
Zhang et al. Advances in Difference Equations 2013, 2013:353
http://www.advancesindifferenceequations.com/content/2013/1/353

RESEARCH Open Access

Existence result for a nonlinear fractional
differential equation with integral boundary
conditions at resonance
Shuqin Zhang1, Lei Hu1,2* and Ailing Shi3

*Correspondence:
huleimath@163.com
1Department of Mathematics, China
University of Mining and
Technology, Beijing, 100083, China
2School of Science, Shandong
Jiaotong University, Jinan, 250357,
China
Full list of author information is
available at the end of the article

Abstract
In this paper, we establish the existence result for nonlinear fractional differential
equations with integral boundary conditions at resonance by means of coincidence
degree theory. As applications, three examples are presented to illustrate the main
results.

1 Introduction
In this paper, we prove the existence of solutions for fractional differential equations at
resonance with integral boundary conditions given by

⎧⎪⎪⎨
⎪⎪⎩
Dα

+u(t) = f (t,u(t),Dα–
+ u(t), . . . ,Dα–(n–)

+ u(t)),  < t < ,

u() = u′() = · · · = un–() = ,

u() = (α +m)
∫ 
 t

mu(t)dt,

(.)

where  < t < , n –  < α < n, m ∈ N, Dα
+ is the Riemann-Liouville fractional derivative,

and f : [, ]×R →R is a continuous function.
During the last few years, fractional differential equations have been studied exten-

sively due to their significant applications in various sciences such as physics, mechan-
ics, chemistry, phenomena arising in engineering. See [–] and the references therein.
Many researchers paid attention to the existence of boundary value problems for nonlin-
ear fractional differential equations, see [–]. The authors obtained the results by using
the classical tools for such problems including the Leray-Schauder nonlinear alternative
theorem, etc. Recently, there have been some papers devoted to the theory of fractional
differential equations with integral boundary conditions, see [–].
In [], Cabada and Wang studied the integral boundary value problem for nonlinear

fractional differential equations:

⎧⎪⎪⎨
⎪⎪⎩

CDα
+u(t) + f (t,u(t)) = ,  < t < ,

u() = u′′() = ,

u() = λ
∫ 
 u(s)ds,
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where  < α < ,  < λ < , CDα
+ is the Caputo fractional derivative and f : [, ] ×

[, +∞)→ [, +∞) is a continuous function. The author established sufficient conditions
for the existence of nonlinear fractional differential equations with an integral boundary
problem.
In [], Yuan discussed an (n– , )-type semipositone integral boundary value problem

for the coupled system of fractional differential equations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dα
+u(t) + λf (t, v(t)) = ,  < t < ,

Dα
+v(t) + λg(t,u(t)) = ,  < t < ,

u(j)() = v(j)() = , ≤ j ≤ n – ,

u() = μ
∫ 
 u(s)ds, v() = μ

∫ 
 v(s)ds,

where λ, μ are parameters and λ > ,  < μ < α, α ∈ (n – ,n], n ≥ , Dα
+ is the Riemann-

Liouville fractional derivative, and f , g : (, ) × [, +∞) → R are sign-changing continu-
ous functions. Some existence results were given by using the Leray-Schauder nonlinear
alternative theorem and the Krasnoselskii fixed point theorem.
In [], Feng et al. considered a higher-order nonlinear nonlinear fractional differential

equations with integral boundary conditions given by

⎧⎪⎪⎨
⎪⎪⎩
Dα

+x(t) + g(t)f (t,x(t)) = ,  < t < ,

x() = x′() = · · · = x(n–)() = ,  < t < ,

x() =
∫ 
 h(t)x(t)dt,

where  < t < , n –  < α ≤ n, n ≥ , Dα
+ is the Riemann-Liouville fractional derivative,

and g ∈ C((, ), [, +∞)) which may be singular at t =  or (and) t = , h ∈ L[, ] is non-
negative, and f ∈ C([, ] × [, +∞), [, +∞)) is a continuous function. By means of the
Guo-Krasnoselskii fixed point theorem, some results on the existence of positive solutions
are obtained.
At the same time, we notice that these problems happen to be at resonance if λ =  in [],

μ = α in [] or
∫ 
 h(t)t

α– dt =  in []. Though there has been an increasing interest in
the study of the existence of solutions for fractional differential equations at resonance (see
[–]), the corresponding theorem and applications to the fractional differential equa-
tions with integral conditions at resonance have not been investigated now. Motivated by
the works above, we discuss the integral boundary value problems of fractional differen-
tial equations (.), which happen to be at resonance in the sense that the associated linear
homogeneous boundary value problem

⎧⎪⎪⎨
⎪⎪⎩
Dα

+u(t) = ,  < t < ,

u() = u′() = · · · = un–() = ,

u() = (α +m)
∫ 
 t

mu(t)dt,

has u(t) = ctα–, c ∈R as a nontrivial solution.
The rest of this paper is organized as follows. In Section , we give some necessary no-

tations, definitions and lemmas. In Section , we study the existence of solutions of (.)
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by the coincidence degree theory due to Mawhin []. Finally, three examples are given to
illustrate our results in Section .

2 Preliminaries
In this section, we present the necessary definitions and lemmas from fractional calculus
theory. These definitions and properties can be found in the literature. For more details,
see [–].

Definition . [] The Riemann-Liouville fractional integral of order α >  of a function
f : (,∞)→R is given by

Iα+f (t) =


�(α)

∫ t


(t – s)α–f (s)ds,

provided that the right-hand side is pointwise defined on (,∞).

Definition . [] The Riemann-Liouville fractional derivative of order α >  of a contin-
uous function f : (,∞)→ R is given by

Dα
+ f (t) =


�(n – α)

dn

dtn

∫ t



f (s)
(t – s)α–n+

ds,

where n –  < α ≤ n, provided that the right-hand side is pointwise defined on (,∞).

Lemma . [] Let n –  < α ≤ n, u ∈ C(, )∩ L(, ), then

Iα+D
α
+u(t) = u(t) +Ctα– +Ctα– + · · · +Cntα–n,

where Ci ∈R, i = , , . . . ,n.

Lemma . [] If α > , m ∈ N and D = d/dx. If the fractional derivatives Dα
+u(t) and

Dα+m
+ u(t) exist, then

DmDα
+u(t) =Dα+m

+ u(t).

Lemma . [] The relation

Iαa+I
β
a+f (x) = Iα+β

a+ f (x)

is valid in the case β > , α + β > , f (x) ∈ L(a,b).

Lemma . The relation

∫ r


Iα+f (x)dx = Iα++ f (r)

is valid in the case α > , f (x) ∈ L(, r), r ∈R
+.

http://www.advancesindifferenceequations.com/content/2013/1/353
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Proof

∫ r


Iα+f (x)dx =


�(α)

∫ r



∫ t


(t – s)α–f (s)dsdt =


�(α)

∫ r



∫ r

s
(t – s)α–f (s)dt ds

=


�(α)

∫ r


f (s)

∫ r

s
(t – s)α– dt ds =


�(α)

∫ r


f (s)

(r – s)α

α
ds

= Iα++ f (r). �

Now let us recall some notation about the coincidence degree continuation theorem.
Let Y , Z be real Banach spaces, L : domL ⊂ Y → Z be a Fredholm map of index zero and
P : Y → Y , Q : Z → Z be continuous projectors such that kerL = ImP, ImL = kerQ and
Y = kerL ⊕ kerP, Z = ImL ⊕ ImQ. It follows that L|domL∩kerP : domL ∩ kerP → ImL is
invertible. We denote the inverse of this map by KP . If � is an open bounded subset of Y ,
the map N will be called L-compact on � if QN(�) is bounded and KP,QN = KP(I –Q)N :
� → Y is compact.

Theorem . Let L be a Fredholm operator of index zero and N be L-compact on �. Sup-
pose that the following conditions are satisfied:
() Lx �= λNx for each (x,λ) ∈ [(domL\kerL)∩ ∂�]× (, );
() Nx /∈ ImL for each x ∈ kerL∩ ∂�;
() deg(JQN |kerL,� ∩ kerL, ) �= , where Q : Z → Z is a continuous projection as above

with ImL = kerQ and J : ImQ → kerL is any isomorphism.
Then the equation Lx =Nx has at least one solution in domL∩ �.

3 Main results
In this paper, we always assume the following conditions.

(H) 
�(α+) �= (α +m)

∑m
i=(–)i

m!
(m–i)!


�(α++i) .

In this section, we prove the existence results for (.). We use the Banach space E =
C[, ] with the norm ‖u‖∞ = max≤t≤ |u(t)|. For α > , n = [α] + , we define a linear
space

Y =
{
u|u,Dα–i

+ u ∈ E, i = , , . . . ,n – 
}
. (.)

Bymeans of the line functional analysis theory, we can prove that Y is a Banach space with
the norm

‖u‖Y =
∥∥Dα–

+ u
∥∥∞ + · · · + ∥∥Dα–(n–)

+ u
∥∥∞ + ‖u‖∞.

Define L to be the linear operator from Y to E with

dom(L) =
{
u ∈ Y

∣∣∣u() = u′() = · · · = un–() = ;u() = (α +m)
∫ 


tmu(t)dt

}

and

Lu =Dα
+u, u ∈ dom(L). (.)
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Define N : Y → E by

Nu(t) = f
(
t,Dα–

+ u(t), . . . ,Dα–(n–)
+ u(t)

)
. (.)

Then problem (.) can be written by Lu =Nu.

Lemma . The mapping L : dom(L)⊂ Z is a Fredholm operator of index zero.

Proof It is clear that

ker(L) =
{
ctα–, c ∈R

} ∼= R
.

Let x ∈ ImL, so there exists a function u ∈ domL which satisfies Lu = x. By Lemma ., we
have

u(t) = Iα+x(t) + ctα– + ctα– + · · · + cntα–n.

By u() = u′() = · · · = u(n–)() = , we can obtain c = · · · = cn = . Hence

u(t) = Iα+x(t) + ctα–.

By u() = (α +m)
∫ 
 t

mu(t)dt, we have

Iα+x() + c = u() = (α +m)
∫ 


tm

[
Iα+x(t) + ctα–

]
dt

= (α +m)
∫ 


tmIα+x(t)dt + c

∫ 


(α +m)tα+m– dt

= (α +m)
∫ 


tmIα+x(t)dt + c.

Taking into account Lemma . and using integration by parts, we obtain

Iα+x() = (α +m)
∫ 


tmIα+x(t)dt = (α +m)

∫ 


tmdIα++ x(t)

= (α +m)
[
tmIα++ x(t)

∣∣
 –m

∫ 


tm–Iα++ x(t)dt

]

= (α +m)
[
Iα++ x() –m

∫ 


tm– dIα++ x(t)

]

· · ·

= (α +m)
m∑
i=

(–)i
m!

(m – i)!
Iα++i+ x().

On the other hand, suppose that x ∈ E satisfies Iα+x()–(α+m)
∑m

i=(–)i
m!

(m–i)! I
α++i
+ x() =

. Let u(t) = Iα+x(t), we can easily prove u(t) ∈ dom(L).

http://www.advancesindifferenceequations.com/content/2013/1/353


Zhang et al. Advances in Difference Equations 2013, 2013:353 Page 6 of 12
http://www.advancesindifferenceequations.com/content/2013/1/353

Thus, we conclude that

Im(L) =

{
x ∈ E

∣∣∣Iα+x() – (α +m)
m∑
i=

(–)i
m!

(m – i)!
Iα++i+ x() = 

}
.

Consider the linear operators Q : Z →R defined by

Qx(t) = σ ·
[
Iα+x() – (α +m)

m∑
i=

(–)i
m!

(m – i)!
Iα++i+ x()

]
,

where σ = [ 
α�(a) – (α +m)

∑m
i=(–)i

m!
(m–i)!


�(α++i) ]

– and Qx(t)∼= R.
Take x(t) ∈ E, then

Q
(
Qx(t)

)
= σ ·

[
Iα+Qx(t)

∣∣
t= – (α +m)

m∑
i=

(–)i
m!

(m – i)!
Iα++i+ Qx(t)

∣∣∣∣∣
t=

]

= σ

σ
Qx(t) =Qx(t).

We can see Q =Q.
For x(t) ∈ Z, x(t) = x(t) –Qx(t) +Qx(t), one has Q[x(t) –Qx(t)] = .
Therefore

x(t) –Qx(t) ∈Ker(Q) = Im(L), Qx(t) ∈ Im(Q).

That is to say,

Z = Im(L) + Im(Q).

If u ∈ Im(L)∩ Im(Q), so we have u = c ∈R.
Because of u = c ∈ Im(L), then

Iα+c
∣∣
t= – (α +m)

m∑
i=

(–)i
m!

(m – i)!
Iα++i+ c

∣∣∣∣∣
t=

= .

As a result c · σ = , we get c = .
Then

Z = Im(L)⊕ Im(Q).

Note that IndL = dimkerL – codim ImL = . Then L is a Fredholm mapping of index
zero. �

We can define the operators P : Y → Y , where

Pu =


�(α)
Dα–

+ u()tα–.

http://www.advancesindifferenceequations.com/content/2013/1/353
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For u ∈ Y ,

P(Pu) = P
(


�(α)

Dα–
+ u()tα–

)
=


�(α)

Dα–
+ u()tα– = Pu.

So we have P = P.
Note that

KerP =
{
u ∈ Y |Dα–

+ u() = 
}
.

Since u = u–Pu+Pu, it is easy to say u–Pu ∈Ker(P), Pu ∈Ker(L). AndY =Ker(P)+Ker(L).
If u ∈ Ker(L)∩Ker(P), so u = ctα–, we can derive Dα–ctα–|t= = , so c = . Then

Y =Ker(L)⊕Ker(P).

For u ∈ Y ,

‖Pu‖Y =
∥∥Dα–

+ u
∥∥∞ + · · · + ∥∥Dα–(n–)

+ u
∥∥∞ + ‖u‖∞

=


�(α)
∣∣Dα–

+ u()
∣∣ · (∥∥tα–∥∥∞ +

∥∥Dα–
+ tα–

∥∥∞ + · · · + ∥∥Dα–(n–)
+ tα–

∥∥∞
)

=

( n–∑
i=


�(i)

+


�(α)

)∣∣Dα–
+ u()

∣∣
= a

∣∣Dα–
+ u()

∣∣, (.)

where a = 
�(α) +

∑n–
i=


�(i) .

We define KP : ImL → domL ∩ kerP by Kpx = Iα+x. For x ∈ Im(L), we have LKpx =
Dα

+Iα+x = x.
And for u ∈ dom(L) ∩ Ker(P), we have Dα–

+ u() = . So the coefficients c, . . . , cn in the
expressions

u = Iα+D
α
+u(t) + ctα– + ctα– + · · · + cntα–n

are all equal to zero. Thus we obtain

KpLu = Iα+D
α
+u = u,

which shows that Kp = (Ldom(L)∩Ker(P))–.
Again, for each x ∈ Im(L),

‖Kpx‖Y =
∥∥Iα+x∥∥Y =

∥∥Iα+x∥∥∞ +
∥∥Dα–

+ Iα+x
∥∥∞ + · · · + ∥∥Dα–(n–)

+ Iα+x
∥∥∞

≤
( n–∑

i=


�(i + )

+


�(α + )

)
‖x‖∞

≤
( n–∑

i=


�(i)

+


�(α)

)
‖x‖∞

= a‖x‖∞. (.)

http://www.advancesindifferenceequations.com/content/2013/1/353
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Lemma . [] F ⊂ Cμ[, ] is a sequentially compact set if and only if F is uniformly
bounded and equicontinuous.Here uniformly bounded means that there exists M >  such
that for every u ∈ F ,

‖u‖cμ =
∥∥Dμ

+
∥∥∞ + · · · + ∥∥Dμ–(N–)

+ u
∥∥∞ + ‖u‖∞ <M,

and equicontinuous means that ∀ε > , ∃δ >  such that

∣∣u(t) – u(t)
∣∣ < ε

(∀t, t ∈ [, ], |t – t| < δ,∀u ∈ F
)

and

∣∣Dα–i
+ u(t) –Dα–i

+ u(t)
∣∣ < ε

(∀t, t ∈ [, ], |t – t| < δ,∀u ∈ F , i = , , . . . ,N – 
)
.

By Lemma . and standard arguments, the following lemma holds.

Lemma . Kp(I –Q)N : Y → Y is completely continuous.

For convenience, we use the following notations: ρ = aA + a‖ϕ‖∞; ρi = a‖ψi‖∞, i =
, , . . . ,n. To obtain our main results, we need the following conditions.

(H) There exist functions ϕ,ψi,∈ E, i = , , . . . ,n, such that for all t ∈ [, ],

∣∣f (t,x,x, . . . ,xn)∣∣ ≤ ϕ +ψ|x| +ψ|x| + · · · +ψn|xn|.

(H) There exists a constant A >  such that for every y ∈ R, if |Dα–
+ u(t)| > A, for all t ∈

[, ], then

QNu(t) �= .

(H) There exists a constant B >  such that, for each c ∈ R satisfying |c| > B, we have at
least one of the following:

cQN
(
ctα–

)
> ,

or

cQN
(
ctα–

)
< .

(H)
∑n

i= ρi < .

Lemma . � = {u ∈ dom(L) \Ker(L)|Lu = λNu,λ ∈ [, ]} is bounded.

Proof For u ∈ �, Lu = λNu, thus λ �= . And Lu = λNu ∈ Im(L) =Ker(Q), that is,

λQNu(t) = .

By (H), there exists a constant t ∈ [, ] such that |Dα–
+ u(t)| ≤ A.

http://www.advancesindifferenceequations.com/content/2013/1/353
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Again, for u ∈ �, then (I – P)u ∈ dom(L) \Ker(L) and LPu = , thus from (.), we have

∥∥(I – P)u
∥∥
Y =

∥∥KpL(I – P)u
∥∥
Y = ‖KpLu‖Y ≤ a‖Lu‖∞ ≤ a‖Nu‖∞.

Now, by Lemma .,

∣∣Dα–
+ u()

∣∣ ≤ ∣∣Dα–
+ u(t)

∣∣ + ∣∣∣∣
∫ t


Dα

+u(s)ds
∣∣∣∣ ≤ ∣∣Dα–

+ u(t)
∣∣ + |t| max

≤t≤t

∣∣Dα
+u(t)

∣∣
≤ ∣∣Dα–

+ u(t)
∣∣ + ∥∥Dα

+u(t)
∥∥∞ ≤ A + ‖Lu‖∞ ≤ A + ‖Nu‖∞,

that is,

∣∣Dα–
+ u()

∣∣ ≤ A + ‖Nu‖∞. (.)

From (.), we have

‖u‖Y =
∥∥Pu + (I – P)u

∥∥
Y ≤ ‖Pu‖Y +

∥∥(I – P)u
∥∥
Y

≤ a
∣∣Dα–

+ u()
∣∣ + a‖Nu‖∞

≤ a
(
A + ‖Nu‖∞

)
+ a‖Nu‖∞

≤ aA + a‖Nu‖∞.

By (H), we have

‖u‖Y ≤ aA + a‖Nu‖∞

≤ aA + a
∥∥f (t,u(t),Dα–

+ u(t),Dα–
+ u(t), . . . ,Dα–(n–)

+ u(t)
)∥∥∞

≤ aA + a
(‖ϕ‖∞ + ‖ψ‖∞‖u‖∞ + ‖ψ‖∞

∥∥Dα–
+ u

∥∥∞ + · · · + ‖ψn‖∞
∥∥Dα–(n–)

+ u
∥∥)

= ρ + ρ‖u‖∞ + ρ
∥∥Dα–

+ u
∥∥∞ + ρ

∥∥Dα–
+ u

∥∥∞ + · · · + ρn
∥∥Dα–(n–)

+ u
∥∥∞.

By the definition ‖u‖Y , we can derive

‖u‖∞ ≤ 
 – ρ

(
ρ + ρ

∥∥Dα–
+ u

∥∥∞ + ρ
∥∥Dα–

+ u
∥∥∞ + · · · + ρn

∥∥Dα–(n–)
+ u

∥∥∞
)
.

Hence, we have

∥∥Dα–
+ u

∥∥∞ ≤ 
 – ρ – ρ

(
ρ + ρ

∥∥Dα–
+ u

∥∥∞ + · · · + ρn
∥∥Dα–(n–)

+ u
∥∥∞

)
,

...∥∥Dα–(n–)
+ u

∥∥∞ ≤ ρ

 – ρ – ρ – · · · – ρn
:=M.

It is easy to see ‖Dα–
+ v‖∞, . . . ,‖Dα–(n–)

+ v‖∞ and ‖u‖∞ are bounded. We can conclude that
‖u‖Y is bounded. �

http://www.advancesindifferenceequations.com/content/2013/1/353
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Lemma . � = {u ∈Ker(L) :Nu ∈ Im(L)} is bounded.

Proof Let u ∈Ker(L), so we have u = ctα–, c ∈R, t ∈ [, ], and Nu ∈ Im(L) =Ker(Q), thus

λQNu(t) = .

By (H), there exist two constant t ∈ [, ] such that

∣∣Dα–
+ u(t)

∣∣ = ∣∣Dα–
+ ctα–

∣∣
t

∣∣ = ∣∣c�(α)∣∣ ≤ A.

It follows that |c| ≤ A
�(α) . Here, � is bounded. �

Lemma . � = {u ∈Ker(L) : λu + ( – λ)QNu = (, ),λ ∈ [, ]} is bounded.

Proof Let u ∈Ker(L), so we have u = ctα–, c ∈R, t ∈ [, ].
Thus

λctα– + ( – λ)QN
(
tα–

)
= .

If λ = , then |c| ≤ A
�(α) . If λ = , we have c = .

It follows that

λctα– + ( – λ)cQN
(
tα–

)
= .

Thus from the first part of (H), then |c| ≤ B. Here, � is bounded. �

Remark . If the other parts of (H) hold, then the set �′
 = {u ∈ Ker(L) : –λu + ( –

λ)QNu = ,λ ∈ [, ]} is bounded.

Theorem . Suppose (H)-(H) hold, then problem (.) has at least one solution in Y .

Proof Let� be a bounded open set of Y such that
⋃

i= �i ⊂ �. It follows from Lemma .
that N is L-compact on �. By Lemma ., Lemma . and Lemma ., we get:
() Lu �= λNu for every (u, v) ∈ [(domL \KerL)∩ ∂�]× (, ),
() Nu /∈ ImL for every u ∈KerL∩ ∂�,
() Let H((u, v),λ) = ±λI(u, v) + ( – λ)JQN(u, v), where I is the identical operator. Via

the homotopy property of degree, we obtain that

deg(JQN |kerL,� ∩ kerL, ) = deg
(
H(·, ),� ∩ kerL, 

)
= deg

(
H(·, ),� ∩ kerL, 

)
= deg(±I,� ∩ kerL, ) �= .

Applying Theorem ., we conclude that Lu =Nu has at least one solution in
domL∩ �. �

http://www.advancesindifferenceequations.com/content/2013/1/353
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4 Some examples
To illustrate how our main results can be used in practice, we present three examples.

Example . Let us consider the following boundary value problem:

⎧⎪⎪⎨
⎪⎪⎩
D.

+ u(t) =
t
 + e–u(t) + 

 |D.
+u(t)| + cos(D.

+ u(t)),  < t < ,

u() = u′() = ,

u() = 

∫ 
 u(t)dt.

(.)

By the calculation, we can have A = B =  and (H)-(H) are all satisfied. Hence, we obtain
that (.) has at least one solution.

Example . Consider the following integral boundary value problem:

⎧⎪⎪⎨
⎪⎪⎩
D.

+ u(t) = t + arctanu(t) + 
D

.
+ u(t) + cos(D.

+ u(t)) + sin(D.
+u(t)),  < t < ,

u() = u′() = u′′() = ,

u() = 


∫ 
 t · u(t)dt.

(.)

It is easy to see that (H)-(H) hold. By a simple calculation, we can have A = , B = .
Thus it follows that problem (.) has at least one solution.

Example . We consider the boundary value problem

⎧⎪⎪⎨
⎪⎪⎩
D.

+u(t) = cos(t + ) + 
 sinu(t) +


D

.
+u(t),  < t < ,

u() = ,

u() = 


∫ 
 t

u(t)dt.

(.)

Corresponding to problem (.), we have that α = ., m = . By a simple calculation, we
can get A = , B = , then (H)-(H) hold. By Theorem ., we obtain that (.) has at
least one solution.

5 Conclusion
In this paper, we have obtained the existence of solutions for fractional differential equa-
tions with integral boundary conditions at resonance. By using the coincidence degree
theory, we have found the existence results. Though the technique applied to establish the
existence results for the problem is a standard one, yet its results are new in the context of
integral boundary conditions. As applications, three examples are presented to illustrate
the main results. In the future, we will consider the uniqueness of solutions for the frac-
tional differential equations at resonance, and also canmake further research on fractional
differential equations with a singular integral boundary value problem at resonance.
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