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Abstract

In this paper, we present three new expansion formulas for the generalized
Hurwitz-Lerch zeta function. These expansions are obtained by using Taylor-like
expansions involving fractional derivatives. Finally, interesting special cases involving
the Apostol-Bernoulli polynomials and the Apostol-Euler polynomials are also given.
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1 Introduction

It is well known that the generalized Hurwitz-Lerch zeta function as well as its extended
version have many applications in various areas of mathematics and physics. In num-
ber theory, the Riemann and Hurwitz zeta functions are closely related to Dedekind
zeta functions and Artin L-functions, which play a central role in the discipline. In ad-
dition, the generalized Hurwitz-Lerch zeta functions, evaluated at negative integers, are
closely related to the Apostol-Bernoulli polynomials, the Apostol-Euler polynomials and
the Frobenius-Euler polynomials [1-3]. These functions are also connected to the gen-
eralized Fermi-Dirac functions and the generalized Bose-Einstein functions [1]. The gen-
eralized Fermi-Dirac and Bose-Einstein functions, which appear in quantum statistics,
quantum interference and in the theory of quantum entanglement, have been introduced
recently by Srivastava et al. [4]. Moreover, the generalized Hurwitz-Lerch zeta functions
have interesting applications in geometric function theory [5]; and finally, Gupta et al. [6]
investigated the generalized Hurwitz-Lerch zeta distribution and applied this new distri-
bution to reliability.

The generalized Hurwitz zeta function ¢ (s, a) is defined by [7, p.88 et seq.]

=1
t(sa)=> YT (Re(s) > ;a € C\ Zg; Zg = {0,-1,-2,...}), 1.1)
n=0
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where

{(s1)=t(s) =

1 1
»_1 é‘ (S, E) (12)

yields the celebrated Riemann zeta function ¢(s). The Riemann zeta function is contin-
ued meromorphically to the whole complex s-plane except for a simple pole at s = 1 with
residue 1.

The Hurwitz-Lerch zeta function ®(z,s, a) is defined, as in [7, p.121 et seq.], by

o0 Zn
O(z,s,a) = —_—
@5,4) ; (n+a)s
(a € C\ Zy;s € C when |z] <1;Re(s) >1 when |z| = 1). (1.3)
Clearly, we have the following relations:
CD(L S, ﬂ) = ((S, ﬂ) and q:)(l) S, 1) = é-(S). (1'4)

The Hurwitz-Lerch zeta function has the well-known integral representation

1 o] t_s—le—at
®O(z,8,a) = — —dt
(5, 4) I'(s) /0 1-zet

(Re(u) > 0;Re(s) > 0 when |z] <1 (z#1);Re(s) >1 when z = 1). (1.5)

Recently, Lin and Srivastava [8] investigated a more general family of Hurwitz-Lerch
r:9)(z,s,a) defined by

L,V

zeta functions. Explicitly, they introduced the function ®!

P9 (z,5,a) :=

P Z (V)an (tl +n)

(,u,e(C;a,ve(C\Za;p,a €R*;p <o whens,ze G

p =0 and s € C when |z| <1;0 =0 and Re(s — i + v) > 1 when |z| = 1), (1.6)
where (1), denotes the Pochhammer symbol defined, in terms of the gamma function, by

), = F(r):(;);c): AMA+1)---(A+n-1) (k=neN;LeC), 17)
1 (k =0;A € C\ {0}).

It is easily seen that

©0)(2,5,a) = ! o (z,5,a) = ®(z,5,a) (1.8)
and
o (z,5,0) = ¥, (z,5,a) _i(“?" G (L9)
~ n (n+a)
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The function @7 (z,s,4) is, in fact, a generalized Hurwith-Lerch zeta function investigated
by Goyal and Laddha [9, p.100, equation (1.5)]. Another family of generalized Hurwitz-
Lerch zeta functions is the one studied by Garg et al. [10], that is, ®; ;. (2, s, a) defined as
follows:

oo

CDA.M;U(Z’S’Q)._; W)unt (1 +a)

(k,ue@;v,aeC\Z(’);sethen |z| < 1;

Re(s + v — A —u) >1when |z] =1). (1.10)
Obviously, we see that
¢1,M;l(zi S, ﬂ) = q);(z; S, ﬂ). (111)

This family of Hurwitz-Lerch zeta functions will play an important role in the sequel.
The aim of this paper is to make use of three Taylor-like expansions involving frac-
tional derivatives to obtain some relations for the generalized Hurwitz-Lerch zeta func-
tion @7 (z,s,a). One of these Taylor-like expansions has been obtained by Osler [11] and
the two others, more recently, by Tremblay et al. [12, 13]. Finally, interesting special cases
of these new relations involving the Apostol-Bernoulli polynomials and the Apostol-Euler

polynomials are obtained.

2 Pochhammer contour integral representation for fractional derivative and a
new generalized Leibniz rule

The use of contour of integration in the complex plane provides a very powerful tool

in both classical and fractional calculus. The most familiar representation for fractional

derivative of order « of z”f(z) is the Riemann-Liouville integral [14—16] that is

DEf(z) = ﬁ /0 FE)EE -2 de, 1)

which is valid for Re(«) < 0, Re(p) > 1 and where the integration is done along a straight

line from O to z in the £-plane. By integrating by part m times, we obtain

m

an -
DiZf(e) = - D (). (2.2)
This allows to modify the restriction Re(«) < 0 to Re(«) < m [16]. Another used represen-
tation for the fractional derivative is the one based on the Cauchy integral formula widely
used by Osler [17-20]. These two representations have been used in many interesting re-
search papers. It appears that the less restrictive representation of fractional derivative

according to parameters is Pochhammer’s contour definition introduced in [21, 22].

Definition 2.1 Let f(z) be analytic in a simply connected region R. Let g(z) be regular
and univalent on R, and let g71(0) be an interior point of R, then if « is not a negative

integer, p is not an integer, and z is in R — {g71(0)}, we define the fractional derivative of
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Figure 1 Pochhammer’s contour.
order a of g(z)Pf(z) with respect to g(z) by
D5 ,g(2)f (2)
—ion 1 V2
_ e+ 0) [ S 03)
47 Sin(7TP)  J izt g1 (0)nz-g 1 (0)—F(a).Fa) (E) —g(2))**

For non-integers « and p, the functions g(£)? and (g(£) — g(z))™"! in the integrand have
two branch lines which begin respectively at & = z and & = g71(0), and both pass through
the point & = a without crossing the Pochhammer contour P(a) = {C; U C, U C3 U Cy4} at
any other point as shown in Figure 1. F(a) denotes the principal value of the integrand in
(2.3) at the beginning and ending point of the Pochhammer contour P(a) which is closed
on the Riemann surface of the multiple-valued function F().

Remark 2.2 In Definition 2.1, the function f(z) must be analytic at & = g71(0). However,
it is interesting to note here that we could also allow f(z) to have an essential singularity
at £ = g71(0), and equation (2.3) would still be valid.

Remark 2.3 The Pochhammer contour never crosses the singularities at £ = g7}(0) and
& =z in (2.3), then we know that the integral is analytic for all p and for all & and for z in
R - {g1(0)}. Indeed, the only possible singularities of Dg(z)g(z)pf (z) area = —1,-2,...and
p=0,£1,%2,... which can directly be identified from the coefficient of the integral (2.3).
However, integrating by parts N times the integral in (2.3) by two different ways, we can
show that « = -1,-2,...and p = 0,1,2,... are removable singularities (see [21]).

It is well known that [23, p.83, equation (2.4)]

“p_ rd+p) e

2 = Tlip _a)z (Re(p) > -1), (2.4)

but adopting the Pochhammer-based representation for the fractional derivative, this last
restriction becomes p not a negative integer. In view of Definition 1.6, the fractional deriva-

Page 4 of 13
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tive formula for the generalized Hurwitz-Lerch zeta function @Eﬁ'\f’ )z,s,a) with p = o [8,
p-730, equation (24)] is

DE' 21D (27, 5,a) = F((” )) ol0)(2,5,a) 2.5)

with o + ¢ — 1 not a negative integer.
A very interesting special case is obtained when setting v = o = 1, equation (2.5) reduces

to the following form:

1
&*(z,8,a) = —— D" 1247 (2, 5,a) (2.6)
. L(n) *

with ¢ not a negative integer.
As remarked by Lin and Srivastava [8], the function dDZ(z, s,a) is essentially a fractional
derivative of the classical Hurwitz-Lerch function ®(z,s,4). Many other interesting ex-

plicit representations for @}, (z,s, a) have been proven by Lin and Srivastava [8].

3 Fractional calculus theorems
In this section, we recall three important theorems related to fractional calculus that will
play central roles in this work. These theorems are Taylor-like expansions in terms of dif-

ferent types of functions. First of all, we state the theorem obtained in 1971 by Osler [11].

Theorem 3.1 Let f(z) be an analytic function in a simply connected region R. Let o, y
be arbitrary complex numbers and 0(z) = (z — z9)q(z) with q(z) be a regular and uni-
valent function without zero in R. Let a be a positive real number and K = {0,1,...,
[c], [c] being the largest integer not greater than c}. Let b, zy be two points in R such that
b # zy, and let w = exp(2wi/a), then the following relationship

Zc‘la)—ykf 9(z)a) ))

keK

_ Z D" [f(2)6 (2)[(z — 20)/60/(2)] Y ]| o=y O (2) "
I'(ecn+y +1)

(3.1)

holds true for |z — zo| = |zo].

In particular, if 0 < ¢ <1 and 6(z) = (z — 2p), then k = 0 and the formula (3.1) reduces to

e DI (@)legy (2 20)™
J@=c Z T(en+y +1) ' (32)

n=—00
This last formula is usually called the Taylor-Riemann formula, and it has been studied in
several papers [19, 24-27].

Recently, Tremblay et al. [13] obtained the power series of an analytic function f(z) in

terms of the rational expression (=2

), where z; and z; are two arbitrary points inside the

region of analyticity R of f(2). In particular, they proved the next theorem.
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Theorem 3.2 (i) Let c be real and positive, and let = ¥/, (ii) Let f(z) be analytic in
the simply connected region R with z; and z, being interior points of R. (iii) Let the set of
curves {C(t) | 0 <t <r}, C(t) C R, defined by

C(t) = CUO U C(t) = {z] |Melz1,2052) | = |Me(21,225 (21 + 22)/2) |}, (3.3)
where
Me(z1,2232) = [z = (21 + 22)/2 + t{z1 — 22)/2] [z = (21 + 22)12 = tz1 — 25)12], (3.4)

which are lemniscates of Bernoulli type with center located at (z1 + z2)/2 and with double-
loops (as seen in Figure 2); one loop Ci(t) leads around the focus point (z1 +z2)/2 + t(z1 —2)/2
and the other loop Cy(t) encircles the focus point (z1 + z3)12 — t(z1 — 23)/2, for each t such
that 0 <t <r. (iv) Let (z — z1)(z — 22))* = exp{A In(0((z — z1)(z — 22)))} denote the principal
branch of that function which is continuous and inside C(r), cut by the respective two branch
lines L. defined by

{zlz=(z1+22)[2 £ t(z1 — 22)/2} for0<t<]1,
L= (3.5)
{z|z=(z1 +22)/2 L it(zy —22)/2} fort<O

suchthatIn((z—z1)(z—2z2)) is real where ((z—z1)(z—2z2)) > 0. (v) Let f (z) satisfy the conditions
of Definition 2.1 for the existence of the fractional derivative of (z — z,)°f (z) of order a for
z€ R—{L,UL_}, noticed by D7 , (z—z)’f(z), where o« and p are real or complex numbers.
(vi) Let K = {k | k € N and arg(A(z1,22, (21 + 22)/2)) < arg(Ay(z1, 22, (21 + 22)/2)) + 27wk/a <
arg(Ae(z1,22, (z1 + 22)/2)) + 27 }. Then, for arbitrary complex numbers w, v, y and for z on
Ci(1) defined by & = 252 + 2521 + e, - <0 < 1, we have

oM (9920 (@ (B (D)0") - 21)" (97N (P (2)) - 20)"

keK (21 - 22)
_ e Dsin((u + cn + y)m)Do 0 (2 — )Y T (2)] oy S (3.6)
— sin((u —c+y)m)I(l-v+cn+y) ’ '

where ¢(z) = (Z2).

z-z9

The case 0 < ¢ <1 reduces to

@)z —21)" (2 - 2)"

(21— 22)

mc (n+1)

B Z )sin((u + cn + y)m)
s1n((u —c+y)m)FA-v+en+y)

_ cn+y
<z z ) ' (3.7)
2=2 zZ—2)

Finally, in 2007, Tremblay and Fugére [12] obtained the power series of an analytic func-

x D;l);rzcwry (Z _ Zz)u+cn+y—lf(z)

tion f(z) in terms of an arbitrary function (z — z;)(z — z;), where z; and z, are two arbitrary
points inside the analyticity region R of f(z). Explicitly, they found the following relation-
ship.
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Figure 2 Multi-loops contour.

Theorem 3.3 Assuming the assumptions of Theorem 3.2, the following expansion

chaﬂ’k[f(zl +Z2+JA_k><zz—zl +JA_k)“(z1—Z2 +JA_k)ﬁ

keK 2 2 2

_ ein@=p) sin((a + ¢ — y)m) <zl +2y — \/A_k)
sin((8 + ¢ —y)m) 2
< (22—Zl_x/A—k)a(Z1—Zz—\/A_k)ﬁ:|
2 2

~ nd sin((B —cn—y)m) —imc(n+l) cn+
- Z sin((B —c—y)m) ‘ e

n=-00

D" [(2 = 22)P o N (i) ™ 0 @) ()]s

Fl-a+cn+y) ’ (3.8)
where
Ak =(z1-2)* +4V(0(2)0"), (3.9)
V(z) = iD;-l (q(2)7") =02 /7, (3.10)
1
0(z) = (z - 21)(z - 22)q((z — 21)(z — 22)), (3.11)
holds true.

As a special case, if weset 0 < ¢ <1, g(z) =1 (6(2) = (z — z21)(z — 22)) and z, = 0 in (3.8),
we obtain

f(Z) = CZ_ﬂ (Z - Zl)_a Z S;Ef((gg_-}_ccn_—yy)::;) einc(n+1) [Z(Z _ Zl)]cn+y

n=-00

D—o/ +cn+y

—gprl - . 3.12
x F(l—a+cn+y)z @+ w-2)f) 2=2 (3.12)

w=z
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4 Main expansions involving the generalized Hurwitz-Lerch zeta function
<I>",;(z, s,a)

In this section, we present and prove three different expansion formulas involving the

generalized Hurwitz-Lerch zeta functions obtained from Theorem 3.1 to Theorem 3.3.

Also, the conditions of existence are explicitly given for each expansion.

Theorem 4.1 Assuming the assumptions of Theorem 3.1, the following expansion holds
true for the generalized Hurwitz-Lerch zeta function @7, (z,s, a):

(20)~"(z — 20)™"
Z,S,ﬂ) =C Z F(CVI+1)F(1 )q)p.l Cn(ZO;Sxa)

(,ueC;ae(C\Za;se(C) (4.1)
for z such that |z — zo| = |20l |2| <1 and |zo| < 1.

Proof Setting f(z) = ®},(z,5,a) in Theorem 3.1 with b=y =0, 0 <c<1and 0(z) = z - 2o,
we have

=\ DY"®% (2,8, a) 2=z (2 — 20)”"

z,s a)=c Z ) (4.2)

for zy # 0 and z such that |z — zg| = |z¢].
Using relation (2.4), we find

[o¢]
DIV @sally = DY Y e
. zZ=z

k=0
ek TA+k)zg
N k' T(A+k—-cn)k+a)

k=0

"0 u(z0.5.0) (4.3)
I'(l-cn) ’ ’

Combining (4.2) and (4.3) yields (4.1). With the help of (1.6), we see that equation (4.1)
holds true if it satisfies the conditions of Theorem 3.1 as well as the following conditions:
|z| <1, |20l <1, n € C, s € C, a € C\ Z;. Moreover, the condition 1 — cn € C\ Z; is now

unnecessary because of the presence of the term O

F(l cn)’

Theorem 4.2 Assuming the hypotheses of Theorem 3.2, the following expansion holds true
Jor the generalized Hurwitz-Lerch zeta function ) (z,s,a):
2, e gin((a + en + y)m)C o+ cn+ )
Dl (z,5,a) = cz%(z—z1) "2 Z -
! < sin((@ —c+y)m) 1 -v+en+y)(e+v)

n=—

-2 cn+y
X cbu,ozwmy;aw(zl,sy ﬂ) 2

(/,L,v,)/,OlE(C;a,Ol+CVI+)/E(C\Z(_);SE(C) (4.4)

Jorzon C\(1) (defined by z=% + 3v/1+e", -1 <0 <7), 270, |z| <1and |z| < 1.

Page 8 of 13
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Proof Taking f(z) = ) (z,s,a) in Theorem 3.2 with z; =0, © = and 0 < ¢ <1 gives

[e¢]

@l (z,5a) =clz—z1)"2"z Z
n

=—00

e gin((a + cn + y)m)

sin((c —c+y)m)FA-v+cn+y)

_ cn+y
<Z Zl) . (4.5)
z=z1 z

With the help of relations (2.4) and (1.10), we have

x Dz—v+cn+yza+cn+y—1 q)z(z’ s, ﬂ)

—v+cnty o+cn+y—1 g%
D, Yz 4 @M(Z,S,ﬂ)lzzq

o (M)k D;V+C"+Vzk+a+cn+y—l
k! (a+k)s

k=0 z=z21

= oY = (/’L)k 1_‘(C("'C”l+]/+k) Zlf

=2 R -
pry k! Fa+v+k) (a+k)

~ a D@ +cn+y)

=z F(Ol + \)) A,a+cn+y;a+v(zl,s, ﬂ), (46)

Combining (4.5) and (4.6) gives (4.4). Using (1.6) and (1.10), we find that equation (4.4)

holds true if it satisfies the conditions of Theorem 3.2 as well as the following conditions:

Izl <1, |z1] <1, w,v, v, € C, s € C, a € C\ Z;. Moreover, the condition o + v € C\ Zj is
1

now unnecessary because of the presence of the term )’ but we must add the condition

a +cn+y € C\ Z; because of the presence of the term I'(« + ¢ + y). O

Theorem 4.3 Assuming the hypotheses of Theorem 3.3, the following expansion holds true

Jfor the generalized Hurwitz-Lerch zeta function ®,(z,s, a):

sin((8 — cn — y)m)elmetD

sin((B+c—y)r)Fl-a+cn+y)

o0
7 (z,5,a) = cz P (z - zl)“"“’zfm‘_zm_zy_1 Z
n=—00
(B —cn—y)lz(z —z1)]"
I'B+a-2cn-2y)

|:(Z - Zl)q)u,ﬁ—cn—y;aJrﬂ—ch—Zy (z1,8,a)

(f-cn-y) 21D (z1,8,a)
((X N ,8 —ocn — 2}/) 1% 1+ B—cn—y;l+a+p-2cn—2y \#15 9>
(1, B, v, €Cia,B—cn—y € C\ Zy;s € C) 4.7)

Jorzon C\(1) (defined by z=% + 3v/1+e", -1 <0 <7), 270, |z| <land |z < 1.

Proof Putting f(z) = CD;(z, s,a) in Theorem 3.3 with z; =0, 0<c¢c <1, g(z) =1 and 0(z) =
(z—z1)(z — z) yields

o0 .
— — Sll’l((ﬂ —cn— )/)7T) cn+
d* s,a) = B, _ o Imc(n+l) _ 14
szs,a)=cz(z-2) ; T — [2(z—21)]
D—a+cn+y
N E—— e P 21)®),(z,5,a) . (4.8)

Frl-a+cn+vy) z=2
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With the help of relations (2.4) and (1.10), we have

D;a+cn+)/zf5—6n—}/—l(z +w— ZI)CDZ (Z,S, 6{)| 7=z
w=z
= DT T D% (2,85, 8) | mgy + (2= 2) DL TN TIDE (2,5,a) ey

_ Zﬂ+0¢—2cn—2y F(l +B—cn— )/) ©
! Frl+B+a-2cn-2y) ol+ B—cn—y;l+p+a—2cn-2y

(Zly S, ﬂ)

Bra—2cn-2y-1 F(ﬁ —n— )’)
+(z-21)7
I'(B+a-2cn—-2y)

q)u,ﬂ—cn—y;ﬂ+a—2cn—2y (z1,8,a). (4.9)

Combining (4.8) and (4.9) gives (4.7). Using (1.6) and (1.10), we find that equation (4.7)
holds true if it satisfies the conditions of Theorem 3.3 as well as the following conditions:
|z| <1, |z1] <L, w, B, v, € C,s € C,a € C\ Z;. Moreover, the conditions o + § —2cn—2y €
C\Zj and1+a+B—2cn-2y € C\Z; are now unnecessary because of the presence of the

a+/3—126n—2y 3 but we must add the condition 8 —cn—y € C\ Z;

terms i i and ¥

1
l+a+p-2cn-2y
because of the presence of the term I'(8 — cn — y). O

5 Special cases

This section is devoted to special cases of Theorem 4.1 to Theorem 4.3. We first recall
definitions of Apostol-Bernoulli and Apostol-Euler polynomials and their connections to
the generalized Hurwitz-Lerch zeta function @7 (z,s,4). Next, we give some expansion

formulas involving these polynomials.

Definition 5.1 The generalized Apostol-Bernoulli polynomials B(z; 1) are defined, for
A,z € C, by the following generating function [28, 29]:

t o [o¢] t”
- - (@) (.
(Aet—1> o?t — ;Bn (Z,)»)E, |t+log(k)| <2

(@eC ifx=LaeN,n>a,if 1 #1). (5.1)

Definition 5.2 The generalized Apostol-Euler polynomials £ (z; 1) are defined, for A, o
and z € C, by the following generating function [30]:

2 )a S gl
— ) # = ZE,,“ (z;A)—, ‘t + log(k)| <. (5.2)
(ke‘ +1 e n!

Recently, Bayad and Chikhi [1] established the following relationship between the
Apostol-Euler polynomials EY(z1) and the generalized Hurwitz-Lerch zeta function

CD:; (z,8,a).

Theorem 5.3 Let A be a complex number such that |\| <1and , # -1. Let u and z be two
complex numbers such that Re(u) > 0 and Re(z) > 0, then for all non-negative integers n,

we have

EW(z 1) = 2" D7 (-1, —n,2). (5.3)
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From the generating function of Apostol-Euler polynomials (5.2), we can find, after sim-
ple calculations, the following relationship between the Apostol-Euler polynomials and

the Apostol-Bernoulli polynomials:

l
BY(z;1) = 11 <';) <‘71> EV (z-2) (eNgn=I). (5.4)

Thus, combining (5.4) and Theorem 5.3, we obtain the next connection between the
Apostol-Bernoulli polynomials B (z; A) and the generalized Hurwitz-Lerch zeta function
7 (z,5,a)

BO(z2) = 11(7)(_1)’¢7(A,l— n,z) (IA =LA #1Re(z) > 031 € Nosn = ). (5.5)

Now let us shift our focus to some special cases of Theorems 4.1, 4.2 and Theorem 4.3

given in the forms of corollaries.

Corollary 5.4 Assuming the assumptions of Theorem 4.1, the following expansion holds
true for the Apostol-Bernoulli polynomials BY(z1):

-y —ck ck
YT KA VIR (20)™ (A — zo) 1) B
B, (z; 1) cl.(l>( 1) E —F(ck T =0 ;1 (20,0 - 1n,2)

k=—00

(0<c§1;l€N0;Re(z)>0;n€N;n2l) (5.6)
for z such that | ) — zo| = |zo|, |A| <1 and |zo| < 1.

Proof Making the substitutions =/ ({ € Ng),s=[-n(neN),a=z (Re(z) >0),z= 1
(A € C) in Theorem 4.1 and with the use of (5.5), the result follows. O

Corollary 5.5 Assuming the assumptions of Theorem 4.2, the following expansion holds
true for the Apostol-Bernoulli polynomials BY (z1):

Sl ic(k+1

BLZ)(Z;)») =cl! (7) (~D)'A*(n - 2) Z e

sin((o — ¢+ )m)(a + v)

)sin((er + ¢k + y)m)

k=—00

Mo +ck+y) A=z \ &
ch,Ot+Ck+]/;Ot+U(le l- n, Z) Y

« TR Tr
Frl-v+ck+y)
(0<c§1;leNo;v,y,a € C;Re(z) > 0;

a+cn+ye(C\Z6;neN;nZl) (5.7)
Jor x on C\(1) (defined by » = % + ZFv/1+e, -1 <0 <), L #0, |A| <1and |z| <1.

Proof Settingu =1(l € Ny),s=[-n(neN),a=z(Re(z) >0),z=1 (r € C) in Theorem 4.2
and using (5.5), the result follows. O
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Corollary 5.6 Assuming the assumptions of Theorem 4.3, the following expansion holds

true for the Apostol-Euler polynomials EW(zA):

EW (1) = 2 (=A) P (<h — zy) 0t e

o sin((B-ck—y)m) T(B-ck—y)e™ DA +2)]*
Z sin

= sin((B+c—y)r) T(B+a—-2ck-2y)F1-—a+ck+y)

X Z1_20k |:_()‘ + zl)q)//.,ﬁ—ck—y;aﬂS—ch—Zy (ZI: -n, Z)

(B-ck-y)
(@ + B —2ck-2y)

21 cbu,1+ﬂ—ck—y;1+a+ﬂ—2ck—2y (z1,—n, Z):|

(Re(,u,) >0;8,7,a € CGRe(a) >0, -cn—y e C\Zy;ne N) (5.8)

Sor =1 on C\(1) (defined by A = 5 — Z~/1+e?, - <6 <7), L #0, [A| <1and |z| < 1.

Proof Replacing z by -1 (A € C), s by —n (n € N), a = z (Re(z) > 0) in Theorem 4.3 and
appealing to (5.3) gives the result. O
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