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Abstract
In this paper, we construct a new q-extension of Euler numbers and polynomials with
weight related to fermionic p-adic q-integral on Zp and give new explicit formulas
related to these numbers and polynomials.
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Throughout this paper Zp, Qp and Cp will respectively denote the ring of p-adic integers,
the field of p-adic rational numbers and the completion of algebraic closure of Qp. Let νp

be the normalized exponential valuation of Cp with |p|p = p–νp(p) = 
p .

In this paper, we assume that q ∈ Cp with | – q|p < p–


p– so that qx = exp(x logq) for
x ∈ Zp. The q-number of x is denoted by [x]q = –qx

–q . Note that limq→[x]q = x. Let d be a
fixed integer bigger than , and let p be a fixed prime number and (d,p) = . We set

Xd = lim←–N
Z/dpNZ, X∗ =

⋃
<a<dp
(a,p)=

(a + dpZp),

a + dpNZp =
{
x ∈ X | x≡ a

(
mod dpN

)}
,

where a ∈ Z lies in  ≤ a < dpN (see [–]).
Let C(Zp) be the space of continuous functions on Zp. For f ∈ C(Zp), the fermionic p-

adic q-integral on Zp is defined by Kim as

Iq(f ) =
∫
Zp

f (x)dμ–q(x) = lim
N→∞


[pN ]q

pN–∑
x=

f (x)(–q)x (see [–]).

As is well known, Euler polynomials are defined by the generating function to be


et + 

ext = eE(x)t =
∞∑
n=

En(x)
tn

n!
(see [–, , –])

with the usual convention about replacing En(x) by En(x). In the special case, x = ,
En() = En are called the nth Euler numbers.
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In [, , ], Kim defined the q-Euler numbers as follows:

E,q = , q(qE + )n + En,q =

⎧⎨
⎩[]q, if n = ,

, if n 	= ,
()

with the usual convection of replacing En by En,q. From (), we also derive

En,q =
[]q

( – q)n

n∑
l=

(
n
l

)
(–)l

 + ql+
(see [, ]).

By using an invariant p-adic q-integral on Zp, a q-extension of ordinary Euler polyno-
mials, called q-Euler polynomials, is considered and investigated by Kim [, , ]. For
x ∈ Zp, q-Euler polynomials are defined as follows:

En,q(x) =
∫
Zp

[x + y]nq dμ–q(y). ()

By (), the following relation holds:

En,q(x) =
n∑

k=

(
n
k

)
[x]n–kq qkxEk,q.

Recently, Kim considered the modified q-Euler polynomials which are slightly different
from Kim’s q-Euler polynomials as follows:

εn,q(x) =
∫
Zp

q–x[x + y]nq dμ–q(y) for n ∈N,

and he showed that

εn,q(x) =
[]q

( – q)n

n∑
l=

(
n
l

)
qxl

 + ql
()

(see []). In the special case, x = , εn,q() = εn,q are called the nth modified q-Euler num-
bers, and it is showed that

εn,q =
[]q

( – q)n

n∑
l=

(
n
l

)


 + ql
. ()

And in [], authors defined modified q-Euler polynomials with weight α ε
(α)
n,q(x) as fol-

lows:

ε(α)n,q(x) =
∫
Zp

q–x[x + y]nqα dμ–qα (y)

and proved that

ε(α)n,q(x) =
[]q

( – qα)n

n∑
l=

(
n
l

)
(–)l

qαl

 + qαl . ()
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In the special case, x = , ε(α)n,q() = ε
(α)
n,q are called the nth modified q-Euler numbers with

weight α, and it is showed that

ε(α)n,q =
[]q

( – qα)n

n∑
l=

(
n
l

)
(–)lqαl 

 + qαl

= []q
∞∑
m=

(–)m[m + x]nqα . ()

In this paper, we construct a new q-extension of Euler numbers and polynomials with
weight related to fermionic p-adic q-integral on Zp and give new explicit formulas related
to these numbers and polynomials.

1 A new approach of modified q-Euler polynomials
Let us consider the followingmodified q-Euler numbers:

ε̃n,q(x) =
∫
Zp

q–y
(
x + [y]q

)n dμ–q(y)

=
n∑
l=

(
n
l

)
xn–lεl,q =

n∑
l=

l∑
k=

(
n
l

)(
l
k

)
[]q

( – q)l
xn–l

 + qk
,

where

ε̃n,q() = εn,q =
[]q

( – q)n

n∑
l=

(
n
l

)


 + ql
. ()

Thus, by (),

( – q)nεn,q = []q
n∑
l=

(
n
l

)


 + ql
.

Consider the equation

∞∑
n=

( – q)nεn,q
tn

n!
= []q

∞∑
n=

n∑
l=

(
n
l

)


 + ql
tn

n!
= []q

( ∞∑
m=

tm

m!

)( ∞∑
l=


 + ql

tl

l!

)

= []qet
( ∞∑

l=


 + ql

tl

l!

)
.

Since

e(–q)xt
∞∑
n=

( – q)nεn,q
tn

n!
=

( ∞∑
l=

( – q)lxltl

l!

)( ∞∑
n=

( – q)nεn,q
tn

n!

)

=
∞∑
m=

( – q)m
m∑
n=

(
m
n

)
εn,qxm–n tm

m!

=
∞∑
m=

( – q)mε̃m,q(x)
tm

m!
()
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and

e(–q)xt[]qet
( ∞∑

l=


 + ql

tl

l!

)
= []qe((–q)x+)t

( ∞∑
l=


 + ql

tl

l!

)

= []q

( ∞∑
m=

(
( – q)x + 

)m tm

m!

)( ∞∑
l=


 + ql

tl

l!

)

= []q
∞∑
n=

n∑
l=

(
n
l

)
(( – q)x + )n–l

 + ql
tn

n!
, ()

by () and (), we get

( – q)nε̃n,q(x) = []q
n∑
l=

(
n
l

)
(( – q)x + )n–l

 + ql

= []q
n∑
l=

(
n
l

)


 + ql

n–l∑
j=

(
n – l
j

)
( – q)jxj.

Thus, we have the following result.

Theorem . For n ≥ ,

ε̃n,q(x) =
[]q

( – q)n

n∑
l=

(
n
l

)
(( – q)x + )n–l

 + ql

=
[]q

( – q)n

n∑
l=

n–l∑
j=

(
n
l

)(
n – l
j

)
( – q)j

 + ql
xj.

2 A new approach of q-Euler polynomials with weight α

Let us consider the followingmodified q-Euler polynomials with weight α:

ε̃(α)n,q(x) =
∫
Zp

q–y
(
x + [y]qα

)n dμ–qα (y)

=
n∑
l=

(
n
k

)
xn–lε(α)k,q =

n∑
k=

k∑
l=

(
n
k

)(
k
l

)
[]qα

( – q)n
(–)l

 + qα+l x
n–k ,

where

ε̃(α)n,q() = ε(α)n,q =
[]q

( – qα)n

n∑
l=

(
n
l

)
(–)lqαl

 + qαl . ()

Thus, by (), we have

(
 – qα

)n
ε(α)n,q = []q

n∑
l=

(
n
l

)
(–)lqαl

 + qαl .
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Consider the equation

∞∑
n=

(
 – qα

)n
ε(α)n,q

tn

n!
= []q

∞∑
n=

n∑
l=

(
n
l

)
(–)lqαl

 + qαl
tn

n!
= []q

( ∞∑
m=

tm

m!

)( ∞∑
l=

(–)lqαl

 + qαl
tl

l!

)

= []qet
( ∞∑

l=

(–qα)l

 + qαl
tl

l!

)
.

Since

e(–q
α )xt

∞∑
n=

(
 – qα

)n
ε(α)n,q

tn

n!
=

( ∞∑
l=

( – qα)lxltl

l!

)( ∞∑
n=

(
 – qα

)n
ε(α)n,q

tn

n!

)

=
∞∑
m=

(
 – qα

)m m∑
n=

(
m
n

)
ε(α)n,qx

m–n tm

m!

=
∞∑
m=

(
 – qα

)m
ε̃(α)m,q(x)

tm

m!
()

and

e(–q
α )xt[]qet

( ∞∑
l=

(–qα)l

 + qαl
tl

l!

)
= []qe((–q

α )x+)t

( ∞∑
l=

(–qα)l

 + qαl
tl

l!

)

= []q

( ∞∑
m=

((
 – qα

)
x + 

)m tm

m!

)( ∞∑
l=

(–qα)l

 + qαl
tl

l!

)

= []q
∞∑
n=

n∑
l=

(
n
l

)
(( – qα)x + )n–l

 + qαl

(
–qα

)l tn
n!
, ()

by () and (), we get

(
 – qα

)n
ε̃(α)n,q(x) = []q

n∑
l=

(
n
k

)
(( – qα)x + )n–l

 + qαl

(
–qα

)l

= []q
n∑
l=

(
n
l

)
(–qα)l

 + qαl

n–l∑
j=

(
n – l
j

)(
 – qα

)jxj.
Thus, we have the following result.

Theorem . For n ≥ ,

ε̃(α)n,q(x) =
[]q

( – qα)n

n∑
l=

(
n
l

)
(–qα)l(( – qα)x + )n–l

 + qαl

=
[]q

( – qα)n

n∑
l=

n–l∑
j=

(
n
l

)(
n – l
j

)
(–qα)l( – qα)j

 + qαl xj.

A systemic study of some families of the modified q-Euler polynomials with weight is
presented by using the multivariate fermionic p-adic integral on Zp. The study of these
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modified q-Euler numbers and polynomials yields an interesting q-analogue of identities
for Stirling numbers.
In recent years, many mathematicians and physicists have investigated zeta functions,

multiple zeta functions, L-functions, and multiple q-Bernoulli numbers and polynomials
mainly because of their interest and importance. These functions and polynomials are
used not only in complex analysis andmathematical physics, but also in p-adic analysis and
other areas. In particular, multiple zeta functions and multiple L-functions occur within
the context of knot theory, quantum field theory, applied analysis and number theory (see
[–]).
In our subsequent papers, we shall apply this p-adic mathematical theory to quantum

statistical mechanics. Using p-adic quantum statistical mechanics, we can also derive a
new partition function in the p-adic space and adopt this new partition function to quan-
tum transport theory which is based on the projection technique related to the Liouville
equation. We expect that a new quantum transport theory will explain diverse physical
properties of the condensed matter system.
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