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Abstract
In this paper, we study the existence of solutions for fractional differential equations
of arbitrary order with multi-point multi-term Riemann-Liouville type integral
boundary conditions involving two indices. The Riemann-Liouville type integral
boundary conditions considered in the problem address a more general situation in
contrast to the case of a single index. Our results are based on standard fixed point
theorems. Some illustrative examples are also presented.
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1 Introduction
In the last few decades, the subject of fractional differential equations has become a hot
topic for the researchers due to its intensive development and applications in the field of
physics, mechanics, chemistry, engineering, etc. For a reader interested in the systematic
development of the topic, we refer the books [–]. A fractional-order differential operator
distinguishes itself from the integer-order differential operator in the sense that it is nonlo-
cal in nature, that is, the future state of a dynamical system or process involving fractional
derivative depends on its current state as well its past states. In other words, differential
equations of arbitrary order describe memory and hereditary properties of various ma-
terials and processes. As a matter of fact, this characteristic of fractional calculus makes
the fractional-order models more realistic and practical than the classical integer-order
models. There has been a great surge in developing the theoretical aspects such as peri-
odicity, asymptotic behavior and numerical methods for fractional equations. For some
recent work on the topic, see [–] and the references therein. In particular, the authors
studied nonlinear fractional differential equations and inclusions of arbitrary order with
multi-strip boundary conditions in [], while a boundary value of nonlinear fractional
differential equations of arbitrary order with Riemann-Liouville type multi-strip bound-
ary conditions was investigated in []. Sudsutad and Tariboon [] obtained some exis-
tence results for an integro-differential equation of fractional order q ∈ (, ] withm-point
multi-term fractional-order integral boundary conditions.
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In this paper, we study a boundary value problem of fractional differential equations
of arbitrary order q ∈ (n – ,n], n ≥  with m-point multi-term Riemann-Liouville type
integral boundary conditions involving two indices given by

⎧⎨
⎩

cDqx(t) = f (t,x(t)), t ∈ [,T],

x() = ,x′() = , . . . ,x(n–)() = , x(T) =
∑m–

i=
∑νi

j= γj,i[I
kj,i x]|ηiηi– ,

(.)

where cDq denotes the Caputo fractional derivative of order q, f is a given continuous
function, [Ikj,i x]|ηiηi– = [Ikj,i x](ηi) – [Ikj,i x](ηi–), Ikj,i is the Riemann-Liouville fractional in-
tegral of order kj,i > , j = , , . . . ,νi, νi ∈ N = {, , . . .}, i = , , . . . ,m – ,  = η < η < η <
· · · < ηm– < ηm– = T , and γj,i ∈R is such that

(
Tn– –

m–∑
i=

νi∑
j=

γj,i
(ηkj,i+n–

i – η
kj,i+n–
i– )�(n)

�(kj,i + n)

)
�= .

Here we emphasize that Riemann-Liouville type integral boundary conditions involving
two indices give rise to amore general situation in contrast to the case of a single index [].
Furthermore, the present work dealing with an arbitrary-order problem generalizes the
results for the problemof order q ∈ (, ] obtained in []. Several examples are considered
to show the worth of the results established in this paper.
We develop some existence results for problem (.) by using standard techniques of

fixed point theory. The paper is organized as follows. In Section  we recall some prelim-
inary facts that we need in the sequel, and Section  contains the main results. Section 
provides some examples for the illustration of the main results.

2 Preliminaries from fractional calculus
Let us recall some basic definitions of fractional calculus [–].

Definition . For an at least n-times continuously differentiable function g : [,∞) →R,
the Caputo derivative of fractional order q is defined as

cDqg(t) =


�(n – q)

∫ t


(t – s)n–q–g(n)(s)ds, n –  < q < n,n = [q] + ,

where [q] denotes the integer part of the real number q.

Definition . The Riemann-Liouville fractional integral of order q is defined as

Iqg(t) =


�(q)

∫ t



g(s)
(t – s)–q

ds, q > ,

provided the integral exists.

Lemma . For y ∈ C[,T], the fractional boundary value problem

⎧⎨
⎩

cDqx(t) = y(t), t ∈ [,T],q ∈ (n – ,n],

x() = ,x′() = , . . . ,x(n–) = , x(T) =
∑m–

i=
∑νi

j= γj,i[I
kj,i x]|ηiηi–

(.)
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has a unique solution given by

x(t) =


�(q)

∫ t


(t – s)q–y(s)ds –

tn–

δ�(q)

∫ T


(T – s)q–y(s)ds

+
tn–

δ�(q)

m–∑
i=

νi∑
j=

γj,i

�(kj,i)

[∫ ηi



∫ s


(ηi – s)kj,i–(s – u)q–y(u)duds

–
∫ ηi–



∫ s


(ηi– – s)kj,i–(s – u)q–y(u)duds

]
, (.)

where

δ =

(
Tn– –

m–∑
i=

νi∑
j=

γj,i
(ηkj,i+n–

i – η
kj,i+n–
i– )�(n)

�(kj,i + n)

)
�= . (.)

Proof The general solution of fractional differential equations in (.) can be written as []

x(t) =


�(q)

∫ t


(t – s)q–y(s)ds – c – ct – · · · – cn–tn–. (.)

Using the given boundary conditions, it is found that c = , c = , . . . , cn– = . Applying
the Riemann-Liouville integral operator Ikj,i on (.), we get

Ikj,i x(t)

=


�(kj,i)

∫ t


(t – s)kj,i–

(


�(q)

∫ s


(s – u)q–y(u)du – cn–sn–

)
ds

=


�(kj,i)�(q)

∫ t



∫ s


(t – s)kj,i–(s – u)q–y(u)duds

– cn–


�(kj,i)

∫ t


(t – s)kj,i–sn– ds.

Using the concept of beta function, we find that


�(kj,i)

∫ t


(t – s)kj,i–sn– ds =

tkj,i+n–�(n)
�(kj,i + n)

.

Now using the condition

x(T) =
m–∑
i=

νi∑
j=

γj,i
[
Ikj,i x

]|ηiηi– = [
Ikj,i x

]
(ηi) –

[
Ikj,i x

]
(ηi–),

we obtain


�(q)

∫ T


(T – s)q–y(s)ds – cn–Tn–

=
m–∑
i=

νi∑
j=

γj,i

�(q)�(kj,i)

[∫ ηi



∫ s


(ηi – s)kj,i–(s – u)q–y(u)duds
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–
∫ ηi–



∫ s


(ηi– – s)kj,i–(s – u)q–y(u)duds

]

– cn–
m–∑
i=

νi∑
j=

γj,i
(ηkj,i+n–

i – η
kj,i+n–
i– )�(n)

�(kj,i + n)
,

which yields

cn– =


δ�(q)

∫ T


(T – s)q–y(s)ds

–


δ�(q)

m–∑
i=

νi∑
j=

γj,i

�(kj,i)

[∫ ηi



∫ s


(ηi – s)kj,i–(s – u)q–y(u)duds

–
∫ ηi–



∫ s


(ηi– – s)kj,i–(s – u)q–y(u)duds

]
,

where δ is given by (.). Substituting the values of c, c, . . . , cn–, cn– in (.), we obtain
(.). This completes the proof. �

3 Main results
Let C := C([,T],R) denote the Banach space of all continuous functions defined on
[,T] × R endowed with a topology of uniform convergence with the norm ‖x‖ =
supt∈[,T] |x(t)|.
To prove the existence results for problem (.), we need the following known results.

Theorem. (Leray-Schauder alternative [, p.]) Let X be a Banach space.Assume that
T : X → X is a completely continuous operator and the set

V = {u ∈ X | u = μTu,  < μ < }

is bounded. Then T has a fixed point in X.

Theorem . [] Let X be a Banach space. Assume that � is an open bounded subset
of X with θ ∈ �, and let T : � → X be a completely continuous operator such that

‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂�.

Then T has a fixed point in �.

By Lemma ., we define an operator P : C → C as

(Px)(t) =


�(q)

∫ t


(t – s)q–f

(
s,x(s)

)
ds –

tn–

δ�(q)

∫ T


(T – s)q–f

(
s,x(s)

)
ds

+
tn–

δ�(q)

m–∑
i=

νi∑
j=

γj,i

�(kj,i)

[∫ ηi



∫ s


(ηi – s)kj,i–(s – u)q–f

(
u,x(u)

)
duds

–
∫ ηi–



∫ s


(ηi– – s)kj,i–(s – u)q–f

(
u,x(u)

)
duds

]
, t ∈ [,T]. (.)
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Observe that problem (.) has a solution if and only if the associated fixed point problem
Px = x has a fixed point.
For the sake of convenience, we set

ϑ =
Tq

�(q + )
+

Tq+n–

|δ|�(q + )
+
Tn–

|δ|
m–∑
i=

νi∑
j=

|γj,i|η
q+kj,i
i – η

q+kj,i
i–

�(q + kj,i + )
. (.)

Theorem . Assume that there exists a positive constant L such that |f (t,x)| ≤ L for
t ∈ [,T], x ∈ R. Then problem (.) has at least one solution.

Proof First of all, we show that the operator P is completely continuous. Note that the
operator P is continuous in view of the continuity of f . Let B ⊂ C be a bounded set. By
the assumption that |f (t,x)| ≤ L, for x ∈ B, we have

∣∣(Px)(t)
∣∣ ≤ 

�(q)

∫ t


(t – s)q–

∣∣f (s,x(s))∣∣ds
+

tn–

|δ|�(q)
∫ T


(T – s)q–

∣∣f (s,x(s))∣∣ds
+

tn–

|δ|�(q)
m–∑
i=

νi∑
j=

|γj,i|
�(kj,i)

(∫ ηi



∫ s


(ηi – s)kj,i–(s – u)q–

∣∣f (u,x(u))∣∣duds
–

∫ ηi–



∫ s


(ηi– – s)kj,i–(s – u)q–

∣∣f (u,x(u))∣∣duds)

≤ L

[


�(q)

∫ t


(t – s)q– ds +

tn–

|δ|�(q)
∫ T


(T – s)q– ds

+
tn–

|δ|�(q)
m–∑
i=

νi∑
j=

|γj,i|
�(kj,i)

(∫ ηi



∫ s


(ηi – s)kj,i–(s – u)q– duds

–
∫ ηi–



∫ s


(ηi– – s)kj,i–(s – u)q– duds

)]

≤ L

{
Tq

�(q + )
+

Tq+n–

|δ|�(q + )
+
Tn–

|δ|
m–∑
i=

νi∑
j=

|γj,i|η
q+kj,i
i – η

q+kj,i
i–

�(q + kj,i + )

}
= L,

which implies that ‖(Px)‖ ≤ L. Further, we find that

∣∣(Px)′(t)
∣∣

=


�(q – )

∫ t


(t – s)q–

∣∣f (s,x(s))∣∣ds
+
(n – )tn–

|δ|�(q)
∫ T


(T – s)q–

∣∣f (s,x(s))∣∣ds
+
(n – )tn–

|δ|�(q)
m–∑
i=

νi∑
j=

|γj,i|
�(kj,i)

(∫ ηi



∫ s


(ηi – s)kj,i–(s – u)q–

∣∣f (u,x(u))∣∣duds
–

∫ ηi–



∫ s


(ηi– – s)kj,i–(s – u)q–

∣∣f (u,x(u))∣∣duds)
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≤ L

[


�(q – )

∫ t


(t – s)q– ds +

(n – )tn–

|δ|�(q)
∫ T


(T – s)q– ds

+
(n – )tn–

|δ|�(q)
m–∑
i=

νi∑
j=

|γj,i|
�(kj,i)

(∫ ηi



∫ s


(ηi – s)kj,i–(s – u)q– duds

–
∫ ηi–



∫ s


(ηi– – s)kj,i–(s – u)q– duds

)]

≤ L

{
Tq–

�(q)
+
(n – )Tq+n–

|δ|�(q + )
+
(n – )Tn–

|δ|
m–∑
i=

νi∑
j=

|γj,i|η
q+kj,i
i – η

q+kj,i
i–

�(q + kj,i + )

}
= L.

Hence, for t, t ∈ [,T], we have

∣∣(Px)(t) – (Px)(t)
∣∣ ≤

∫ t

t

∣∣(Px)′(s)
∣∣ds ≤ L(t – t).

This implies that P is equicontinuous on [,T]. Thus, by the Arzela-Ascoli theorem, the
operator P : C → C is completely continuous.
Next, we consider the set

V = {x ∈ C | x = μPx,  < μ < },

and show that the set V is bounded. Let x ∈ V , then x = μPx,  < μ < . For any t ∈ [,T],
we have

∣∣x(t)∣∣ = μ
∣∣(Px)(t)

∣∣
≤ 

�(q)

∫ t


(t – s)q–

∣∣f (s,x(s))∣∣ds
+

tn–

|δ|�(q)
∫ T


(T – s)q–

∣∣f (s,x(s))∣∣ds
+

tn–

|δ|�(q)
m–∑
i=

νi∑
j=

|γj,i|
�(kj,i)

(∫ ηi



∫ s


(ηi – s)kj,i–(s – u)q–

∣∣f (u,x(u))∣∣duds
–

∫ ηi–



∫ s


(ηi– – s)kj,i–(s – u)q–

∣∣f (u,x(u))∣∣duds)

≤ L

{
Tq

�(q + )
+

Tq+n–

|δ|�(q + )
+
Tn–

|δ|
m–∑
i=

νi∑
j=

|γj,i|η
q+kj,i
i – η

q+kj,i
i–

�(q + kj,i + )

}
=M.

Thus, ‖x‖ ≤ M for any t ∈ [,T]. So, the set V is bounded. Thus, by the conclusion of
Theorem ., the operator P has at least one fixed point, which implies that (.) has at
least one solution. �

Theorem . Let there exist a small positive number τ such that |f (t,x)| ≤ ε|x| for
 < |x| < τ , with  < ε ≤ /ϑ , where ϑ is given by (.). Then problem (.) has at least one
solution.

http://www.advancesindifferenceequations.com/content/2013/1/369
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Proof Let us define Bτ = {x ∈ C | ‖x‖ < τ } and take x ∈ C such that ‖x‖ = τ , that is, x ∈ ∂Bτ .
As before, it can be shown that P is completely continuous and

‖Px‖ ≤ sup
t∈[,t]

{


�(q)

∫ t


(t – s)q–

∣∣f (s,x(s))∣∣ds + tn–

|δ|�(q)
∫ T


(T – s)q–

∣∣f (s,x(s))∣∣ds

+
tn–

|δ|�(q)
m–∑
i=

νi∑
j=

|γj,i|
�(kj,i)

(∫ ηi



∫ s


(ηi – s)kj,i–(s – u)q–

∣∣f (u,x(u))∣∣duds

–
∫ ηi–



∫ s


(ηi– – s)kj,i–(s – u)q–

∣∣f (u,x(u))∣∣duds)
}

≤ ϑε‖x‖,

which, in view of the given condition (εϑ ≤ ), gives ‖Px‖ ≤ ‖x‖, x ∈ ∂Bτ . Therefore,
by Theorem ., the operator P has at least one fixed point, which in turn implies that
problem (.) has at least one solution. �

Our next result is based on Leray-Schauder nonlinear alternative.

Lemma . (Nonlinear alternative for single-valued maps [, p.]) Let E be a Banach
space, C be a closed, convex subset of E, U be an open subset of C and  ∈U . Suppose that
F :U → C is a continuous, compact (that is, F(U) is a relatively compact subset of C)map.
Then either

(i) F has a fixed point in U , or
(ii) there are u ∈ ∂U (the boundary of U in C) and λ ∈ (, ) with u = λF(u).

Theorem . Assume that

(A) there exist a function σ ∈ C([, ],R+) and a nondecreasing functionψ :R+ →R
+ such

that |f (t,x)| ≤ σ (t)ψ(‖x‖), ∀(t,x) ∈ [,T]×R;
(A) there exists a constantM >  such that

M
ψ(M)ϑ‖σ‖ > .

Then boundary value problem (.) has at least one solution on [,T].

Proof Consider the operator P : C → C defined by (.). We show that P maps bounded
sets into bounded sets in C([,T],R). For a positive number r, let Br = {x ∈ C([,T],R) :
‖x‖ ≤ r} be a bounded set in C([,T],R). Then

‖Px‖ ≤ sup
t∈[,T]

{


�(q)

∫ t


(t – s)q–

∣∣f (s,x(s))∣∣ds
+

tn–

|δ|�(q)
∫ T


(T – s)q–

∣∣f (s,x(s))∣∣ds
+

tn–

|δ|�(q)
m–∑
i=

νi∑
j=

|γj,i|
�(kj,i)

(∫ ηi



∫ s


(ηi – s)kj,i–(s – u)q–

∣∣f (u,x(u))∣∣duds

http://www.advancesindifferenceequations.com/content/2013/1/369
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–
∫ ηi–



∫ s


(ηi– – s)kj,i–(s – u)q–

∣∣f (u,x(u))∣∣duds)
}

≤ ψ(r)

{
Tq

�(q + )
+

Tq+n–

|δ|�(q + )
+
Tn–

|δ|
m–∑
i=

νi∑
j=

|γj,i|η
q+kj,i
i – η

q+kj,i
i–

�(q + kj,i + )

}
‖σ‖.

Next we show that F maps bounded sets into equicontinuous sets of C([, ],R). Let t′, t′′ ∈
[, ] with t′ < t′′ and x ∈ Br , where Br is a bounded set of C([, ],R). Then we obtain

∣∣(Px)
(
t′′

)
– (Px)

(
t′
)∣∣

=
∣∣∣∣ 

�(q)

∫ t′′



(
t′′ – s

)q–f (s,x(s))ds – 
�(q)

∫ t′



(
t′ – s

)q–f (s,x(s))ds
–
[(t′′)n– – (t′)n–]

δ�(q)

∫ T


(T – s)q–f

(
s,x(s)

)
ds

+
[(t′′)n– – (t′′)n–]

δ�(q)

m–∑
i=

νi∑
j=

γj,i

�(kj,i)

[∫ ηi



∫ s


(ηi – s)kj,i–(s – u)q–f

(
u,x(u)

)
duds

–
∫ ηi–



∫ s


(ηi– – s)kj,i–(s – u)q–f

(
u,x(u)

)
duds

]∣∣∣∣
≤ 

�(q)

∫ t′



∣∣(t′′ – s
)q– – (

t′ – s
)q–∣∣ψ(r)σ (s)ds +


�(q)

∫ t′′

t′

∣∣t′′ – s
∣∣q–ψ(r)σ (s)ds

+
|(t′′)n– – (t′)n–|

|δ|�(q)
∫ T


|T – s|q–ψ(r)σ (s)ds

+
|(t′′)n– – (t′)n–|

|δ|�(q)
m–∑
i=

νi∑
j=

|γj,i|
�(kj,i)

[∫ ηi



∫ s



∣∣(ηi – s)kj,i–(s – u)q–
∣∣ψ(r)σ (u)duds

+
∫ ηi–



∫ s



∣∣(ηi– – s)kj,i–(s – u)q–
∣∣ψ(r)σ (u)duds

]
.

Obviously the right-hand side of the above inequality tends to zero independently of x ∈ Br

as t′′ – t′ → . AsP : C([,T],R)→ C([,T],R) satisfies the above assumptions, therefore
it follows by the Arzelá-Ascoli theorem that P is completely continuous.
Let x be a solution. Then, for t ∈ [,T], and following the similar computations as before,

we find that

∣∣x(t)∣∣ = ∣∣μ(Px)(t)
∣∣

≤ ψ
(‖x‖)

{
Tq

�(q + )
+

Tq+n–

|δ|�(q + )
+
Tn–

|δ|
m–∑
i=

νi∑
j=

|γj,i|η
q+kj,i
i – η

q+kj,i
i–

�(q + kj,i + )

}
‖σ‖

= ψ
(‖x‖)ϑ‖σ‖.

In consequence, we have

‖x‖
ψ(‖x‖)ϑ‖σ‖ ≤ .

http://www.advancesindifferenceequations.com/content/2013/1/369
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Thus, by (A), there existsM such that ‖x‖ �=M. Let us set

V =
{
x ∈ C

(
[,T],R

)
: ‖x‖ <M + 

}
.

Note that the operator P : V → C([,T],R) is continuous and completely continuous.
From the choice of V , there is no x ∈ ∂V such that x = μP(x) for some μ ∈ (, ). Conse-
quently, by the nonlinear alternative of Leray-Schauder type (Lemma .), we deduce that
P has a fixed point x ∈ V which is a solution of problem (.). This completes the proof.

�

Finally we prove an existence and uniqueness result by means of Banach’s contraction
mapping principle.

Theorem . Suppose that f : [,T] × R → R is a continuous function and satisfies the
following assumption:

(A) |f (t,x) – f (t, y)| ≤ L|x – y|, ∀t ∈ [, ], L > , x, y ∈R.

Then boundary value problem (.) has a unique solution provided

L < /ϑ , (.)

where ϑ is given by (.).

Proof With r ≥ Mϑ/( – Lϑ), we define Br = {x ∈ C : ‖x‖ ≤ r}, where M = supt∈[,T] |f (t,
)| < ∞ and ϑ is given by (.). Then we show that PBr ⊂ Br . For x ∈ Br , by means of the
inequality |f (s,x(s))| ≤ |f (s,x(s)) – f (s, )| + |f (s, )| ≤ L‖x‖ +M ≤ Lr +M, it can easily be
shown that

‖Px‖ = (Lr +M)ϑ ≤ r.

Now, for x, y ∈ C and for each t ∈ [,T], we obtain

∥∥(Px) – (Py)
∥∥

≤ sup
t∈[,T]

{


�(q)

∫ t


(t – s)q–

∣∣f (s,x(s)) – f
(
s, y(s)

)∣∣ds
+

tn–

δ�(q)

∫ T


(T – s)q–

∣∣f (s,x(s)) – f
(
s, y(s)

)∣∣ds
+

tn–

δ�(q)

m–∑
i=

νi∑
j=

|γj,i|
�(kj,i)

[∫ ηi



∫ s


(ηi – s)kj,i–(s – u)q–

∣∣f (u,x(u)) – f
(
u, y(u)

)∣∣duds

–
∫ ηi–



∫ s


(ηi– – s)kj,i–(s – u)q–

∣∣f (u,x(u)) – f
(
u, y(u)

)∣∣duds]
}

≤ Lϑ‖x – y‖.
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Note that ϑ depends only on the parameters involved in the problem. As Lϑ < , therefore
P is a contraction. Hence, by Banach’s contraction mapping principle, problem (.) has a
unique solution on [,T]. �

4 Examples
In this section, we present some examples for the illustration of the results established in
Section  by choosing the nonlinear function f (t,x(t)) appropriately. Let us consider the
following nonlocal boundary value problem:

⎧⎨
⎩

cD/x(t) = f (t,x(t)), t ∈ [, ],

x() = ,x′() = , . . . ,x()() = , x(T) =
∑m–

i=
∑νi

j= γj,i[I
kj,i x]|ηiηi– ,

(.)

where q = /, n = , m = , η = , η = /, η = , η = /, η = T = , ν = , ν = ,
ν = , ν = , γ, = , γ, = , γ, = , γ, = , γ, = , γ, = , γ, = , γ, = , γ, =
, γ, = , k, = /, k, = /, k, = /, k, = /, k, = /, k, = /, k, = /,
k, = /, k, = /, k, = /. Using the given data, we find that

δ = Tn– –
m–∑
i=

νi∑
j=

γj,i
(ηkj,i+n–

i – η
kj,i+n–
i– )�(n)

�(kj,i + n)
� –.,

and

ϑ =
Tq

�(q + )
+

Tq+n–

|δ|�(q + )
+
Tn–

|δ|
m–∑
i=

νi∑
j=

|γj,i|η
q+kj,i
i – η

q+kj,i
i–

�(q + kj,i + )
� ..

(a) As a first example, let us take

f
(
t,x(t)

)
=
e(–cos x(t)) [ sint +  ln( +  cos x(t))]√

( + sinx(t))
. (.)

Observe that |f (t,x)| ≤ L with L = e( +  ln). Thus the hypothesis of Theorem . is
satisfied. Hence, by the conclusion of Theorem ., problem (.) with f (t,x(t)) given by
(.) has at least one solution.
(b) Let us consider

f
(
t,x(t)

)
= x

(
b + x(t)

) 
 + 

(
 + sin

(
t + 

))( – cosx(t)
)
, x �= ,b > . (.)

For sufficiently small x (ignoring x and higher powers of x), we have

∣∣x(b + x(t)
) 
 + 

(
 + sin

(
t + 

))( – cosx(t)
)∣∣ ≤ b|x|.

Choosing b ≤ /ϑ , all the assumptions of Theorem . hold. Therefore, the conclusion
of Theorem . implies that problem (.) with f (t,x(t)) given by (.) has at least one
solution.
(c) Consider

f
(
t,x(t)

)
=

√
t + 

(
 +

|x|
 + |x|

)
≤ σ (t)ψ

(‖x‖), (.)
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with σ (t) =
√
t +  andψ(‖x‖) = . Using ‖σ‖ = , ϑ � ., we find by condition (A)

thatM >M, whereM � .. Thus all the assumptions of Theorem . are satisfied.
Hence, it follows by Theorem . that problem (.) with f (t,x(t)) defined by (.) has at
least one solution.
(d) For the illustration of the existence-uniqueness result, we choose

f
(
t,x(t)

)
=

√
(t + )

( |x|
 + |x| + tan– x

)
+

√
 + sin t. (.)

Clearly, L = / as |f (t,x) – f (t, y)| ≤ 
 |x – y| and L < 

ϑ
� .. Therefore all the con-

ditions of Theorem . hold, and consequently there exists a unique solution for problem
(.) with f (t,x(t)) given by (.).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Each of the authors, AA, SKN, RPA and BA, contributed to each part of this work equally and read and approved the final
version of the manuscript.

Author details
1Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
2Department of Mathematics, University of Ioannina, Ioannina, 451 10, Greece. 3Department of Mathematics, Texas A&M
University, Kingsville, 78363-8202, USA.

Acknowledgements
This research was partially supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah,
Saudi Arabia.

Received: 6 November 2013 Accepted: 1 December 2013 Published: 13 Dec 2013

References
1. Miller, KS, Ross, B: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993)
2. Samko, SG, Kilbas, AA, Marichev, OI: Fractional Integrals and Derivatives, Theory and Applications. Gordon & Breach,

Yverdon (1993)
3. Podlubny, I: Fractional Differential Equations. Academic Press, San Diego (1999)
4. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. North-Holland

Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
5. Lakshmikantham, V, Leela, S, Vasundhara Devi, J: Theory of Fractional Dynamic Systems. Cambridge Academic

Publishers, Cambridge (2009)
6. Baleanu, D, Diethelm, K, Scalas, E, Trujillo, JJ: Fractional Calculus: Models and Numerical Methods. Series on

Complexity, Nonlinearity and Chaos. World Scientific, Boston (2012)
7. Benchohra, M, Hamani, S, Ntouyas, SK: Boundary value problems for differential equations with fractional order and

nonlocal conditions. Nonlinear Anal. 71, 2391-2396 (2009)
8. Ahmad, B, Nieto, JJ: Existence of solutions for nonlocal boundary value problems of higher-order nonlinear fractional

differential equations. Abstr. Appl. Anal. 2009, Article ID 494720 (2009)
9. Agarwal, RP, Benchohra, M, Hamani, S: A survey on existence results for boundary value problems of nonlinear

fractional differential equations and inclusions. Acta Appl. Math. 109, 973-1033 (2010)
10. Ahmad, B: Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations.

Appl. Math. Lett. 23, 390-394 (2010)
11. Balachandran, K, Trujillo, JJ: The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in

Banach spaces. Nonlinear Anal. 72, 4587-4593 (2010)
12. Baleanu, D, Mustafa, OG: On the global existence of solutions to a class of fractional differential equations. Comput.

Math. Appl. 59, 1835-1841 (2010)
13. Zhong, W, Lin, W: Nonlocal and multiple-point boundary value problem for fractional differential equations. Comput.

Math. Appl. 39, 1345-1351 (2010)
14. Gafiychuk, V, Datsko, B, Meleshko, V: Mathematical modeling of different types of instabilities in time fractional

reaction-diffusion systems. Comput. Math. Appl. 59, 1101-1107 (2010)
15. Ahmad, B, Nieto, JJ: Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral

boundary conditions. Bound. Value Probl. 2011, Article ID 36 (2011)
16. Ahmad, B, Ntouyas, SK: A four-point nonlocal integral boundary value problem for fractional differential equations of

arbitrary order. Electron. J. Qual. Theory Differ. Equ. 22, 1-15 (2011)
17. Cuevas, C, Soto, H, Sepulveda, A: Almost periodic and pseudo-almost periodic solutions to fractional differential and

integrodifferential equations. Appl. Math. Comput. 218, 1735-1745 (2011)

http://www.advancesindifferenceequations.com/content/2013/1/369


Alsaedi et al. Advances in Difference Equations 2013, 2013:369 Page 12 of 12
http://www.advancesindifferenceequations.com/content/2013/1/369

18. Ford, NJ, Morgado, ML: Fractional boundary value problems: analysis and numerical methods. Fract. Calc. Appl. Anal.
14(4), 554-567 (2011)

19. Ahmad, B, Ntouyas, SK: A note on fractional differential equations with fractional separated boundary conditions.
Abstr. Appl. Anal. 2012, Article ID 818703 (2012)

20. Aghajani, A, Jalilian, Y, Trujillo, JJ: On the existence of solutions of fractional integro-differential equations. Fract. Calc.
Appl. Anal. 15(2), 44-69 (2012)

21. Ahmad, B, Ntouyas, SK: Nonlinear fractional differential equations and inclusions of arbitrary order and multi-strip
boundary conditions. Electron. J. Differ. Equ. 98, 1-22 (2012)

22. Ahmad, B, Ntouyas, SK, Alsaedi, A: A study of nonlinear fractional differential equations of arbitrary order with
Riemann-Liouville type multi-strip boundary conditions. Math. Probl. Eng. 2013, Article ID 320415 (2013)

23. Debbouche, A, Baleanu, D, Agarwal, RP: Nonlocal nonlinear integrodifferential equations of fractional orders. Bound.
Value Probl. 2012, Article ID 78 (2012)

24. Nyamoradi, N, Baleanu, D, Agarwal, RP: On a multipoint boundary value problem for a fractional order differential
inclusion on an infinite interval. Adv. Math. Phys. 2013, Article ID 823961 (2013)

25. Baleanu, D, Agarwal, RP, Mohammadi, H, Rezapour, S: Some existence results for a nonlinear fractional differential
equation on partially ordered Banach spaces. Bound. Value Probl. 2013, Article ID 112 (2013)

26. Sudsutad, W, Tariboon, J: Existence results of fractional integro-differential equations withm-point multi-term
fractional order integral boundary conditions. Bound. Value Probl. 2012, Article ID 94 (2012)

27. Granas, A, Dugundji, J: Fixed Point Theory. Springer, New York (2005)
28. Smart, DR: Fixed Point Theorems. Cambridge University Press, Cambridge (1980)

10.1186/1687-1847-2013-369
Cite this article as: Alsaedi et al.: A nonlocal multi-point multi-term fractional boundary value problem with
Riemann-Liouville type integral boundary conditions involving two indices. Advances in Difference Equations
2013, 2013:369

http://www.advancesindifferenceequations.com/content/2013/1/369

	A nonlocal multi-point multi-term fractional boundary value problem with Riemann-Liouville type integral boundary conditions involving two indices
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries from fractional calculus
	Main results
	Examples
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


