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Abstract
By using the generalized Borsuk theorem in coincidence degree theory, we prove the
existence of periodic solutions for the p-Laplacian neutral functional differential
system.
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1 Introduction
In recent years, the existence of periodic solutions for the Rayleigh equation and the Lié-
nard equation has been studied (see [–]). By using topological degree theory, some re-
sults on the existence of periodic solutions are obtained.
Motivated by the works in [–], we consider the existence of periodic solutions of the

following system:

d
dt

φp
[(
x(t) –Cx(t – τ )

)′] + d
dt

gradF
(
x(t)

)
+ gradG

(
x(t)

)
= e(t), (.)

where F ∈ C(Rn,R), G ∈ C(Rn,R), e ∈ C(R,Rn) are periodic functions with period T ; C =
[cij]n×n is an n×n symmetricmatrix of constants, τ ∈ R is a constant. φp : Rn → Rn is given
by

φp(u) = φp(u, . . . ,un) :=
(|u|p–u, . . . , |un|p–un)T ,  < p < ∞.

Theφp is a homeomorphismofRn with the inverseφq. By using the theory of coincidence
degree, we obtain some results to guarantee the existence of periodic solutions. Even for
p = , the results in this paper are also new.
In what follows, we use 〈·, ·〉 to denote the Euclidean inner product in Rn and | · |p to

denote the lp-norm in Rn, i.e., |x|p = (
∑n

i= |xi|p)/p.
The norm in Rn×n is defined by ‖A‖p = sup|x|ρ=,x∈Rn |Ax|p.
The corresponding Lp-norm in Lp([,T],Rn) is defined by

‖x‖p =
( n∑

i=

∫ T



∣∣xi(t)∣∣p dt
) 

p

=
(∫ T



∣∣x(t)∣∣pp dt
) 

p
,
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and the L∞-norm in L∞([,T],Rn) is

‖x‖∞ = max
≤i≤n

‖xi‖∞,

where ‖xi‖∞ = supt∈[,ω] |xi(t)| (i = , . . . ,n).
LetW =W ,p([,T],R] be the Sobolev space.

Lemma . (See []) Suppose u ∈W and u() = u(T) = , then

‖u‖p ≤
(
T
πp

)∥∥u′∥∥
p,

where

πp = 
∫ (p–)/p



ds
( – sp

p– )/p
=
π (p – )/p

p sin(π
p )

.

In order to use coincidence degree theory to study the existence of T-periodic solutions
for (.), we rewrite (.) in the following form:

{
(x(t) –Cx(t – τ ))′(t) = φq(y(t)),
y′(t) = d

dt gradF(x(t)) – gradG(x(t)) + e(t).
(.)

If z(t) =
( x(t)
y(t)

)
is a T-periodic solution of (.), x(t) must be a T-periodic solution of (.).

Thus, the problem of finding aT-periodic solution for (.) reduces to finding one for (.).
Let CT = {x ∈ C(R,Rn) : x(t + T) ≡ x(t)} with the norm ‖x‖∞ =max≤i≤n ‖xi‖∞, X = Z =

{z = ( x(·)
y(·)

) ∈ C(R,Rn) : z(t + T) ≡ z(t)} with the norm ‖z‖ = max{‖x‖∞,‖y‖∞}. Clearly, X
and Z are Banach spaces.
Denote the operator A by

A : CT → CT , (Ax)(t) = x(t) –Cx(t – τ ).

Meanwhile, let

L :DomL ⊂ X → Z, (Lz)(t) = z′(t) =

(
(Ax)′(t)
y′(t)

)
,

N : X → Z,

(Nz)(t) =

(
φq(y(t))

– d
dt gradF(x(t)) – gradG(x(t)) + e(t)

)
:=H(z, t).

It is easy to see that KerL = Rn, ImL = {z ∈ Z :
∫ T
 z(s)ds = }. So, L is a Fredholm oper-

ator with index zero. Let P : X →KerL and Q : Z → ImQ be defined by

Pu =

T

∫ T


u(s)ds, u ∈ X;

Qv =

T

∫ T


v(s)ds, v ∈ Z,

and let Kp denote the inverse of L|KerP∩DomL.
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Obviously, KerL = ImQ = Rn and

(Kpz)(t) =

(
(A–Fx)(t)
(Fy)(t)

)
, (.)

where z = (xT (·), yT (·))T ∈ Z, (Fh)(t) =
∫ t
 h(s)ds –


T

∫ T


∫ t
 h(s)dsdt, h ∈ CT .

From (.), one can easily see that N is L-compact on �̄, where � is an open bounded
subset of X.

Lemma . (See []) Suppose that λ,λ, . . . ,λn are eigenvalues of the matrix C. If |λi| = ,
∀i ∈ {, , . . . ,n}, then A has a continuous bounded inverse A– with the following relation-
ships:
() ‖A–u‖∞ ≤ (

∑n
i=


|–|λi|| )‖u‖∞, ∀u ∈ CT ;

() ‖A–u‖pp dt ≤ σ‖u‖pp dt, ∀u ∈ CT , p ≥ , where

σ =

⎧⎪⎪⎨
⎪⎪⎩
maxi∈{,,...,n}{ 

|–|λi|| }, p = ,
(
∑n

i=


|–|λi||
p
–p

)(–p)/, p ∈ [, ),

(
∑n

i=


|–|λi||q )
p/q, p ∈ (, +∞),

where q is a constant with /p + /q = ;
() Ax′ = (Ax)′, ∀x ∈ C′

T .

In the proof of our results on the existence of periodic solutions, we use the following
generalized Borsuk theorem in coincidence degree theory of Gaines and Mawhin [].

Lemma . Let X and Z be real normed vector spaces. Let L be a Fredholm mapping of
index zero. � is an open bounded subset of X and � is symmetric with respect to the origin
and contains it. Let Ñ : �̄ × [, ]→ Z be L-compact and such that
(a) Ñ(–x, ) = –Ñ(x, ), ∀x ∈ �̄,
(b) Lx = Ñ(x,λ), ∀x ∈DomL∩ ∂�.

Then, for every λ ∈ [, ], the equation Lx = Ñ(x,λ) has at least one solution in �.

2 Main results
Theorem . Suppose that the matrix C satisfies the conditions of Lemma . and that
there exist constants a > , b > , c≥  and α >  such that
(H) yT ∂F(x)

∂x y≥ a|y| or yT ∂F(x)
∂x y≤ –a|y|, ∀x, y ∈ Rn;

(H) 〈y,gradG(x)〉 ≥ b|y|αα – c, ∀x, y ∈ Rn.
Then equation (.) has at least one T-periodic solution for  < p ≤ .

Proof For any λ ∈ [, ], let

Ñ(z,λ)(t) =
 + λ


H(z, t) –

 – λ


H(–z, t).

Consider the following parameter equation:

(Lz)(t) = Ñ(z,λ)(t), λ ∈ [, ]. (.)

http://www.advancesindifferenceequations.com/content/2013/1/367
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Let z(t) =
( x(t)
y(t)

)
be a possible T-periodic solution of (.) for some λ ∈ [, ], then x = x(t)

is a T-periodic solution of the following system:

(
φp

((
Ax′)(t)))′ +

 + λ


d
dt

gradF
(
x(t)

)
–
 – λ


d
dt

gradF
(
–x(t)

)
+
 + λ


gradG

(
x(t)

)
–
 – λ


gradG

(
–x(t)

)
= λe(t). (.)

Noticing that x(t) is a T-periodic solution, we have

–
∥∥Ax′∥∥p

p =
∫ T



〈
Ax,

(
φp

(
Ax′))′〉dt. (.)

Multiplying the two sides of (.) by (Ax)(t) and integrating them on the interval [,T],
by (.) and (H)-(H), we obtain

–
∥∥Ax′∥∥p

p + a‖Ax‖ + b‖Ax‖α
α – cT ≤ ‖e‖β‖Ax‖α , where


α
+


β
= . (.)

On the other hand,

∫ T



〈
Ax′,

[
φp

(
Ax′)]′〉dt = .

So, multiplying the two sides of (.) by (Ax′)(t) and integrating them on the interval
[,T], by (H)-(H), we get

a
∥∥Ax′∥∥

 – cT ≤ a‖Ax‖ + b‖Ax‖α
α – cT ≤ ‖e‖

∥∥Ax′∥∥
.

Furthermore, we have

∥∥Ax′∥∥
 ≤

√
cT
a

+
‖e‖
a

+
‖e‖
a

:= R.

It is obvious that there exist c >  and c >  such that

c|x| ≤ |x|p ≤ c|x|, x ∈ Rn.

Thus,

∥∥Ax′∥∥p
p =

∫ T



∣∣(Ax′)(t)∣∣pp dt
≤ cp

(∫ T



∣∣Ax′(t)
∣∣
 dt

)p/

T (–p)/

≤ (cR)pT (–p)/ := R, (.)

where  < p≤ .
From (.) and (.), we can see

b‖Ax‖α
α – ‖e‖β‖Ax‖α – cT ≤ R – a

∥∥Ax′∥∥
 ≤ R,
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from which it follows that there exists a positive number R such that

‖Ax‖α ≤ R.

By using Lemma ., we get

‖x‖α =
(∫ T



∣∣x(t)∣∣α
α
dt

)/α

=
(∫ T



∣∣A–(Ax)(t)
∣∣α
α
dt

)/α

≤ σ /α
(∫ T



∣∣(Ax)(t)∣∣α
α
dt

)/α

≤ σ /αR := R. (.)

From (.), there exists t ∈ [,T) such that |x(t)|α ≤ RT–/α , and

∣∣xi(t)∣∣ =
∣∣∣∣xi(t) +

∫ t

t
x′
i(s)ds

∣∣∣∣
≤ RT–/α +

√
T

(∫ T



(
x′
i(s)

) ds)/

≤ RT–/α +
√
TR := R.

Therefore ‖x‖∞ ≤ R and |x(t)|p ≤ n/pR.
Since F ∈ C(Rn,R), G ∈ C(Rn,R), there exist R and R such that

∥∥∥∥∂F(x)
∂x

∥∥∥∥
p
≤ R,

∣∣gradG(x)∣∣p ≤ R for |x|p ≤ n/pR.

From (.), we have

∫ T



∣∣(φp
(
Ax′))′∣∣

p dt ≤ R

∫ T



∣∣x′∣∣
p dt + RT +

∫ T



∣∣e(t)∣∣p dt
≤ RT /q∥∥x′∥∥

p + RT +
∫ T



∣∣e(t)∣∣p dt
≤ RT /qR/p

 + RT +
∫ T



∣∣e(t)∣∣p dt := R.

Clearly, for each i = , . . . ,n, there exists ti ∈ (,T) such that x′
i(ti) = . Thus, for any

t ∈ [,T], we have

∣∣yi(t)∣∣ = ∣∣φp
(
(Axi)′(t)

)∣∣
=

∣∣φp
(
(Axi)′(t)

)
– φp

(
(Axi)′(ti)

)∣∣
=

∣∣∣∣
∫ t

ti

(
φp

(
(Axi)′(s)

))′ ds
∣∣∣∣

≤ R.
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Therefore ‖y‖∞ ≤ R.
Choose a number R >max(R,R), and let � = {z ∈ X : ‖z‖ < R}, then Lz = Ñ(z,λ) for

any z ∈DomL∩∂�, λ ∈ [, ]. It is easy to see that Ñ is L-compact on �̄×[, ], Lz = Ñ(z, )
is (.) and Ñ(–z, ) = –Ñ(z, ). From Lemma ., (.) has at least one T-periodic solution
z̃ =

( x̃(t)
ỹ(t)

)
, x̃(t) is a T-periodic solution of (.). �

Theorem . Let λ∞ = max{|λ|, |λ|, . . . , |λn|}, where λ,λ, . . . ,λn are eigenvalues of the
matrix C with |λi| = , ∀i ∈ {, , . . . ,n}. Suppose that there exist constants b ≥ , c≥  and
d >  such that
(H) there is a constant r ≥  such that lim|x|→+∞ |gradF(x)|

|x|p– ≤ r;
(H) 〈y,gradG(x)〉 ≤ b|y|pp + c, ∀x, y ∈ Rn;
(H) ∀i ∈ {, . . . ,n}, either xi[ ∂G(x)

∂xi
– ei] >  or xi[ ∂G(x)

∂xi
– ei] <  for |xi| > d, where

ei = 
T

∫ T
 ei(t)dt.

Then (.) has at least one T-periodic solution for (λ∞r + b) T
πp

< σ .

Proof Let z(t) =
( x(t)
y(t)

)
be a possible T-periodic solution of (.). From assumption (H),

there exists a constant ρ > d such that

∣∣gradF(x)∣∣ < r|x|p–, ∀x ∈ Rn with |xi| > ρ for i = , , . . . ,n.

From (H) and (.), we have

–
∥∥Ax′∥∥p

p +
∫ T



〈
Ax(t),

 + λ


d
dt

gradF
(
x(t)

)
–
 – λ


d
dt

gradF
(
–x(t)

)〉
dt + b‖x‖pp + cT

≥ λ

∫ T



〈
x(t), e(t)

〉
dt ≥ –‖e‖q‖x‖p,

i.e.,

∥∥Ax′∥∥p
p ≤

∫ T



〈
Cx′(t – τ ),

 + λ


d
dt

gradF
(
x(t)

)
–
 – λ


d
dt

gradF
(
–x(t)

)〉
dt

+ b‖x‖pp + ‖e‖q‖x‖p + cT

≤ ∥∥Cx′∥∥
p

∥∥gradF(
x(t)

)∥∥ p
p–

+ b‖x‖pp + ‖e‖q‖x‖p + cT

≤ λ∞
∥∥x′∥∥

p

(
r‖x‖p–p + θ

)
+ b‖x‖pp + ‖e‖q‖x‖p + cT , (.)

where θ =max|u|≤√
np |gradF(u)|T (p–)/p.

Integrating both sides of (.) over [,T], we get

 + λ



∫ T



[
∂G(x(t))

∂xi
– ei

]
dt –

 – λ



∫ T



[
∂G(–x(t))

∂xi
– ei

]
dt = , i = , . . . ,n.

So, there exist t̃i ∈ [,T] such that

 + λ



∫ T



[
∂G(x(t̃i))

∂xi
– ei

]
dt –

 – λ



∫ T



[
∂G(–x(t̃i))

∂xi
– ei

]
dt = , i = , . . . ,n.
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From (H), one can see |xi(t̃i)| ≤ d. Let χi(t) = xi(t + t̃i) – xi(t̃i), χ (t) = (χ(t), . . . ,χn(t))T ,
then χ () = χ (T) = . By Lemma ., one can obtain

‖χ‖p ≤ T
πp

∥∥χ ′∥∥p.
Noticing the periodicity of x(t), we have

‖xi‖pp =
∫ T



∣∣xi(t)∣∣p dt
=

∫ T



∣∣xi(t + t̃i)
∣∣p dt

≤
∫ T



(∣∣χi(t)
∣∣ + d

)p dt
≤ (‖χi‖p + T /pd

)p.
FromMinkovski’s inequality, we have

‖x‖p =

( n∑
i=

‖xi‖pp
)/p

≤
( n∑

i=

∥∥χi(t)
∥∥ + T /pd

)p

≤ ‖χ‖p + (nT)/pd ≤ T
πp

∥∥χ ′∥∥
p + (nT)/pd

=
T
πp

∥∥x′∥∥
p + (nT)/pd.

In view of (.) and Lemma ., we get

σ
∥∥x′∥∥p

p ≤ λ∞
∥∥x′∥∥

p

(
r
(
T
πp

∥∥x′∥∥
p + (nT)/pd

)p–

+ θ

)

+ b
(
T
πp

∥∥x′∥∥
p + (nT)/pd

)p

+ ‖e‖q
(
T
πp

∥∥x′∥∥
p + (nT)/pd

)
+ cT . (.)

Since (λ∞r + b) T
πp

< σ , from (.), there exists a constant R >  such that

∥∥x′∥∥
p ≤ R. (.)

Therefore,

‖x‖p ≤ T
πp

R + (nT)/pd := R. (.)

From (.) and (.), we know that the rest of the proof of the theorem is similar to that
of Theorem .. �
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Remark . If C ≡ n×n, system (.) can be reduced to the system in [].
If C ≡ n×n and p = , system (.) can be reduced to the system in [].

Example . Consider the following system:

d
dt

φp
[(
x(t) –Cx(t – τ )

)′] + d
dt

gradF
(
x(t)

)
+ gradG

(
x(t)

)
= e(t), (.)

where F ∈ C(R,R), G ∈ C(R,R), e ∈ C(R,R) are periodic functions with period T ; C =( – –
– 

)
. Clearly, λ, = ±√


 = ±.

Let

x = (x,x)T , F(x,x) = x + x –
xx


, G(x,x) = x + x –


xx


 + x,

then, by Theorem ., (.) has at least one T-periodic solution for  < p ≤ .
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