Shao and Zhang Advances in Difference Equations 2013, 2013:352 ® Advances in Difference Equations
http://www.advancesindifferenceequations.com/content/2013/1/352 a SpringerOpen Journal

RESEARCH Open Access

Stability and periodicity for impulsive neural
networks with delays

Yuanfu Shao'” and Qianhong Zhang?

“Correspondence:
shaoyuanfu@163.com

'College of Science, Guilin
University of Technology, Guilin
Guangxi, 541004, PR. China

Full list of author information is
available at the end of the article

@ Springer

Abstract

By constructing a suitable Lyapunov functional and using some inequalities, we
investigate the existence, uniqueness and global exponential stability of periodic
solutions for a class of generalized cellular neural networks with impulses and
time-varying delays. Finally, an illustrative example and simulations are given to show
the effectiveness of the main results.
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1 Introduction

The dynamics of cellular neural networks has been deeply investigated due to its applica-
bility in solving image processing, signal processing and pattern recognition problems [1,
2]. Recently, the study of the existence and exponential stability of periodic solutions for
neural networks has received much attention and many known results have been obtained

[3—27]. For example, authors [11] considered the following neural networks with delays:
&i(8) = —ay(e)xi(t Z bij(t)f Z ey (O (%, (¢ - 7(8)))

+ szlﬂ x, t) (xl t) ZZeul t)f t a,,l(t))

j=1 [=1 j=1 [=1

Xfl(xl (t - Uijl(t))) + Ii(t)r (1)

when 7;(t) = 7y, 0y(t) = 0 are constants, a set of easily verifiable sufficient conditions
guaranteeing the existence and globally exponential stability of one periodic solution was
derived.

However, in practice, impulsive effects are inevitably encountered in implementation of
networks, which can also be found in information science, electronics, automatic control
systems and so on (see [12, 13, 17-19, 21, 22, 24-27]). Thus it is necessary to study the
impulsive case of system (1).

Motivated by the discussion, in this paper, by employing some inequalities and con-
structing a suitable Lyapunov functional, we aim to investigate the existence and expo-
nential stability of a periodic solution for a class of nonautonomous neural networks with
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impulses and time-varying delays as follows:

() = Zbll Zcu (i (£ = 75(0)))

n

+ Z Zdl}l fl(xl Z Zel]l t)f t Ul]l )) (2)

j=1 I=1 P
x fi(xi(t = 03(0)) + Ii(8), ¢,

Axi(t) = e (xi(t;)), ¢ =t

where i,j,/ =1,2,...,n, n corresponds to the number of units in the neural networks. x;()
corresponds to the state variable at time ¢, f; is the activation of the neurons. I;(¢) is the
external bias at time £. 0 < 7;(¢) < 7, 0 < 0y3(f) < o corresponds to the transmission delay
respectively, T = max7;j, 7;
fixed moments of time #; satisfy ¢ < tp < -+, limg_ o0 tx = 00. Ax;(tr) = x:(£) — %:(2p),

= MaXo</<w |T;(t)], 0 = maxo}}

e crl maxo<;<w |03()|. The

xi(tx) = wi(ty) and x;(£;) exists. ey (x;(£;)) represents impulsive perturbations of the ith unit
atty, k=1,2,....

By appropriately choosing coefficients, system (2) contains many models as its special
cases, which were studied in [6, 8, 12, 24, 25, 27] respectively.

Throughout this paper, for i,j,{ = 1,2,...,n, k = 1,2,..., a;(t), b;(t), c;(t), dy(t), ej(t),
7;(t), oyi(2), I;(¢) are all continuous w-periodic functions and [0, w] N {&} = {t1, L2, ..., L4}

Further, we suppose that:

(H;) There exist positive constants M; and N; such that
[ﬁ(u) —ﬁ(v)| <M;lu-v|, [ﬁ(u)| <N; forallu,veR.

(Hy) There exists a constant L such that |ex (#) — ex (V)| < Lix|u — v| for u,v € R.
(H3) There exists a positive integer g such that ., = t + , ej+g)(-) = ex(-).

For convenience, we introduce the following notations:

-~ min a + ) ' )
a; = min a(t)>0, b Olélixwlbl,(t)|, ¢j = max |ei(8)],
dl]l = max |d z/l = max |el,1(t)|

This paper is organized as follows. In Section 2, preliminaries are introduced. In Sec-
tion 3, by constructing a suitable Lyapunov functional, the criteria ensuring global ex-
ponential stability of a periodic solution for system (2) are established. In Section 4, an
example and simulations are shown to illustrate the validity of the main results. Finally,

we conclude this paper with a brief discussion in Section 5.

2 Preliminaries

Firstly, we introduce some definitions and lemmas. Let R” be the space of n-dimensional
real column vectors, and PC = {f : [-t*,0] — R"|f(s) is continuous for s ¢ (—7*,0] N
{ti}, f(s*) =f(s),f(s7) exists for s € (=*,0] N {tx}, k =1,2,...}. PC, = {f : [-7*,0] — R"|f(s)
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is continuous for s ¢ (—7*,0] N {tx — £}, f(s*) =f(s),f(s7) exists for s € (—t*,0] N {tx — t}, k =
L2,...).
A function x(¢) = (x1(2),%2(¢), ..., %,(£))T : [-7*, +00) — R" is called a solution of (2) with

the initial condition given by

x(s) =¢(s) forallse [—r*,O],d) e PC, (3)
if x(t) € PC[[0, +00),R"] satisfies (2) and (3), where % = max;<;j;<,{max;e(o,00)(|7;(?)l,
lo;(£)])}. We denote a solution through ¢ by x(t,¢) or x,(¢), x:(s, ) = x(t + s,¢) for all
s € [-1%,0], £ > 0. Obviously, any solution x(z, ¢) of (2) is continuous at ¢ # ¢ and right-
hand continuous at ¢ = t, t > 0. In addition, we define [|¢|| = sup_.-,o(>_7; |¢i(s)|’)%,

where ¢ = (¢1, ¢2,...,¢,) € PC and r > 1 is a constant.

Definition 1 System (2) is said to be globally exponentially stable if for any two solutions
x(t, ) and y(¢, V), there exist some constants r > 0 and M > 1 such that

[t ¢) —y(t, )| < Mllp -yl
forall £ > 0.

Definition 2 Let f(£) : R — R be a continuous function, then the Dini right derivative of

f(¢) is defined as
Df@) . fE+h) —f()
a =m

From Definition 2, we can easily obtain the following lemma.

Lemma 1 [12] Let f(t) be a continuous function on R. If f(¢) is differentiable at t,, then

f (to)  iff(t0) >0 orf(to) =0 andf (to) > 0;
D*[f(t)] = | ~f(to) iff(to) <O or f(to) = 0 and f(to) < 0;
0 iff(to) = 0 and f(to) = 0.

Next, we introduce two important inequalities which play a key role in obtaining the
main results.

Lemma 2 (Beckenbach and Bellman) [12, 28] Fora >0, by >0,k =1,2,...,m, the follow-
ing inequality holds:

“ 1 e 1
al_[bzk <= qub; +-a’,
r r
k=1 k=1

where gy > 0 are some constants and Y ;g =r—1,r>1.

Lemma 3 (Halanay inequality) [12, 24] Assume that p, q are constants satisfyingp > q > 0.

g(t) is a continuous nonnegative function on [ty — T, ty] satisfying D*g(t) < —pg(¢) + ql|g:|l
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Jorall t > ty, where |\g:|| = sup_, ;< |g(t + 5)|. Then, for all t > to, we have
2(0) < lgille™ ),
where A is the unique positive root of the equation ) — p + ge** = 0.

3 Main results

In this section, we construct a suitable Lyapunov functional to study the existence and
global exponential stability of periodic solutions of system (2).

Theorem 1 Suppose that (H,)-(Hs) hold. Further,

(Hy) There existr>1, qx >0, &; >0, aki, Bri» Vi and niy €R (i =1,2,...,n, k=1,2,...,m)
such thatp>q>0,Y i qc =r—1, where

rﬂk]

B LY LS 2D WS Wi W
J k=1 J k=1

n n m Vi
h Z Z(di;l + di?j)Nl Z‘Zijqk Z Z Ih 1]\”\,11 YR ki
j:1 l:l k:l ] 1 ll
non m ”7k1
- Z Z(e;}'l + ezl] Z i|
j=1 I=1 k=1
_ym )\
1= 1n<lfa<)§,|:z A Z A ey te ll NzMr(1 i i :|
j=1 =1

(Hs) Thereis 0 < u < A such that In[(1 +Lk)ekr1] < M yk=1,2,..., Ly = maXi<j<u{Li},
A is the unique positive solution of the equation )L —-p+qert =0.

Then system (2) has a unique w-periodic solution which is globally exponentially stable.

Proof Let x(t) = (x1(£),%2(2), ..., %,())T and y(£) = (31(2), y2(2), ..., y,())T be two solutions
of (2) through ¢ and ¥/, respectively, where ¢, ¢ € PC, then we have

d(xi(t) - yi())
dt

= —a;(t) (x:(t) - y:(2))

+ Y b ®0) —£050)) + D e (5 (2 - 7(8)) —£05(2 - ()
j=1 j=1

32 da@ (5 OVi(=®) - £ 0,0 (i)

j=1 11

+ Z Z eijl(t)(ﬁ(xj(t - Uz’jl(t)))fl(xl(t - Uﬂl(f)))

j=1 I=1
- ()/j (t - Uzjl(t))) l(yl(t - Uijl(t))))xi(tk) - yi(tx)
= xi(6) = yi(t) + e (i (8)) = e (i(%))- @)
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Let z;(t) = x;(¢) — y:(¢). Consider the following Lyapunov functional:

V) =Y i@ - yi)] =Y nilzo)|.

i=1 i=1

Calculating the Dini upper right derivative of V'(¢) along the solution of (2) at a continuous

point ¢ # ¢ and applying Lemma 2, we have

n
= Z 1D ‘xi ¥i( Z A r’x, “pt |xl ,'(t)’
i=1

= i) - 70 sgn(xie) - i(0))

i=1

x 1 —ai(®) (x:(t) - yi(£)) Zb,, £ (£ (x®) -£050))

+ Zc,}(t)(ﬁ(x,(t— 7i(0))) =i (0 (t - 7 (®)))
j=1

+ szuz O)fi(xi(®) £ ()i (:(2)))
j=1 I=1

+ Zzeul x} t Ul}l( ))ﬁ(xl(t_otjl(t)))
j=1 [=1

~ (¢ = 05u(@) Vfi (¢ ~ 05(2))))

IA

Z)w'r _ﬂi(t)|xi(t)_yi(t)’r*'zb;jM,"xi ¥i( | ’x] yj(t)|
— -

+ 3 My le®) - @)y (¢ - 7®) 35t - 5(0) |

=1

+ Z Z el [ NiM|xi(2) - yi(8) ’H o (£ = 03 (2)) = (£ = o (D)) |

j=1 I=1

+ NM|xi(2) - yi() |r_1 |x:(2 = 03(8)) = 3u(2 = 03(0)) ]

+ Z Zdl]l N,M,«|x,-(t) —yi(t)|r_1 |xi(t) —J’/’(t)i

j=1 I[=1

+ NiMy|i(8) - 30| o (8) = 300)|[]

n

=Y nr{—a®z)] + D M|z ()] |z(2)]

i=1 j=1

+ 2 Myl (e - (o)

j-1
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£ e [NiMy|zi(0)| 7 [z1(t - 05u(®) | + NjMi|za(0)| (£~ o ®)) ]

j=1 I=1

£ dp[NM[z0)] 7 |50)] + Ndila@) 7 a0)]]

j=1 I=1
B - B b L g “ agj dk
= > hrd—ai®)|z)| + Y bpM; @) [ [M7 0]
i=1 j=1 k=1

Z M o) nMﬁk’|l(t)|qk

k=1

+ Z Z i+ diy) NIM;_ZkZI Y@ [ M it

j=1 I=1 k=1

+ Z Z(el.*ﬂ + el.*,j)NlM}fZ":1 T |zi(£ = 05u(®)) | HM;"(’ |z:(2)| ™ }

j=1 =1 -1

n n s ray;
o
= Df[—mflzxﬂlﬂZb; B0 + 3853 a, [

i=1 j=1 j=1 k=1

S 2
v GM (¢ - 5(2)) Z ¢ quM |z:()]

j=1 j=1 k=1

n n m ’V_kj
DI CELAN [Z 4™ [a(o)]” + g |z,<t>|r}

j=1 I=1 k=1

rnk
+ ZZ 1]1 + etl/ Nl |:Z qu 0 |Zl t)| A Zk v |Z/(t_o'iﬂ(t))|ri| }

j=1 [=1
ra;
Sl S S
l j=1 k=1
rByj n Ykj
+Z z/ququ +ZZ djy + dj Nququk
j=1 k=1 j=1 I=1
(=211 vki
"'ZZ G+ ) ]NIMV 11k
j=1 I=1
n n m mk
.
D3 ICIEIN R 0
1 pay
g SIS Y DR e -y
ST - .
P S I S g i
i=1 j=1 ! j=1 =1
<-pV(@) +qllVi. (5)

For any ¢ € [£y, 1), by (Hy) and Lemma 3, we have

(V(©)] < 1V lle™10), (6)
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1/r

vl

1 —A(t—
< ||V, |[VreHimtollr,

Also, it follows from (H,) that
n 1/r
V" = {Sals) 6] () 6 |
i=1

n 1/r
= {Z)»i(l + L) |oi(87) = 3i(8)) "}
i=1
< (L+ L[|V, [0,

Therefore, from (6) and (7), for any ¢ € [£y, t1], we have

1/r

(V@O < @+ L)V |[M7e 100,

Similar to (6), for all ¢ € [£;,£,), we can derive that

VOl < v e

r
:{ sup |V(t1+s)|} e M=l

—T*<s<0
< (1 + Ll) ” Vto ”llre—A(tl—t—to)/re—k(t—tl)/r,

< (1 +L1)8Ar||‘/t0 ”1/re—)n(t—t())/r.

Again by (H3), then

n 1/r

V)" = § 3 xill() - 3i() | + Lalw() -2i(5)])
i=1

< (L+ Ly)(L+ Ly)e ||V, || M/7e 2ol

Thus, for any ¢ € (¢, £,],

1/r

VO < 1+ L)AL+ Lo)e™ ||V | e 00

By mathematical induction, for all ¢ € [#, 1), we have

1/r

VO] < @+ L)L+ La) - (L+ LT Vi | e 000,
According to (Hs), (1 + Ly)e*™'" < et%~%D/" for all k =1,2,..., hence

’ V(t)‘l/r < eﬂ(tl_to)/reﬂ(tz_tl)/r . eu(tk—[k,l)/r” Vto ||l/re—)»(t—t0)/r

< ” Vto Hl/re—()\—u)(t—to)/r.

Page 7 of 12

7)

(8)
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Therefore,

1/r

V@l

< |V 1M7e ==t for all £ > ¢,

)"mx —()— —_
[#(t:0) -yt )| < | == O ig— | forall £ > g,

where Amax = Maxi<i<,{Ai}, Amin = Minj<;<,{X;}. This implies that system (2) is globally
exponentially stable.

Next, we prove the existence of a periodic solution of (2). Define a Poincére mapping
T :PCy — PC, as follows:

T(p) =x,(¢) forany ¢ € PC.

By the periodicity of (2), we can derive that 7" (¢) = x4, (¢) for any integer m > 0. From
the above conclusion, we can choose a positive integer m such that 7 ’}\'“—,“e‘(k‘“)“‘m“’)/ "<1.

According to the periodicity of {tt} and PCy = PC,, we have

1T7% = Ty | = || %me(@) = %o () || < Il = W1l

Then operator 7" is a construction mapping in PCy. Obviously, PC, is a Banach space.
By virtue of the Banach fixed point theorem, 7" has a unique fixed point ¢* € PC,.
On the other hand, T"(T¢*) = T(T"¢*) = T(¢*), then T¢* is also a fixed point of 7.
By the uniqueness of fixed point, we obtain that T'¢* = ¢*. Therefore, system (2) has
a unique w-periodic solution which is globally exponentially stable. The proof is com-
plete. O

If there is no impulse, system (2) reduces to (1) studied in [11]. From the proof of Theo-

rem 1, we have the following corollary.

Corollary1 Suppose that (Hy)-(Hy) hold. Then system (1) has a unique w-periodic solution
which is globally exponentially stable.

Remark1 In [11], by using the Mawhin continuation theorem and constructing Lyapunov
functionals, the authors studied the existence and stability of system (1), where the de-
lays are constant. However, in this paper, for time-varying delays, by employing many dif-
ferent analysis techniques from [11], we establish the criteria ensuring the existence and
exponential stability of a periodic solution of (1). Furthermore, if we take r = 2, m =1,
qr =1, % =1, ag; = Bri = Vii = N = 1/2, then condition (Hy) is transformed into (Hy)" as

follows:

n n

n n n n
(Ha) a7 =) biMi= ) M=y > (dy+di)Nidi=» Y " (efy + ) NiM; > 0,
i=1 j=1

j=1 I=1 j=1 I=1
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which is just the corresponding condition in [11]. One can derive the same results as [11].
That is, the criteria in [11] are the special case of Theorem 1. Therefore, we extend and
improve the earlier results in this sense.

If dy(t) = 0, then system (2) is transformed into the following model studied in
[12].

xi(£) = —a;i(t)xi(t) + Zbij(t)fj(xj(t))

j=1
+ Z Ci]‘(t)ﬁ (x]'(t - 'L'l'j(t))) + Z Z el‘]’[(t)
j=1 j=1 I=1
x fi(t = o (@))fi(%1(¢ — 05u(0)) + L:(2),  t F#tr, )

Axi(t) = e (xi(2)), £ =t

Using a similar proof as above, one can obtain the main result of [12]. It is omitted
here.
If ¢;i(t) = dy(t) = e;u(t) = 0, then (2) is transformed into the following model:

xi(t) = —a;(t)x;(£) + Zbi/(t)ﬁ(xj(t)) +1i(t), t#t,
=) (10)

Axi(tr) = e (x:(2)), €=t

Similarly, we can obtain the sufficient conditions of the existence and exponential stability
of a periodic solution to system (10), we omit it.

Ifone takes r=2,m =2, qx =1, A; = 1, ag; = 1/2, then (Hy) is reduced to
n
(Ha)*  a; - Zb};M,» > 0.
j=1

The following corollary can be derived.

Corollary 2 Suppose that (H;)-(Hs), (Ha)*, (Hs) hold, then system (10) has a unique ex-
ponentially stable w-periodic solution.

Remark 2 Corollary 2 is just the result of [27]. In [27], the impulses are required to be
linear functions. However, without the above restrictions, we also establish the criteria
ensuring the existence of an w-periodic solution which is exponentially stable. Thus we
extend and generalize the earlier results.

In addition, if dj;(£) = e;(t) = 0, (2) reduces to the model studied in [8]. Similar results
can be derived. In [8], the delay functions are required to be differential, but we do not
need the restriction here.

On the other hand, in real world, by appropriately choosing parameters r, m, gk, 0> Bii»
Yki» ki one can see that many known assumptions can be included as special cases of (Ha),
hence the discussion is interesting and valuable.
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Figure 1 The dynamics of system (11). (a) Time series of x; (t), (b) time series of x(t), (c) phase portrait of
X1 () and x5 (t).

4 Anillustrative example and simulations

In this section, we give an example and simulations to show the validity of the main results.

Example Let

xi(t) = —a;(t)x;(t) + Z bi(t)f; (xj(t)) + Z ci(t)f; (xj(t - Ti/(t)))

j=1 J=1
Y dp@f (5O (x() + DY e)fi(t - o3u(2) (11)
j=1 I=1 j=1 I=1

xfl(xl(t - G,ﬂ(t))) +1;(8), t#k,

Axi(t) = e (xi(t;)), ¢ =t
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where
+2|—|x-2
n=2, Jilx) = %, ai(t) =10 + sint,
ay(t) =12 + cos t, T(8) =7, oy(t) = 2m, e (xi(£)) = —0.40;(t),

2cost 2sint
sint/2 cost/2

sint cost

B(t) = (by(0)),,, = cost/4 sint/4

C(t) = (Cij(t))2><2 =
dijl(t) = eiﬂ(t) =4, ty =km.

Take r =4, m=1, qx =3, @ = B = Vi = Sk = 1/3. It is easy to verify that conditions of
Theorem (1) hold. Therefore, by Theorem 1, system (11) has a unique 7 -periodic solution,
which is globally exponentially stable. By numerical analysis, the conclusion can be showed

clearly, see Figure 1.

5 Conclusion

In this paper, by using the Halanay inequality and constructing Lyapunov functions, we
address the existence and exponential stability of periodic solutions for a class of gener-
alized cellular neural networks with impulses and time-varying delays. Easily verifiable
sufficient conditions are obtained. The main results extend and improve some previously
known results [8, 11, 12, 27]. The criteria possess many adjustable parameters which pro-
vide flexibility for the design and analysis of a dynamical system. It is interesting and valu-
able.
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