤ ‖r‖

 – (‖p‖ + ‖q‖)
∥∥u�

∥∥ε

 +
‖δ‖ +A

 – (‖p‖ + ‖q‖) . (.)

Since ε ∈ (, ) and (.) holds, we know that there exists R >  such that ‖u�‖ ≤ R for
all u ∈ �. Inequality (.) then shows that there exists R >  such that ‖u‖ ≤ R for all
u ∈ �. Therefore, � is bounded given (.a) holds. If, otherwise, (.b) holds, then with
minor adjustments to the arguments above we derive the same conclusion.

http://www.advancesindifferenceequations.com/content/2013/1/351
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Step : Define

� = {u ∈KerL :Nu ∈ ImL}.

Then u = b ∈ R and Nu ∈ ImL =KerQ imply that


C

(∫ 


sf (s,b, )∇s –

m∑
i=

αi

∫ 

ξi

(s – ξi)f (s,b, )∇s

)
= .

Hence, by (H), ‖u‖ = b ≤ B, that is, � is bounded.
Step : Let

� =
{
u ∈KerL :H(u,λ) = 

}
,

where

H(u,λ) =

⎧⎨
⎩–λIu + ( – λ)JQNu if (.a) holds,

λIu + ( – λ)JQNu if (.b) holds,
(.)

and J : ImQ →KerL is a homomorphism such that J(b) = b for all b ∈ R.
Without loss of generality, we suppose that (.a) holds, then for every b ∈ �,

λb = ( – λ)

C

(∫ 


sf (s,b, )∇s –

m∑
i=

αi

∫ 

ξi

(s – ξi)f (s,b, )∇s

)
.

If λ = , then b = . And in the case λ ∈ [, ), if |b| > B, then by (.a),

 ≤ λb = b( – λ)

C

(∫ 


sf (s,b, )∇s –

m∑
i=

αi

∫ 

ξi

(s – ξi)f (s,b, )∇s

)
< ,

which is a contradiction.
When (.b) holds, by a similar argument, again, we can obtain a contradiction. Thus,

for any u ∈ �, ‖u‖ ≤ B, that is, � is bounded.
Step : Inwhat follows, we shall prove that all the conditions of Theorem. are satisfied.

Let � be an open bounded subset of X such that
⋃

i= �i ⊂ �, clearly, we have

Lu �=Nx, λ ∈ (, ),u ∈ ∂�,

and

Nu �= ImL, ∀u ∈ ∂� ∩KerL.

It can be seen easily that

H(u,λ) �= , λ ∈ [, ],u ∈ ∂� ∩KerL.
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Then assumptions (i) and (ii) of Theorem . are fulfilled. It only remains to verify that
the third assumption of Theorem . applies.
We apply the degree property of invariance under homotopy. To this end, we define the

homotopy

H(u,λ) = ∓λIu + ( – λ)JQNu.

If u ∈ � ∩KerL, then

deg{JQN ,� ∩KerL, } = deg
{
H(·, ),� ∩KerL, 

}
= deg

{
H(·, ),� ∩KerL, 

}
= deg{∓I,� ∩KerL, } �= . (.)

So, the third assumption of Theorem . is fulfilled.
Therefore, Theorem . can be applied to obtain the existence of at least one solution

to BVP (.) and (.). The proof is complete. �

5 Existence of solution to BVP (1.4), (1.6)
In this section, we give the existence result for BVP (.), (.). We first state the following
assumptions:

(H) There exists a constant C >  such that for any u ∈ domL \KerL satisfying |u�(t)| >
C for all t ∈ [, ]T, QNu �=  holds;

(H) There exists a constant D >  such that, for every d ∈ R with |d| >D, we have either

d

(∫ 


sf

(
s,d(s – ),d

)∇s –
m∑
i=

αi

∫ 

ξi

(s – ξi)f
(
s,d(s – ),d

)∇s

)
< , (.a)

or

d

(∫ 


sf

(
s,d(s – ),d

)∇s –
m∑
i=

αi

∫ 

ξi

(s – ξi)f
(
s,d(s – ),d

)∇s

)
> . (.b)

Theorem . Assume that (H), (H) and (H) hold, then BVP (.), (.) has at least one
solution provided

‖p‖ + ‖q‖ < 

. (.)

Proof Let

� =
{
u ∈ domL \KerL : Lu = λNu,λ ∈ (, )

}
,

then for u ∈ �, Lu = λNu. Thus, we have Nu ∈ ImL =KerQ, and thus

∫ 


sf

(
s,u(s),u�(s)

)∇s –
m∑
i=

αi

∫ 

ξi

(s – ξi)f
(
s,u(s),u�(s)

)∇s = .

http://www.advancesindifferenceequations.com/content/2013/1/351
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It follows from (H) that there exists t ∈ [, ]T such that |u�(t)| ≤ C. Hence, by Theo-
rem ., we have

∣∣u�()
∣∣ = ∣∣∣∣u�(t) +

∫ 

t
u�∇ (s)∇s

∣∣∣∣ ≤ A + ‖Nu‖. (.)

Observe that (I – P)u ∈ ImKP = domL ∩KerP for u ∈ �, then we obtain

∥∥(I – P)u
∥∥ =

∥∥KPL(I – P)u
∥∥ ≤ ∥∥L(I – P)u

∥∥
 = ‖Lu‖ < ‖Nu‖. (.)

Using (.), (.), one gets

‖u‖ = ∥∥Pu + (I – P)u
∥∥ ≤ ‖Pu‖ + ∥∥(I – P)u

∥∥ <
∣∣u�()

∣∣ + ‖Nu‖
< C + ‖Nu‖, (.)

that is, for all u ∈ �,

‖u‖ < C + ‖Nu‖. (.)

As in the proof of Theorem ., by applying (H) we can show that � is bounded.
Step : Define

� = {u ∈KerL :Nu ∈ ImL}.

Then u = d(t – ), where d ∈ R and Nu ∈ ImL =KerQ imply that


C

(∫ 


sf

(
s,d(s – ), s

)
�s –

m∑
i=

αi

∫ 

ξi

(s – ξi)f
(
s,d(s – ), s

)
�s

)
= .

Hence, by (H), ‖u‖ = d ≤D, which means � is bounded.
Step : Let

� =
{
u ∈KerL :H(u,λ)

}
= ,

where

H(u,λ) =

⎧⎨
⎩–λIu + ( – λ)JQNu if (.a) holds,

λIu + ( – λ)JQNu if (.b) holds,
(.)

and J : ImQ → KerL is a homomorphism such that J(d(t – )) = d(t – ) for all d ∈ R.
Without loss of generality, we suppose that (.a) holds, then for every d ∈ �,

λd = ( – λ)

C

(∫ 


sf

(
s,d(s – ),d

)∇s –
m∑
i=

αi

∫ 

ξi

(s – ξi)f
(
s,d(s – ),d

)∇s

)
.

http://www.advancesindifferenceequations.com/content/2013/1/351


Zhao et al. Advances in Difference Equations 2013, 2013:351 Page 13 of 15
http://www.advancesindifferenceequations.com/content/2013/1/351

If λ = , then d = . And in the case λ ∈ [, ), if |d| >D, then by (.a),

 ≤ λd = d(–λ)

C

(∫ 


sf

(
s,d(s–),d

)∇s–
m∑
i=

αi

∫ 

ξi

(s– ξi)f
(
s,d(s–),d

)∇s

)
< ,

which is a contradiction.
When (.b) holds, by a similar argument, again, we can obtain a contradiction. Thus,

for any u ∈ �, ‖u‖ ≤D, that is, � is bounded.
Step  is essentially the same as that of Theorem .. Applying Theorem ., we obtain

the existence of at least one solution to BVP (.), (.). The proof is complete. �

6 Examples
In this section, we give an example to illustrate our main results.

Example . Let T = [ k ,
k+
 ], where k ∈ Z. We consider the following BVP on T.

⎧⎨
⎩u�∇ (t) = 

 ( + t + u sin t + t(u�(t))/ + u�(t)), t ∈ [, ]T,

u() = 
u(


 ) +


u(


 ), u�() = .

(.)

It is clear that f (t,u, v) = 
 (+ t +u sin t +tv/ + v),  ∈ T,  ∈ T

k , ξ = 
 , ξ =


 ∈ T,

α = 
 , α = 

 , and α + α = , thus BVP (.) is resonant.
In what follows, we try to show that all the conditions in Theorem . are satisfied.
Let δ(t) = t+

 , p(t) = |t|
 , q(t) =


 , r(t) =

t
 , ε = 

 . We can see that

∣∣f (t,u, v)∣∣ ≤ δ(t) + p(t)|u| + q(t)|v| + r(t)|v|ε

holds, which implies that (H) is satisfied.
After a series of calculations, we obtain

C =
∫ 


s∇s –

m∑
i=

αi

∫ 

ξi

(s – ξi)∇s

=
(∫ /


+

∫ /

/

)
s ds +

(∫ /

/
+

∫ 

/

)
s∇s

–



((∫ /

/
+

∫ 

/

)(
s –




)
∇s +

∫ /

/

(
s –




)
ds

)

–



(∫ /

/

(
s –




)
ds +

∫ 

/

(
s –




)
∇s

)
=




�= .

For u ∈ domL \KerL, u(t) = at, u�(t) = a, then we have

CQNu =
∫ 


sf (s,as,a)∇s –

m∑
i=

αi

∫ 

ξi

(s – ξi)f (s,as,a)∇s

=
,
,

+
,,,,,
,,,,,

a +
,
,

a/

≈ . + .a + .a/.
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Let A = , then when |u(t)| = |a| > , QNu �= , which implies that (H) holds while

b

(∫ 


sf (s,b, )∇s –

m∑
i=

αi

∫ 

ξi

(s – ξi)f (s,b, )∇s

)

=



(
,
,

b +
,,,,,
,,,,,

b
)

≈ 


(
.b + .b

)
.

Let B = , then when |b| > B, (.a) or (.b) holds, which implies that (H) is satisfied.
Finally, it is obvious that ‖p‖ + ‖q‖ < 

 . Thus, all the conditions in Theorem . are
satisfied, then BVP (.) has at least one solution.

Example . Let T = [,  ]∪ {}. We consider the following BVP on T.

⎧⎨
⎩u�∇ (t) =  + t + tu

 + tu/ + tu�(t)
 , t ∈ [, ]T,

u() = u(  ), u() = .
(.)

It is clear that f (t,u, v) =  + t + tu
 + tu/ + tu�(t)

 ,  ∈ T,  ∈ T
k , ξ = 

 ∈ T, α = , thus
BVP (.) is resonant.
In what follows, we try to show that all the conditions in Theorem . are satisfied.
Let δ(t) =  + t, p(t) = t

 , q(t) =
t
 , r(t) = t, ε = 

 . We can see that

∣∣f (t,u, v)∣∣ ≤ δ(t) + p(t)|u| + q(t)|v| + r(t)|u|ε

holds, which implies that (H) is satisfied.
After a series of calculations, we obtain

C =
∫ 


s(s – )∇s –

∫ 

/

(
s –




)
(s – )∇s

=
∫ /


s(s – )ds +

∫ 

/
s(s – )∇s –

∫ /

/

(
s –




)
(s – )ds –

∫ 

/

(
s –




)
(s – )∇s

= –. �= .

For u ∈ domL \KerL, u(t) = a, u�(t) = , then we have

CQNu =
∫ 


sf (s,a, )∇s –

∫ 

/

(
s –




)
f (s,a, )∇s

=
,
,

a +
,
,

a/ +
,


≈ .a + .a/ + ..
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LetC = , thenwhen |u�(t)| = |a| > ,QNu �= , which implies that (H) holds, while

d
(∫ 


sf

(
s,d(s – ),d

)∇s –
∫ 

/

(
s –




)
f
(
s,d(s – ),d

)∇s
)

=
,,,,,
,,,,,

d –
,,,,,

,,,,,,
d/

+
,,,,,
,,,,

d

≈ .d – .d/ + .d.

Let D = , then when |d| >D, (.a) or (.b) holds, which implies that (H) is satisfied.
Finally, it is obvious that ‖p‖ + ‖q‖ < 

 . Thus, all the conditions in Theorem . are
satisfied, then BVP (.) has at least one solution.

Competing interests
The authors declare that there are no competing interests regarding the publication of this article.

Authors’ contributions
BZ and HL conceived of the study and participated in its coordination. JZ drafted the manuscript. All authors read and
approved the final manuscript.

Acknowledgements
The authors were very grateful to the anonymous referee whose careful reading of the manuscript and valuable
comments enhanced presentation of the manuscript. The study was supported by the National Natural Science
Foundation (No. 11226133), the Fundamental Research Funds for the Central Universities (No. 2652012141), the Young
Talents Programme of Beijing, Beijing higher education’s reform project of 2013 ‘Teaching research with mathematical
thinking to promote the innovative ability of modern Geosciences talents’ and Beijing support to the central authorities
in Beijing University Construction Projects ‘The reform of mathematics teaching content and methods of service in the
modern geoscience of personnel training’.

Received: 30 July 2013 Accepted: 12 November 2013 Published: 03 Dec 2013

References
1. Bohner, M, Peterson, A: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003)
2. Bohner, M, Peterson, A: Dynamic Equations on Time Scales. An Introduction with Applications. Birkhäuser, Boston

(2001)
3. Agarwal, RP, Otero-Espinarb, V, Perera, K, Vivero, DR: Multiple positive solutions of singular Dirichlet problems on time

scales via variational methods. Nonlinear Anal. 67, 368-381 (2007)
4. Morelli, M, Peterson, A: Third-order differential equation on a time scale. Math. Comput. Model. 32, 565-570 (2000)
5. Amster, P, Rogers, C, Tisdell, CC: Existence of solutions to boundary value problems for dynamic systems on time

scales. J. Math. Anal. Appl. 308, 565-577 (2005)
6. Anderson, DR: Twin n-point boundary value problem. Appl. Math. Lett. 17, 1053-1059 (2004)
7. Mawhin, J: Topological Degree Methods in Nonlinear Boundary Value Problems. NSF-CBMS Regional Conf. Ser. Math.,

vol. 40. Am. Math. Soc., Providence (1979)
8. Feng, W, Webb, JRL: Solvability of three point boundary value problems at resonance. Nonlinear Anal. 30, 3227-3238

(1997)
9. Liu, B, Yu, JS: Solvability of multi-point boundary value problems at resonance (I). Indian J. Pure Appl. Math. 34,

475-494 (2002)
10. Kosmatov, N: Multi-point boundary value problems on time scales at resonance. J. Math. Anal. Appl. 323, 253-266

(2006)
11. Guseinov, GS, Kaymakcalan, B: Basics of Riemann delta and nabla integration on time scales. J. Differ. Equ. Appl. 11,

1001-1017 (2002)

10.1186/1687-1847-2013-351
Cite this article as: Zhao et al.: Existence of solutions of multi-point boundary value problems on time scales at
resonance. Advances in Difference Equations 2013, 2013:351

http://www.advancesindifferenceequations.com/content/2013/1/351

	Existence of solutions of multi-point boundary value problems on time scales at resonance
	Abstract
	MSC
	Keywords

	Introduction
	Some deﬁnitions and some important theorems
	Related lemmas
	Existence of solution to BVP (1.4), (1.5)
	Existence of solution to BVP (1.4), (1.6)
	Examples
	Competing interests
	Authors' contributions
	Acknowledgements
	References


