
Khan et al. Advances in Difference Equations 2013, 2013:354
http://www.advancesindifferenceequations.com/content/2013/1/354

RESEARCH Open Access

Global dynamics of some systems of
higher-order rational difference equations
Abdul Qadeer Khan, Muhammad Naeem Qureshi and Qamar Din*

*Correspondence:
qamar.sms@gmail.com
Department of Mathematics,
University of Azad Jammu and
Kashmir, Muzaffarabad, Pakistan

Abstract
In the present work, we study the qualitative behavior of two systems of higher-order
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1 Introduction
Recently, studying the qualitative behavior of difference equations and systems is a topic of
great interest. Applications of discrete dynamical systems and difference equations have
appeared recently inmany areas such as ecology, population dynamics, queuing problems,
statistical problems, stochastic time series, combinatorial analysis, number theory, geom-
etry, electrical networks, neural networks, quanta in radiation, genetics in biology, eco-
nomics, psychology, sociology, physics, engineering, economics, probability theory and
resource management. Unfortunately, these are only considered as the discrete analogs
of differential equations. It is a well-known fact that difference equations appeared much
earlier than differential equations and were instrumental in paving the way for the devel-
opment of the latter. It is only recently that difference equations have started receiving the
attention they deserve. Perhaps this is largely due to the advent of computers where differ-
ential equations are solved by using their approximate difference equation formulations.
The theory of discrete dynamical systems and difference equations developed greatly dur-
ing the last twenty-five years of the twentieth century. The theory of difference equations
occupies a central position in applicable analysis. There is no doubt that the theory of
difference equations will continue to play an important role in mathematics as a whole.
Nonlinear difference equations of order greater than one are of paramount importance
in applications. It is very interesting to investigate the behavior of solutions of a system
of higher-order rational difference equations and to discuss the local asymptotic stability
of their equilibrium points. Systems of rational difference equations have been studied by
several authors. Especially there has been a great interest in the study of the attractivity
of the solutions of such systems. For more results on the qualitative behavior of nonlinear
difference equations, we refer the interested reader to [–].
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Zhang et al. [] studied the dynamics of a system of rational third-order difference
equations

xn+ =
xn–

B + ynyn–yn–
, yn+ =

yn–
A + xnxn–xn–

.

Din et al. [] investigated the dynamics of a system of fourth-order rational difference
equations

xn+ =
αxn–

β + γ ynyn–yn–yn–
, yn+ =

αyn–
β + γxnxn–xn–xn–

.

To be motivated by the above studies, our aim in this paper is to investigate the qualitative
behavior of the following (k + )th-order systems of rational difference equations:

xn+ =
αxn–k

β + γ
∏k

i= yn–i
, yn+ =

αyn–k
β + γ

∏k
i= xn–i

, n = , , . . . , ()

where the parameters α, β , γ , α, β, γ and initial conditions x,x–, . . . ,x–k , y, y–, . . . , y–k
are positive real numbers, and

xn+ =
ayn–k

b + c
∏k

i= xn–i
, yn+ =

axn–k
b + c

∏k
i= yn–i

, n = , , . . . , ()

where the parameters a, b, c, a, b, c and initial conditions x,x–, . . . ,x–k , y, y–, . . . , y–k
are positive real numbers. This paper is a natural extension of [, , ].
Let us consider (k + )-dimensional discrete dynamical system of the form

xn+ = f (xn,xn–, . . . ,xn–k , yn, yn–, . . . , yn–k),

yn+ = g(xn,xn–, . . . ,xn–k , yn, yn–, . . . , yn–k), n = , , . . . ,
()

where f : Ik+ × Jk+ → I and g : Ik+ × Jk+ → J are continuously differentiable func-
tions and I , J are some intervals of real numbers. Furthermore, a solution {(xn, yn)}∞n=–k
of system () is uniquely determined by initial conditions (xi, yi) ∈ I × J for i ∈ {–k, –k +
, . . . , –, }. Along with system (), we consider the corresponding vector map F =
(f ,xn,xn–, . . . ,xn–k , g, yn, yn–, . . . , yn–k). An equilibrium point of () is a point (x̄, ȳ) that
satisfies

x̄ = f (x̄, x̄, . . . , x̄, ȳ, ȳ, . . . , ȳ),

ȳ = g(x̄, x̄, . . . , x̄, ȳ, ȳ, . . . , ȳ).

The point (x̄, ȳ) is also called a fixed point of the vector map F .

Definition  Let (x̄, ȳ) be an equilibrium point of system ().
(i) An equilibrium point (x̄, ȳ) is said to be stable if for every ε >  there exists δ > 

such that for every initial condition (xi, yi), i ∈ {–k, –k + , . . . , –, },
‖∑

i=–k(xi, yi) – (x̄, ȳ)‖ < δ implies ‖(xn, yn) – (x̄, ȳ)‖ < ε for all n > , where ‖ · ‖ is
the usual Euclidian norm in R

.
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(ii) An equilibrium point (x̄, ȳ) is said to be unstable if it is not stable.
(iii) An equilibrium point (x̄, ȳ) is said to be asymptotically stable if there exists η > 

such that ‖∑
i=–k(xi, yi) – (x̄, ȳ)‖ < η and (xn, yn) → (x̄, ȳ) as n→ ∞.

(iv) An equilibrium point (x̄, ȳ) is called a global attractor if (xn, yn) → (x̄, ȳ) as n→ ∞.
(v) An equilibrium point (x̄, ȳ) is called an asymptotic global attractor if it is a global

attractor and stable.

Definition  Let (x̄, ȳ) be an equilibrium point of the map

F = (f ,xn,xn–, . . . ,xn–k , g, yn, yn–, . . . , yn–k),

where f and g are continuously differentiable functions at (x̄, ȳ). The linearized system of
() about the equilibrium point (x̄, ȳ) is

Xn+ = F(Xn) = FJXn,

where

Xn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xn
xn–
...

xn–k
yn
yn–
...

yn–k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and FJ is the Jacobian matrix of system () about the equilibrium point (x̄, ȳ).

Lemma  [] Assume that Xn+ = F(Xn), n = , , . . . , is a system of difference equations
and X̄ is the fixed point of F . If all eigenvalues of the Jacobian matrix JF about X̄ lie inside
an open unit disk |λ| < , then X̄ is locally asymptotically stable. If one of them has norm
greater than one, then X̄ is unstable.

Lemma  [] Assume that Xn+ = F(Xn), n = , , . . . , is a system of difference equations
and X̄ is the equilibrium point of this system. The characteristic polynomial of this system
about the equilibrium point X̄ is P(λ) = aλn + aλn– + · · · + an–λ + an = , with real co-
efficients and a > . Then all roots of the polynomial P(λ) lie inside the open unit disk |λ|
if and only if 	k >  for k = , , . . . , where 	k is the principal minor of order k of the n× n
matrix

	n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a a a . . . 
a a a . . . 
 a a . . . 
...

...
. . .

...
   . . . an

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. ()
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Let us consider a system of difference equations

Xn+ =
(
A + B(n)

)
Xn, ()

where Xn is anm-dimensional vector, A ∈ Cm×m is a constant matrix, and B : Z+ → Cm×m

is a matrix function satisfying

∥∥B(n)∥∥ →  ()

as n→ ∞, where ‖ · ‖ denotes any matrix norm which is associated with the vector norm

∥∥(x, y)∥∥ =
√
x + y.

Proposition  (Perron’s theorem)[] Suppose that condition () holds. If Xn is a solution
of (), then either Xn =  for all large n or

ρ = lim
n→∞

(‖Xn‖
)/n ()

exists and is equal to the modulus of one of the eigenvalues of matrix A.

Proposition  [] Suppose that condition () holds. If Xn is a solution of (), then either
Xn =  for all large n or

ρ = lim
n→∞

‖Xn+‖
‖Xn‖ ()

exists and is equal to the modulus of one of the eigenvalues of matrix A.

2 On the system xn+1 =
αxn–k

β+γ
∏k

i=0 yn–i
, yn+1 =

α1yn–k
β1+γ1

∏k
i=0 xn–i

In this section, we shall investigate the qualitative behavior of system (). Let (x̄, ȳ) be an
equilibrium point of system (), then for α > β and α > β, system () has two positive
equilibrium points P = (, ), P = (A,B), where A = ( α–β

γ
)


k+ and B = ( α–β

γ
)


k+ .

To construct the corresponding linearized form of system (), we consider the following
transformation:

(xn,xn–,xn–, . . . ,xn–k , yn, yn–, . . . , yn–k) �→ (f , f, . . . , fn–k , g, g, . . . , gn–k), ()

where f = αxn–k
β+γ

∏k
i= yn–i

, f = xn, f = xn–, . . . , fn–k = xn–(k–) and g = αyn–k
β+γ

∏k
i= xn–i

, g = yn,
g = yn–, . . . , gn–k = yn–(k–). The Jacobian matrix about the fixed point (x̄, ȳ) under the
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transformation () is given by

FJ (x̄, ȳ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

  . . .  A B B . . . B B
  . . .     . . .  
...

...
. . .

...
...

...
. . .

...
...

...
  . . .     . . .  
C C . . . C C   . . .  D
  . . .     . . .  
...

...
. . .

...
...

...
. . .

...
...

...
  . . .     . . .  

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where A = α

β+γ ȳk+ , B = – αγ x̄ȳk

(β+γ ȳk+) , C = – αγ ȳx̄k

(β+γx̄k+)
and D = α

β+γx̄k+
.

Theorem  Let α < β and α < β, then every solution {(xn, yn)} of system () is bounded.

Proof It is easy to verify that

 ≤ xn ≤
(

α

β

)m+

x–k if n = (k + )m + ,

 ≤ xn ≤
(

α

β

)m+

x–k if n = (k + )m + ,

...

 ≤ xn ≤
(

α

β

)m+

x– if n = (k + )m + k,

 ≤ xn ≤
(

α

β

)m+

x if n = (k + )m + (k + ),

and

 ≤ yn ≤
(

α

β

)m+

y–k if n = (k + )m + ,

 ≤ yn ≤
(

α

β

)m+

y–k if n = (k + )m + ,

...

 ≤ yn ≤
(

α

β

)m+

y– if n = (k + )m + k,

 ≤ yn ≤
(

α

β

)m+

y if n = (k + )m + k + .

Take δ = max{x–k , . . . ,x} and δ = max{y–k , . . . , y}. Then  ≤ xn < δ and  ≤ yn < δ for
all n = , , , . . . . �

Theorem  The equilibrium point P of system () is locally asymptotically stable.
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Proof The linearized system of () about the equilibrium point (, ) is given by

Xn+ = FJ (, )Xn,

where

Xn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xn
xn–
...

xn–k
yn
yn–
...

yn–k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

E = FJ (P) = (eij)(k+)×(k+) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

  . . .  α
β

  . . .  
  . . .     . . .  
...

...
. . .

...
...

...
. . .

...
...

...
  . . .     . . .  
  . . .     . . .  α

β

  . . .     . . .  
...

...
. . .

...
...

...
. . .

...
...

...
  . . .     . . .  

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let λ,λ, . . . ,λk+ denote the k+ eigenvalues of matrix E. LetD = diag(d,d, . . . ,dk+)
be a diagonal matrix, where d = dk+ = , d+m = dk++m =  –mε, ≤m ≤ k, and

ε =min

{

k
,

k

(
 –

α

β

)
,

k

(
 –

α

β

)}
.

Clearly, D is invertible. Computing DED–, we obtain

DED– =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

  . . .  α
β
dd–

k+   . . .  
dd–

  . . .     . . .  
...

... . . .
...

...
...

. . .
...

...
...

  . . . dk+d–
k    . . .  

  . . .     . . .  α
β
dk+d–

k+
  . . .   dk+d–

k+  . . .  
...

...
. . .

...
...

...
. . .

...
...

...
  . . .     . . . dk+d–

k+ 

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We obtain the following two inequalities:

 < dk+ < dk < · · · < d,  < dk+ < dk+ < · · · < dk+,

http://www.advancesindifferenceequations.com/content/2013/1/354
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which implies that

dd–
 < , dd–

 < , . . . , dk+d–
k < ,

and

dk+d–
k+ < , dk+d–

k+ < , . . . , dk+d–
k+ < .

Furthermore,

α

β
dd–

k+ =
α

β
d–
k+ =

α

β


 – kε

< ,

and

α

β
dk+d–

k+ =
α

β
d–
k+ =

α

β


 – kε

< .

It is a well-known fact that E has the same eigenvalues as DED–. Hence, we obtain

max
≤m≤k+

|λm|

=
∥∥DED–∥∥

=max

{
dd–

 , . . . ,dk+d–
k ,dk+d–

k+, . . . ,dk+d
–
k+,

α

β
dd–

k+,
α

β
dk+d–

k+

}
< .

Hence, the equilibrium point P of system () is locally asymptotically stable. �

Theorem  The positive equilibrium point P of system () is unstable.

Proof The linearized system of () about the equilibrium point P is given by

Xn+ = FJ (P)Xn,

where

Xn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xn
xn–
...

xn–k
yn
yn–
...

yn–k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

http://www.advancesindifferenceequations.com/content/2013/1/354


Khan et al. Advances in Difference Equations 2013, 2013:354 Page 8 of 23
http://www.advancesindifferenceequations.com/content/2013/1/354

and

FJ (P) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

  . . .   L L . . . L L
  . . .     . . .  
...

...
. . .

...
...

...
. . .

...
...

...
  . . .     . . .  
M M . . . M M   . . .  
  . . .     . . .  
...

...
. . .

...
...

...
. . .

...
...

...
  . . .     . . .  

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where L = –( γ

γ
)


k+ (α–β)


k+ (α–β)

k
k+

α
and M = –( γ

γ
)


k+ (α–β)


k+ (α–β)

k
k+

α
. The characteristic

polynomial of FJ (P) is given by

P(λ) = λk+ – LM
[
λk + λk– + · · · + kλk+ + (k + )λk

+ kλk– + (k – )λk– + · · · + 
]
+ λk+ + . ()

From (), we have

	(k+)×(k+) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

–LM –LM –LM . . . 
 –LM –LM . . . 
 –LM –LM . . . 
...

...
. . .

...
   . . .  – LM

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. ()

It is clear that not all of 	(k+)×(k+) > . Therefore, by Lemma , the unique positive
equilibrium point (x̄, ȳ) = (( α–β

γ
)


k+ , ( α–β

γ
)


k+ ) is unstable. �

Theorem  Let α > β and α > β, and let {(xn, yn)} be a solution of system (). Then, for
i = , , . . . ,k, the following statements are true:

(i) If (xi, yi) ∈ (, ( α–β
γ

)


k+ )× (( α–β

γ
)


k+ ,∞), then

(xn, yn) ∈
(
,

(
α – β

γ

) 
k+

)
×

((
α – β

γ

) 
k+

,∞
)
.

(ii) If (xi, yi) ∈ (( α–β
γ

)


k+ ,∞)× (, ( α–β

γ
)


k+ ), then

(xn, yn) ∈
((

α – β

γ

) 
k+

,∞
)

×
(
,

(
α – β

γ

) 
k+

)
.

Proof It follows from induction. �

Theorem  Let α < β and α < β, then the equilibrium point P of system () is globally
asymptotically stable.

Proof For α < β and α < β, from Theorem , P is locally asymptotically stable. From
Theorem , every positive solution (xn, yn) is bounded, i.e.,  ≤ xn ≤ μ and  ≤ yn ≤ ν for

http://www.advancesindifferenceequations.com/content/2013/1/354
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all n = , , , . . . , where μ = max{x–k ,x–k+, . . . ,x–,x} and ν = max{y–k , y–k+, . . . , y–, y}.
So, it is sufficient to prove that {(xn, yn)} is decreasing. From system (), one has

xn+ =
αxn–k

β + γ
∏k

i= yn–i
≤ αxn–k

β
< xn–k .

This implies that x(k+)n+ < x(k+)n–k and x(k+)n+(k+) < x(k+)n+. Hence, the subsequences

{x(k+)n+}, {x(k+)n+}, . . . , {x(k+)n+k}, {x(k+)n+(k+)}

are decreasing, i.e., the sequence {xn} is decreasing. Also,

yn+ =
αyn–k

β + γ
∏k

i= xn–i
≤ αyn–k

β
< yn–k .

This implies that y(k+)n+ < y(k+)n–k and y(k+)n+(k+) < y(k+)n+. Hence, the subsequences

{y(k+)n+}, {y(k+)n+}, . . . , {y(k+)n+k}, {y(k+)n+(k+)}

are decreasing, i.e., the sequence {yn} is decreasing. Hence, limn→∞ xn = limn→∞ yn = .�

Theorem  Let α > β and α > β. Then, for a solution {(xn, yn)} of system (), the following
statements are true:

(i) If xn → , then yn → ∞.
(ii) If yn → , then xn → ∞.

2.1 Rate of convergence
We investigate the rate of convergence of a solution that converges to the equilibrium
point P of system ().
Assume that limn→∞ xn = x̄ and limn→∞ xn = ȳ. First we will find a system of limiting

equations for the map F . The error terms are given as

xn+ – x̄ =
k∑
i=

Ai(xn–i – x̄) +
k∑
i=

Bi(yn–i – ȳ),

yn+ – ȳ =
k∑
i=

Ci(xn–i – x̄) +
k∑
i=

Di(yn–i – ȳ).

Set en = xn – x̄ and en = yn – ȳ, one has

en+ =
k∑
i=

Aien–i +
k∑
i=

Bien–i, en+ =
k∑
i=

Cien–i +
k∑
i=

Dien–i,

where Ai =  for i ∈ {, , . . . ,k – },

Ak =
α

β + γ
∏k

i= yn–i
, B = –

αγ x̄yn–yn– · · · yn–k
(β + γ

∏k
i= yn–i)(β + γ ȳk+)

,

B = –
αγ x̄ȳyn–yn– · · · yn–k

(β + γ
∏k

i= yn–i)(β + γ ȳk+)
, B = –

αγ x̄ȳyn– · · · yn–k
(β + γ

∏k
i= yn–i)(β + γ ȳk+)

, . . . ,

http://www.advancesindifferenceequations.com/content/2013/1/354
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Bk– = –
αγ x̄ȳk–yn–k

(β + γ
∏k

i= yn–i)(β + γ ȳk+)
, Bk = –

αγ x̄ȳk

(β + γ
∏k

i= yn–i)(β + γ ȳk+)
,

C = –
αγȳxn–xn– · · ·xn–k

(β + γ
∏k

i= xn–i)(β + γx̄k+)
,

C = –
αγȳx̄xn–xn– · · ·xn–k

(β + γ
∏k

i= xn–i)(β + γx̄k+)
,

C = –
αγȳx̄xn– · · ·xn–k

(β + γ
∏k

i= xn–i)(β + γx̄k+)
, . . . ,

Ck– = –
αγȳx̄k–xn–k

(β + γ
∏k

i= xn–i)(β + γx̄k+)
, Ck = –

αγȳx̄k

(β + γ
∏k

i= xn–i)(β + γx̄k+)
,

Di =  for i ∈ {, , . . . ,k – } and Dk =
α

β + γ
∏k

i= xn–i
.

Taking the limits, we obtain limn→∞ Ai =  for i ∈ {, , . . . ,k – }, limn→∞ Ak = α

β+γ ȳk+ ,

limn→∞ Bi = – αγ x̄ȳk

(β+γ ȳk+) for i ∈ {, , . . . ,k}, limn→∞ Ci = – αγ ȳx̄k

(β+γx̄k+)
for i ∈ {, , . . . ,k},

limn→∞ Di =  for i ∈ {, , . . . ,k – } and limn→∞ Dk = α
β+γx̄k+

. Hence, the limiting sys-
tem of error terms at (x̄, ȳ) = (, ) can be written as

En+ = KEn, ()

where

En =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

en
en–
...

en–k
en
en–
...

en–k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

  . . .  α
β

  . . .  
  . . .     . . .  
...

...
. . .

...
...

...
. . .

...
...

...
  . . .     . . .  
  . . .     . . .  α

β

  . . .     . . .  
...

...
. . .

...
...

...
. . .

...
...

...
  . . .     . . .  

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which is similar to the linearized system of () about the equilibrium point (x̄, ȳ) = (, ).
Using proposition (), one has the following result.

Theorem Assume that {(xn, yn)} is a positive solution of system () such that limn→∞ xn =
x̄, and limn→∞ yn = ȳ, where (x̄, ȳ) = (, ). Then the error vector En of every solution of ()

http://www.advancesindifferenceequations.com/content/2013/1/354
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satisfies both of the following asymptotic relations:

lim
n→∞

(‖En‖
) 
n =

∣∣λFJ (x̄, ȳ)∣∣, lim
n→∞

‖En+‖
‖En‖ =

∣∣λFJ (x̄, ȳ)∣∣,

where λFJ (x̄, ȳ) are the characteristic roots of the Jacobian matrix FJ (x̄, ȳ) about (, ).

3 On the system xn+1 =
ayn–k

b+c
∏k

i=0 xn–i
, yn+1 =

a1xn–k
b1+c1

∏k
i=0 yn–i

In this section, we shall investigate the qualitative behavior of system (). Let (x̄, ȳ) be an
equilibrium point of system (), then system () has a unique equilibrium point (, ).
To construct the corresponding linearized form of system (), we consider the following
transformation:

(xn,xn–,xn–, . . . ,xn–k , yn, yn–, . . . , yn–k) �→ (f , f, . . . , fn–k , g, g, . . . , gn–k), ()

f = ayn–k
b+c

∏k
i= xn–i

, f = xn, f = xn–, . . . , fn–k = xn–(k–) and g = axn–k
b+c

∏k
i= yn–i

, g = yn, g = yn–, . . . ,
gn–k = yn–(k–). The Jacobian matrix about the fixed point (x̄, ȳ) under the transformation
() is given by

FJ (x̄, ȳ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A A . . . A A   . . .  B
  . . .     . . .  
...

...
. . .

...
...

...
. . .

...
...

...
  . . .     . . .  
  . . .  C D D . . . D D
  . . .     . . .  
...

...
. . .

...
...

...
. . .

...
...

...
  . . .     . . .  

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where A = – acȳx̄k

(b+cx̄k+) , B = a
b+cx̄k+ , C = a

b+c ȳk+
and D = – ac x̄ȳk

(b+c ȳk+)
.

Theorem  Let {(xn, yn)} be a positive solution of system (), then for every m ≥ , the
following results hold.

(i)  ≤ xn ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( ab )
m+( ab )

my–k if n = (k + )m + ,
( ab )

m+( ab )
my–k if n = (k + )m + ,

...
( ab )

m+( ab )
my– if n = (k + )m + k,

( ab )
m+( ab )

my if n = (k + )m + (k + ),
( aabb

)m+x–k if n = (k + )m + (k + ),
( aabb

)m+x–k if n = (k + )m + (k + ),
...
( aabb

)m+x– if n = (k + )m + (k + ),
( aabb

)m+x if n = (k + )m + (k + ).

http://www.advancesindifferenceequations.com/content/2013/1/354
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(ii)  ≤ yn ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( ab )
m( ab )

m+x–k if n = (k + )m + ,
( ab )

m( ab )
m+x–k if n = (k + )m + ,

...
( ab )

m( ab )
m+x– if n = (k + )m + k,

( ab )
m( ab )

m+x if n = (k + )m + (k + ),
( aabb

)m+y–k if n = (k + )m + (k + ),
( aabb

)m+y–k if n = (k + )m + (k + ),
...
( aabb

)m+y– if n = (k + )m + (k + ),
( aabb

)m+y if n = (k + )m + (k + ).

Lemma  Let aa
bb

< , then every solution {xn, yn}∞n=–k of system () is bounded.

Proof Assume that

λ =max

{
b
a

y–k ,
b
a

y–k+, . . . ,
b
a

y,x–k ,x–k+, . . . ,x
}
,

and

λ =max

{
b
a
x–k ,

b
a
x–k+, . . . ,

b
a
x, y–k , y–k+, . . . , y

}
.

Then from Theorem  one can easily see that  ≤ xn < λ and  ≤ yn < λ for all n =
, , . . . . �

Theorem  The equilibrium point (, ) of equation () is locally asymptotically stable.

Proof The linearized system of () about the equilibrium point (, ) is given by

Xn+ = FJ (, )Xn,

where

Xn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xn
xn–
...

xn–k
yn
yn–
...

yn–k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and

H = FJ (, ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

  . . .     . . .  a
b

  . . .     . . .  
...

...
. . .

...
...

...
. . .

...
...

...
  . . .     . . .  
  . . .  a

b
  . . .  

  . . .     . . .  
...

...
. . .

...
...

...
. . .

...
...

...
  . . .     . . .  

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let λ,λ, . . . ,λk+ denote the k+ eigenvalues of matrix E. LetD = diag(d,d, . . . ,dk+)
be a diagonal matrix, where d = dk+ = , d+m = dk++m =  –mε, ≤m ≤ k and

ε =min

{

k
,

k

(
 –

a
b

)
,

k

(
 –

a
b

)}
.

Clearly, D is invertible. Computing DHD–, we obtain

DHD– =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

  . . .     . . .  a
b dd

–
k+

dd–
  . . .     . . .  
...

... . . .
...

...
...

. . .
...

...
...

  . . . dk+d–
k    . . .  

  . . .  a
b
dk+d–

k+   . . .  
  . . .   dk+d–

k+  . . .  
...

...
. . .

...
...

...
. . .

...
...

...
  . . .     . . . dk+d–

k+ 

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Next, we have the following two inequalities:

 < dk+ < dk < · · · < d,  < dk+ < dk+ < · · · < dk+,

which implies that

dd–
 < , dd–

 < , . . . , dk+d–
k < ,

and

dk+d–
k+ < , dk+d–

k+ < , . . . , dk+d–
k+ < .

Furthermore,

a
b
dd–

k+ =
a
b
d–
k+ =

a
b


 – kε

< ,

and

a
b
dk+d–

k+ =
a
b
d–
k+ =

a
b


 – kε

< .
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Now H has the same eigenvalues as DHD–, we obtain that

max
≤m≤k+

|λm|

=
∥∥DHD–∥∥

=max

{
dd–

 , . . . ,dk+d–
k ,dk+d–

k+, . . . ,dk+d
–
k+,

a
b
dd–

k+,
a
b
dk+d–

k+

}
< .

Hence, the equilibrium point (, ) of system () is locally asymptotically stable. �

Theorem  Let a < b and a < b, then the equilibrium point (, ) of system () is globally
asymptotically stable.

Proof Assume that a < b and a < b. Then from Theorem  the equilibrium point (, )
of system () is locally asymptotically stable. Moreover, from Lemma  every positive
solution (xn, yn) is bounded, i.e.,  ≤ xn ≤ μ and  ≤ yn ≤ ν for all n = , , , . . . , where
μ =max{x–k ,x–k+, . . . ,x} and ν =max{y–k , y–k+, . . . , y}. Now, it is sufficient to prove that
(xn, yn) is decreasing. From system () one has

xn+ =
ayn–k

b + c
∏k

i= xn–i

≤ ayn–k
b

< yn–k .

This implies that x(k+)n+ < y(k+)n–k and x(k+)n+(k+) < y(k+)n+(k+).

yn+ =
axn–k

b + c
∏k

i= yn–i

≤ axn–
b

< xn–k .

This implies that

y(k+)n+ < x(k+)n–k and y(k+)n+(k+) < x(k+)n+(k+).

Hence, x(k+)n+(k+) < y(k+)n+(k+) < x(k+)n+ and y(k+)n+(k+) < x(k+)n+(k+) < y(k+)n+.
Hence, the subsequences

{x(k+)n+}, {x(k+)n+}, . . . , {x(k+)n+(k+)}

and

{y(k+)n+}, {y(k+)n+}, . . . , {y(k+)n+(k+)}

are decreasing. Therefore the sequences {xn} and {yn} are decreasing. Hence, limn→∞ xn =
limn→∞ yn = . �

http://www.advancesindifferenceequations.com/content/2013/1/354
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3.1 Rate of convergence
Assume that limn→∞ xn = x̄ and limn→∞ yn = ȳ. First we will find a system of limiting equa-
tions for system (). The error terms are given as

xn+ – x̄ =
k∑
i=

Ai(xn–i – x̄) +
k∑
i=

Bi(yn–i – ȳ),

yn+ – ȳ =
k∑
i=

Ci(xn–i – x̄) +
k∑
i=

Di(yn–i – ȳ).

Set en = xn – x̄ and en = yn – ȳ, then one has

en+ =
k∑
i=

Aien–i +
k∑
i=

Bien–i,

en+ =
k∑
i=

Cien–i +
k∑
i=

Dien–i,

where

A = –
acȳxn–xn– · · ·xn–k

(b + c
∏k

i= xn–i)(b + cx̄k+)
, A = –

acx̄ȳxn–xn– · · ·xn–k
(b + c

∏k
i= xn–i)(b + cx̄k+)

, . . . ,

Ak– = –
acx̄k–ȳxn–k

(b + c
∏k

i= xn–i)(b + cx̄k+)
, Ak = –

acx̄kȳ
(b + c

∏k
i= xn–i)(b + cx̄k+)

,

Bi =  for i ∈ {, , . . . ,k – }, Bk = a
b+c

∏k
i= xn–i

, Ci =  for i ∈ {, , . . . ,k – },

Ck =
a

b + c
∏k

i= yn–i
, D = –

acx̄yn–yn– · · · yn–k
(b + c

∏k
i= yn–i)(b + cȳk+)

,

D = –
acx̄ȳyn–yn– · · · yn–k

(b + c
∏k

i= yn–i)(b + cȳk+)
, . . . ,

Dk– = –
acx̄ȳk–yn–k

(b + c
∏k

i= yn–i)(b + cȳk+)
,

and Dk = – ac ȳȳk

(b+c
∏k

i= yn–i)(b+c ȳk+)
. Taking the limits, we obtain limn→∞ Ai = – acȳx̄k

(b+cx̄k+) for
i ∈ {, , . . . ,k}, limn→∞ Bi =  for i ∈ {, , . . . ,k – }, limn→∞ Bk = a

b+cx̄k+ , limn→∞ Ci = 

for i ∈ {, , . . . ,k – }, limn→∞ Ck = a
b+c ȳk+

, limn→∞ Di = – acx̄ȳk

(b+c ȳk+)
for i ∈ {, , . . . ,k},

So, the limiting system of error terms can be written as

En+ = KEn,

http://www.advancesindifferenceequations.com/content/2013/1/354
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where

En =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

en
en–
...

en–k
en
en–
...

en–k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

  . . .     . . .  a
b

  . . .     . . .  
...

...
. . .

...
...

...
. . .

...
...

...
  . . .     . . .  
  . . .  a

b
  . . .  

  . . .     . . .  
...

...
. . .

...
...

...
. . .

...
...

...
  . . .     . . .  

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which is similar to the linearized system of () about the equilibrium point (x̄, ȳ) = (, ).
Using proposition (), one has the following result.

Theorem Assume that {(xn, yn)} is a positive solution of system () such that limn→∞ xn =
x̄, and limn→∞ yn = ȳ, where (x̄, ȳ) = (, ). Then the error vector En of every solution of ()
satisfies both of the following asymptotic relations:

lim
n→∞

(‖En‖
) 
n =

∣∣λFJ (x̄, ȳ)∣∣, lim
n→∞

‖En+‖
‖En‖ =

∣∣λFJ (x̄, ȳ)∣∣,

where λFJ (x̄, ȳ) are the characteristic roots of the Jacobian matrix FJ (x̄, ȳ) about (x̄, ȳ) =
(, ).

4 Examples
In order to verify our theoretical results, we consider some interesting numerical examples
in this section. These examples show that the equilibrium point (, ) of both systems ()
and () is globally asymptotically stable.

Example  Consider system () with initial conditions x– = ., x– = ., x– = ., x– =
., x– = ., x– = ., x– = ., x– = ., x = ., y– = ., y– = ., y– = ., y– =
., y– = ., y– = ., y– = ., y– = ., y = .. Moreover, choose the parameters
α = ., β = , γ = , α = ., β = , γ = . Then system () can be written as

xn+ =
.xn–

 + 
∏

i= yn–i
, yn+ =

.yn–
 + 

∏
i= xn–i

, n = , , . . . , ()

http://www.advancesindifferenceequations.com/content/2013/1/354


Khan et al. Advances in Difference Equations 2013, 2013:354 Page 17 of 23
http://www.advancesindifferenceequations.com/content/2013/1/354

with initial conditions x– = ., x– = ., x– = ., x– = ., x– = ., x– = ., x– =
., x– = ., x = ., y– = ., y– = ., y– = ., y– = ., y– = ., y– = ., y– =
., y– = ., y = .. Moreover, in Figure , the plot of xn is shown in Figure a, the plot
of yn is shown in Figure b, and an attractor of system () is shown in Figure c.

Example  Consider system () with initial conditions x– = ., x– = ., x– = .,
x– = ., x– = ., x– = ., x– = ., x– = ., x– = ., x– = ., x– = ., x– =
., x– = ., x– = ., x– = ., x = ., y– = ., y– = ., y– = ., y– = .,
y– = ., y– = ., y– = ., y– = ., y– = ., y– = ., y– = ., y– = ., y– = .,
y– = ., y– = ., y = .. Moreover, choose the parameters α = , β = , γ = .,
α = , β = , γ = .. Then system () can be written as

xn+ =
xn–

 + .
∏

i= yn–i
, yn+ =

yn–
 + .

∏
i= xn–i

, n = , , . . . , ()

with initial conditions x– = ., x– = ., x– = ., x– = ., x– = ., x– = .,
x– = ., x– = ., x– = ., x– = ., x– = ., x– = ., x– = ., x– = ., x– = .,
x = ., y– = ., y– = ., y– = ., y– = ., y– = ., y– = ., y– = ., y– = .,
y– = ., y– = ., y– = ., y– = ., y– = ., y– = ., y– = ., y = .. Moreover, in
Figure , the plot of xn is shown in Figure a, the plot of yn is shown in Figure b, and an
attractor of system () is shown in Figure c.

Example  Consider system () with initial conditions x– = ., x– = ., x– = ., x– =
., x– = ., x– = ., x = ., y– = ., y– = ., y– = ., y– = ., y– = ., y– =
., y = .. Moreover, choose the parameters a = , b = , c = , a = , b = ,
c = . Then system () can be written as

xn+ =
yn–

 + 
∏

i= xn–i
, yn+ =

xn–
 + 

∏
i= yn–i

, n = , , . . . , ()

with initial conditions x– = ., x– = ., x– = ., x– = ., x– = ., x– = ., x = .,
y– = ., y– = ., y– = ., y– = ., y– = ., y– = ., y = .. Moreover, in Figure ,
the plot of xn is shown in Figure a, the plot of yn is shown in Figure b, and an attractor
of system () is shown in Figure c.

Example  Consider system () with initial conditions x– = ., x– = ., x– = .,
x– = ., x– = ., x– = ., x– = ., x– = ., x– = ., x– = ., x– = ., x– =
., x = ., y– = ., y– = ., y– = ., y– = ., y– = ., y– = ., y– = ., y– =
., y– = ., y– = ., y– = ., y– = ., y = .. Moreover, choose the parameters
a = , b = , c = , a = , b = , c = . Then system () can be written as

xn+ =
yn–

 + 
∏

i= xn–i
, yn+ =

xn–
 + 

∏
i= yn–i

, n = , , . . . , ()

with initial conditions x– = ., x– = ., x– = ., x– = ., x– = ., x– = .,
x– = ., x– = ., x– = ., x– = ., x– = ., x– = ., x = ., y– = ., y– =
., y– = ., y– = ., y– = ., y– = ., y– = ., y– = ., y– = ., y– = ., y– =
., y– = ., y = .. Moreover, in Figure , the plot of xn is shown in Figure a, the
plot of yn is shown in Figure b, and an attractor of system () is shown in Figure c.

http://www.advancesindifferenceequations.com/content/2013/1/354


Khan et al. Advances in Difference Equations 2013, 2013:354 Page 18 of 23
http://www.advancesindifferenceequations.com/content/2013/1/354

(a) Plot of xn for system ().

(b) Plot of yn for system ().

(c) An attractor of system ().

Figure 1 Plots for system (14).
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(a) Plot of xn for system ().

(b) Plot of yn for system ().

(c) An attractor of system ().

Figure 2 Plots for system (15).
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(a) Plot of xn for system ().

(b) Plot of yn for system ().

(c) An attractor of system ().

Figure 3 Plots for system (16).
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(a) Plot of xn for system ().

(b) Plot of yn for system ().

(c) An attractor of system ().

Figure 4 Plots for system (17).
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Conclusion
This work is a natural extension of [, , ]. In the paper, we have investigated the qual-
itative behavior of (k +)-dimensional discrete dynamical systems. Each system has only
one equilibriumpoint which is stable under some restriction to parameters. The lineariza-
tion method is used to show that equilibrium point (, ) is locally asymptotically stable.
The main objective of dynamical systems theory is to predict the global behavior of a sys-
tem based on the knowledge of its present state. An approach to this problem consists
of determining the possible global behaviors of the system and determining which initial
conditions lead to these long-term behaviors. In case of higher-order dynamical systems,
it is crucial to discuss global behavior of the system. Some powerful tools such as semi-
conjugacy and weak contraction cannot be used to analyze global behavior of systems ()
and (). In the paper, we prove the global asymptotic stability of equilibrium point (, )
by using simple techniques. We have carried out a systematical local and global stability
analysis of both systems. The most important finding here is that the unique equilibrium
point (, ) can be a global asymptotic attractor for systems () and (). Moreover, we have
determined the rate of convergence of a solution that converges to the equilibrium point
(, ) of systems () and (). Some numerical examples are provided to support our theo-
retical results. These examples are experimental verifications of theoretical discussions.
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