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Abstract
In this paper, we propose a numerical method for solving fractional partial differential
equations. This method is based on the homotopy perturbation method and Laplace
transform. The transformed problem obtained by means of temporal Laplace
transform is solved by the homotopy perturbation method. Then we use Stehfest’s
numerical algorithm for calculating inverse Laplace transform to retrieve the time
domain solution. The approximate solutions obtained by our proposed method are in
excellent agreement with the exact solutions. It is worthwhile to note that our
method is applicable to a variety of fractional partial differential equations occurring
in fluid mechanics, signal processing, system identification, control robotics, etc. The
utility of the method is shown by solving some interesting examples.
MSC: 34A08; 44A10
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1 Introduction
Fractional differential equations are found to be an effective tool to describe certain phys-
ical phenomena such as damping laws, rheology, diffusion processes, and so on. Several
methods have been developed to solve fractional differential equations. Lin andXu [] pro-
posed the numerical solution for a time-fractional diffusion equation. In [], an uncondi-
tionally stable finite element (FEM) approach for solving a one-dimensional Caputo-type
fractional differential equation with singularity at the boundary was presented. Kexue and
Jigen [] discussed the Laplace transform (LT) method for solving fractional differential
equationswith constant coefficients. Jafari et al. [] applied the homotopy analysismethod
to obtain the solution of amulti-order fractional differential equation in the Caputo sense.
Merrikh-Bayat [] developed a low-cost numerical algorithm to find the series solution of
nonlinear fractional differential equations with delay. In [], the Riemann-Liouville frac-
tional integral for repeated fractional integrationwas expanded in block pulse functions to
yield the block pulse operational matrices for the fractional order integration. Esmaeili et
al. [] developed a computational technique based on the collocation method and Muntz
polynomials for the solution of fractional differential equations. In [], three different nu-
merical methods were used to solve a singularly perturbed Able Volterra integral equa-
tion, presented by a fractional differential equation. Ibrahim [] discussed holomorphic
solutions for nonlinear singular fractional differential equations.
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Homotopy perturbationmethod (HPM) has been applied by several researchers to solve
different kinds of functional equations. This method was further developed and improved
by He [] and applied to develop a coupling method for a homotopy technique [], limit
cycle and bifurcation of nonlinear problems [], nonlinear wave equation [], boundary
value problems [], chemical kinetics system [], oscillators with discontinuities [],
Riccati equation with fractional orders [], neutron transport equation [], nonlinear
singular fourth order four-point boundary value problems [], systems of partial differ-
ential equations [], nonlinear ill-posed operator equations [] and stiff systems of or-
dinary differential equations [].
The Laplace transform method has been applied to a wide class of ordinary differen-

tial equations (ODEs), partial differential equations (PDEs), integral equations (IEs) and
integro-differential equations (IDEs). In these problems it is necessary to calculate the
Laplace transform and inverse Laplace transform of certain functions. The inverse of
Laplace transform is usually difficult to compute by using the techniques of complex anal-
ysis, and there exist numerous numerical methods for its evaluation [, ]. Sastre et
al. [] developed an application of Laguerre matrix polynomial series to the numerical
inversion of Laplace transforms of matrix functions. Laguerre matrix polynomials were
introduced in [] and theorems for the expansion of matrix functions in series of La-
guerre matrix polynomials can be found in [, ]. In [], the dynamical differential
equations with initial conditions were converted into the model of linear operator action,
in which the linear operator is just the infinitesimal generator for the solver of the differen-
tial equations, and the resolvent of the linear operator is the Laplace transformof the solver
of original differential equations. In [], a method for the numerical inversion of Laplace
transform on the real line of heavytailed (probability) density functions is presented. The
method assumes a finite set of real values of the Laplace transform and chooses the an-
alytical form of the approximant maximizing Shannon-entropy, so that positivity of the
approximant itself is guaranteed. In [], a Laplace homotopy perturbationmethod is em-
ployed for solving one-dimensional non-homogeneous partial differential equations with
a variable coefficient. This method is a combination of the Laplace transform and the ho-
motopy perturbationmethod (LHPM). LHPM presents an accurate methodology to solve
non-homogeneous partial differential equations with a variable coefficient. Sheng et al.
[] proposed an application of numerical inverse Laplace transform algorithms and ob-
tained an easy way to solve the complicated fractional-order differential equations numer-
ically.Weeks numerical inversion of Laplace transform algorithmwas established by using
the Laguerre expansion and bilinear transformations []. The authors of [] developed
an accurate numerical inversion of Laplace transforms. Tagliani [] proposed a numeri-
cal method for inversion of Laplace transform with probability densities. The maximum
entropy technique provides an analytical formof the approximate solution. Fractionalmo-
ments are mainly investigated. Entropy and cross-entropy convergence are proved. Valko
et al. [] proposed a new algorithm for the numerical inversion of Laplace transforms by
using multi-precision computational environment and provided controlled accuracy, that
is, the inversion can be carried out to yield any pre-specified number of significant digits.
The fundamental collocation method was extended to handle two-dimensional transient
heat conduction problems in solids in []. The method was applied in the Laplace trans-
form domain, followed by an inversion technique to retrieve the time-domain solution.
In [], the authors developed a numerical algorithm for inverting a Laplace transform,
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based on Laguerre polynomial series expansion of the inverse function under the assump-
tion that the Laplace transform is known on the real axis only. The main contribution of
the paper is to provide computable estimates of truncation, discretization, conditioning
and roundoff errors introduced by numerical computations. In the present work, we apply
the Stehfest [] algorithm for numerical inversion of Laplace transform.
In this paper, the method for numerical solution of fractional partial differential equa-

tions is based on Laplace transform (LT), the homotopy perturbation method (HPM) and
Stehfest’s numerical algorithm for calculating inverse Laplace transform. The accuracy
and efficiency of the method is verified by solving some examples of physical interest.

2 Homotopy perturbation technique
In this section, we describe the homotopy perturbation method [–] for a general type
of the nonlinear differential equation with boundary conditions

A(u) – f (r) = , r ∈ �, ()

B
(
u,

∂u
∂n

)
= , r ∈ �, ()

where A is a general differential operator, B is a boundary operator, f (r) is a known analyt-
ical function and � is the boundary of the domain �. The operator A can be divided into
two parts L and N , where L is a linear operator and N is a nonlinear operator. Therefore,
Eq. () can be rewritten as follows:

L(u) +N(u) – f (r) = . ()

By the homotopy technique, we define a homotopy H(r,p) : � × [, ]→ R as follows:

H(u,p) = ( – p)
[
L(u) – L(u)

]
+ p

[
A(u) – f (r)

]
= , p ∈ [, ], r ∈ �, ()

or

H(u,p) = L(u) – L(u) + pL(u) + p
[
N(u) – f (r)

]
= , p ∈ [, ], r ∈ �, ()

where p ∈ [, ] is an embedding parameter, and u is an initial approximation for Eq. ()
with

H(u, ) = L(u) – L(u) = , H(u, ) = A(u) – f (r) = . ()

Note that the process of varying the values of p from zero to unity corresponds to that of
u(r,p) from u(r) to u(r). We assume that the solution of Eq. () can be written as a power
series in p, that is,

v =
∞∑
k=

pkuk . ()

Substituting () in () and comparing the coefficients of powers of p yields a successive
procedure to determine uk . Finally, by setting p =  in (), we obtain the solution of Eq. ().

http://www.advancesindifferenceequations.com/content/2013/1/375


Javidi and Ahmad Advances in Difference Equations 2013, 2013:375 Page 4 of 18
http://www.advancesindifferenceequations.com/content/2013/1/375

3 Preliminaries
In this section, we recall some basic concepts of fractional calculus [–] and Laplace
transform.

Definition  For μ ∈ R, a function f : R → R+ is said to be in the space Cμ if it can be
written as f (x) = xpf(x) with p > μ, f(x) ∈ C[,∞), and it is said to be in the space Cm

μ if
f (m) ∈ Cμ form ∈N ∪ {}.

Definition  The Riemann-Liouville fractional integral of order α >  for a function f ∈
Cμ with μ ≥ – is defined as

Jαf (t) =


�(α)

∫ t


(t – τ )α–f (τ )dτ , α > , t > ,

Jf (t) = f (t).
()

Definition  The Riemann-Liouville fractional derivative of order α >  for a function
f ∈ Cm

– with m ∈N ∪ {} is defined as

Dα
∗ f (t) =

dm

dtm
Jm–αf (t), m –  < α ≤m,m ∈ N . ()

Definition  The Caputo fractional derivative of order α >  for a function f ∈ Cm
– with

m ∈N ∪ {} is defined as

Dαf (t) =

⎧⎨
⎩
Jm–αf (m)(t), m –  < α ≤m,m ∈ N ,
dmf (t)
dtm , α =m.

()

Definition  A two-parameter Mittag-Leffler function is defined by the following series:

Eα,β (t) =
∞∑
k=

tk

�(αk + β)
. ()

Observe that E,(t) = et , E,(–t) = e–t .

Definition  The Laplace transform of a function u(x, t), t ≥ , denoted by ϕ(x, s), is de-
fined by

L
{
u(x, t)

}
= ϕ(x, s) =

∫ ∞


e–stu(x, t)dt, ()

where s is the transform parameter and is assumed to be real and positive.
Note that the Laplace transform of Mittag-Leffler function Eα,β (t) is

L
(
Eα,β (t)

)
=

∫ ∞


e–stEα,β(t)dt =

∞∑
k=

�(k + )
sk+�(αk + β)

. ()
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The Laplace transform of Dαf (t) can be found as follows:

L
(
Dαf (t)

)
= L

(
Jm–αf (m)(t)

)

= L
[


�(m – α)

∫ t


(t – τ )m–α–f (m)(τ )dτ

]

=


sm–α
L
(
f (m)(t)

)

=


sm–α

[
smL

(
f (t)

)
– sm–f () – sm–f ′() – sm–f ′′() – · · · – f m–()

]
. ()

4 Description of themethod
Consider the following linear fractional partial differential equation:

∂αu
∂tα

+A(x)
∂u
∂x

+ B(x)
∂u
∂x

+C(x)u = h(x, t), (x, t) ∈ [, ]× [,T], ()

with the initial conditions

∂ku
∂tk

(x, ) = fk(x), k = , , . . . ,m – , ()

and the boundary conditions

u(, t) = g(t), u(, t) = g(t), t ≥ , ()

where fk , k = , , . . . ,m–, h, g, g,A andB are known functions andT >  is a real number
and m –  < α ≤ m. Now we explain the method of solution for solving initial-boundary
value problem ()-().
Taking the Laplace transform of problem ()-() and using (), we obtain


sm–α

[
sm	(x, s) – sm–f(x) – sm–f(x) – sm–f(x) – · · · – fm–(x)

]

+
[
A(x)

∂

∂x
+ B(x)

∂

∂x
+C(x)

]
	(x, s) = h(x, s), ()

where 	(x, s) and h(x, s) denote the Laplace transform of u(x, t) and h(x, t), respectively,
and

	(, s) = L
(
g(t)

)
, 	(, s) = L

(
g(t)

)
. ()

Rewriting Eq. (), we have

sα	(x, s) = –
[
A(x)

∂

∂x
+ B(x)

∂

∂x
+C(x)

]
	(x, s)

+


sm–α

[
sm–f(x) + sm–f(x) + sm–f(x) + · · · + fm–(x)

]
+ h(x, s). ()
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According to HPM, we construct a homotopy for Eq. () as follows:

	(x, s) =
–p
sα

[
A(x)

∂

∂x
+ B(x)

∂

∂x
+C(x)

]
	(x, s)

+

sm

[
sm–f(x) + sm–f(x) + sm–f(x) + · · · + fm–(x) +


sα
h(x, s)

]
. ()

Then the solution of Eq. () can be expressed as

	(x, s) =
∞∑
j=

pj	j(x, s), ()

where 	j(x, s), j = , , , . . . , are the unknown functions. Substituting () in (), we get

∞∑
j=

pj	j(x, s)

=
–p
sα

[
A(x)

∂

∂x
+ B(x)

∂

∂x
+C(x)

] ∞∑
j=

pj	j(x, s)

+

sm

[
sm–f(x) + sm–f(x) + sm–f(x) + · · · + fm–(x) +


sα
h(x, s)

]
, ()

which, on comparing the coefficients of powers of p, yields

p :	(x, s) =

sm

[
sm–f(x) + sm–f(x) + sm–f(x) + · · · + fm–(x)

]
+


sα
h(x, s),

p : 	(x, s) =
–
sα

[
A(x)

∂

∂x
+ B(x)

∂

∂x
+C(x)

]
	(x, s),

p :	(x, s) =
–
sα

[
A(x)

∂

∂x
+ B(x)

∂

∂x
+C(x)

]
	(x, s),

...

pn+ :	n+(x, s) =
–
sα

[
A(x)

∂

∂x
+ B(x)

∂

∂x
+C(x)

]
	n(x, s).

()

In the limit p → , we note that () becomes the approximate solution for the problem
of ()-() and is given by

Hn(x, s) =
n∑
j=

	j(x, s). ()

Taking the inverse Laplace transform of (), we obtain

u(x, t)
 un(x, t) = L–
(
Hn(x, s)

)
. ()
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Applying Stehfest’s algorithm [] to Hn(x, s), the solution u(x, t) is found to be

un(x, t) =
ln()
t

p∑
j=

djHn

(
x, j

ln()
t

)
,

where p is a positive integer and

dj = (–)j+p
min(j,p)∑
i=[ j+ ]

ip(i)!
(p – i)!i!(i – )!(j – i)!(i – j)!

.

Here [r] denotes the integer part of the real number r.

5 Numerical results
In this section, we show the efficiency and accuracy of the new Laplace homotopy pertur-
bation method (LHPM) by applying it to several test problems.

Example  Consider the following initial-boundary value problem [].

∂αu
∂tα

=


x

∂u
∂x

,  < t ≤ , ≤ x ≤ ,  < α ≤ , ()

u(x, ) = x,
∂u
∂t

(x, ) = x, u(, t) = , u(, t) =  +
∞∑
k=

tkα+

�(kα + )
. ()

We know that the exact solution of this problem is

u(x, t) = x + x
∞∑
k=

tkα+

�(kα + )
. ()

By using the method developed in the previous section (), we find that

	(x, s) =

s

(
sx + x

)
,

	(x, s) =

sα

[


x

∂

∂x
	(x, s)

]
=

x

sα+
,

	(x, s) =

Sα

[


x

∂

∂x
	(x, s)

]
=

x

sα+
,

...

	n+(x, s) =

sα

[


x

∂

∂x
	n(x, s)

]
=

x

s(n+)α+

()

and so on. By (), we get

Hn(x, s) =
x
s
+
x

s

(
 +


sα

+

sα

+ · · · + 
snα

)
. ()
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Table 1 Absolute errors |u(x, t) – un(x, t)| by LHPMwith p = 8, α = 1.75, 1.85, 1.95, n = 3 for
various values of x and t for Example 1

x/t 0.2 0.4 0.8 1.0

0.2 α = 1.75 1.46e–8 7.75e–9 8.10e–8 5.50e–7
1.85 2.69e–8 2.24e–8 4.96e–8 5.50e–8
1.95 6.83e–9 6.35e–8 8.26e–8 2.14e–7

0.4 α = 1.75 2.17e–9 2.74e–8 2.52e–7 2.17e–6
1.85 5.52e–10 1.00e–8 1.06e–7 1.74e–7
1.95 1.22e–8 6.63e–9 2.14e–7 8.50e–7

0.8 α = 1.75 6.03e–8 1.11e–7 1.08e–6 8.72e–6
1.85 1.31e–8 1.44e–7 4.63e–7 8.25e–7
1.95 5.08e–8 6.69e–8 8.41e–7 3.55e–6

1.0 α = 1.75 6.06e–8 1.41e–8 1.67e–6 1.37e–5
1.85 1.48e–8 6.65e–8 7.57e–7 1.20e–6
1.95 7.85e–8 1.52e–8 1.32e–6 5.35e–6

Taking the inverse Laplace transform of (), the approximate solution of ()-() is given
by

un(x, t) = L–
(
Hn(x, s)

)
= x + x

n∑
k=

tkα+

�(kα + )
, ()

which, on taking the limit n→ ∞, yields

u(x, t) = lim
n→∞un(x, t) = x + x

∞∑
k=

tkα+

�(kα + )
. ()

Table  shows the absolute errors |u(x, t) – un(x, t)| using the LHPM with p = , α =
., ., ., n =  for various values of x and t. Clearly, it follows from the table that the
numerical solutions are in good agreement with the exact solution.
In Figure , we plot the logarithm of absolute errors obtained by the LHPM at x = ., 

with n = , p =  for various values of t. In Figure , we plot the numerical solution and
the exact solution at x = .,  with n = , p =  for various values of α and t.

Example  Let us consider the following fractional differential equation [].

∂αu
∂tα

+ x
∂u
∂x

+
∂u
∂x

= 
(
tα + x + 

)
,  < t ≤ , ≤ x≤ ,  < α ≤ , ()

with the initial condition

u(x, ) = x ()

and the boundary conditions

u(, t) = tα
�(α + )
�(α + )

, u(, t) =  + tα
�(α + )
�(α + )

. ()

The exact solution of the given problem is given by

u(x, t) = x + tα
�(α + )
�(α + )

. ()
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Figure 1 Logarithm of absolute errors obtained by the LHPM at x = 0.5, 1 with n = 10, p = 8 for various
values of t.

By using the method presented in Section , namely (), we obtain

	(x, s) =
x

s
+


sα

[
�(α + )
sα+

+
x + 
s

]
,

	(x, s) =

sα

[
–x

∂

∂x
–

∂

∂x

]
	(x, s) = –

(
x + 

)( 
sα+

+


sα+

)
,

	(x, s) =

sα

[
–x

∂

∂x
–

∂

∂x

]
	(x, s) =

(
x + 

)( 
sα+

+


sα+

)
,

...

	n+(x, s) =

sα

[
–x

∂

∂x
–

∂

∂x

]
	n(x, s) = (–)n+

(
x + 

)( n+

s(n+)α+
+

n+

s(n+)α+

)
,

()

and so on.
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Figure 2 The numerical solution and the exact solution at x = 0.5, 1 with n = 3, p = 8 for various values
of α and t.

As before, by using (), we obtain

Hn(x, s) =
�(α + )

sα+
+
x

s
+ (–)n

(
 + x

) n+

s(n+)α+
. ()

Taking the inverse Laplace transform of () and taking the limit n→ ∞, the approximate
solution for problem ()-() is given by

u(x, t) = lim
n→∞un(x, t) = x + tα

�(α + )
�(α + )

. ()

In Table , we list the absolute errors using the LHPM with p = , α = ., ., .,
n =  for various values of x and t. It can easily be seen from the table that the numerical
solutions are in good agreement with the exact solution.
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Table 2 Absolute errors by LHPMwith p = 10, α = 0.75, 0.85, 0.95, n = 10 for various values of
x and t

x/t 0.1 0.2 0.3 0.4 0.5

0.2 α = 0.75 3.70e–6 4.16e–6 4.86e–6 2.39e–5 9.89e–5
0.85 3.56e–7 2.18e–6 4.93e–6 6.44e–6 4.27e–6
0.95 3.24e–6 3.58e–6 2.45e–6 1.36e–6 3.22e–5

0.4 α = 0.75 1.04e–5 5.81e–6 3.71e–6 6.88e–6 1.30e–4
0.85 8.54e–6 4.68e–6 9.57e–7 2.36e–6 6.87e–6
0.95 1.64e–6 3.80e–6 2.55e–6 5.25e–6 1.91e–5

0.8 α = 0.75 2.02e–6 1.09e–5 3.78e–5 3.06e–5 1.88e–4
0.85 2.19e–5 7.41e–6 6.09e–6 1.12e–5 1.88e–4
0.95 5.01e–5 5.40e–5 1.33e–5 2.70e–5 8.67e–6

1.0 α = 0.75 2.27e–5 6.16e–5 2.44e–5 6.16e–5 2.33e–4
0.85 2.10e–5 9.47e–5 1.88e–5 6.15e–5 3.98e–5
0.95 4.03e–5 6.86e–6 1.74e–5 2.91e–5 8.56e–5

In Figure , we plot the logarithm of absolute errors obtained by the LHPM at x = ., 
with n = , p =  for various values of t. In Figure , we plot the exact solution and the
numerical solution obtained by the LHPMwith x = .,  for n = ,, , p = ,α = . for
various values of t. As we see fromFigure , the numerical solutions are in good agreement
with the exact solution as the value of n is increased.

Example  Consider the fractional differential equation []

∂αu
∂tα

+
∂u
∂x

=
t–α

�( – α)
sin(x) + t cos(x), t > , ≤ x≤ ,  < α ≤ , ()

with the initial condition

u(x, ) =  ()

and the boundary conditions

u(, t) = , u(, t) = t sin(). ()

The exact solution for this problem is

u(x, t) = t sin(x). ()

Following the method of Section  (), we find that

	(x, s) =

sα

[
sin(x)
s–α

+
cos(x)
s

]
,

	(x, s) =
–
sα

∂

∂x
	(x, s) = –


sα

[
cos(x)
s–α

–
sin(x)
s

]
,

	(x, s) =
–
sα

∂

∂x
	(x, s) =


sα

[
–
sin(x)
s–α

–
cos(x)
s

]
,

...

	n(x, s) =
–
sα

∂

∂x
	n–(x, s) = (–)n


s(n+)α

[
sin( nπ

 + x)
s–α

+
cos( nπ

 + x)
s

]
.

()
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Figure 3 Logarithm of absolute errors obtained by the LHPM at x = 0.5, 1 with n = 10, p = 10 for
various values of t.

By means of (), we obtain

Hn(x, s) =
�(α + )

sα+
+
x

s
+ (–)n

(
 + x

) n+

s(n+)α+
. ()

Taking the inverse Laplace transform of (), the approximate solution of ()-() is
found to be

un(x, t) = L–
(
Hn(x, s)

)
=

⎧⎨
⎩

sinx
s + cosx

s(n+)α+ , n = k,

sinx( 
s –


s(n+)α+ ), n = k + ,

()

which, on taking the limit n→ ∞, gives

u(x, t) = lim
n→∞un(x, t) = t sin(x). ()
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Figure 4 The exact solution and the numerical solution obtained by the LHPMwith x = 0.1, 1 for
n = 4,6, 10, p = 10, α = 0.75 for various values of t.

In Table , we list the absolute errors using the LHPM with p = , α = ., ., .,
n =  for various values of x and t. It follows from the table that the numerical solutions
are in good agreement with the exact solution.
In Figure , we plot the logarithm of absolute errors obtained by the LHPM at x = ., 

with n = , p =  for various values of t. In Figure , we plot the exact solution and the
numerical solution obtained by the LHPMwith x = .,  for n = , , , p = , α = . for
various values of t. Clearly, the numerical solutions are in good agreement with the exact
solution as the value of n is increased.

Example  Consider the fractional differential equation

∂αu
∂tα

(x, t) + u(x, t) =
xt–α

�( – α)
+ xt, t > , ≤ x ≤ ,  < α ≤ , ()
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Table 3 Absolute errors by LHPMwith p = 10, α = 0.5, 0.75, 0.95, n = 10 for various values of x
and t for Example 3

x/t 0.2 0.4 0.6 0.8 1.0

0.2 α = 0.5 4.32e–7 1.43e–6 1.85e–5 1.20e–4 5.23e–4
0.75 1.44e–7 1.52e–7 1.17e–7 2.05e–7 6.87e–7
0.95 1.98e–7 8.37e–8 1.66e–7 8.02e–6 8.12e–5

0.4 α = 0.5 6.94e–7 9.31e–7 1.79e–5 1.12e–4 4.88e–4
0.75 1.88e–8 5.10e–7 2.09e–6 9.79e–7 2.42e–6
0.95 1.08e–7 2.67e–7 8.99e–7 7.08e–6 7.67e–5

0.6 α = 0.5 4.21e–7 1.36e–6 1.60e–5 9.98e–5 4.40e–4
0.75 2.73e–8 3.81e–7 1.49e–8 2.78e–9 7.53e–7
0.95 1.52e–7 1.02e–6 9.65e–7 4.77e–6 7.07e–5

0.8 α = 0.5 1.49e–6 1.02e–6 1.18e–5 8.56e–5 3.70e–4
0.75 6.75e–8 7.31e–7 1.33e–7 2.05e–6 5.89e–6
0.95 3.17e–7 3.44e–7 1.22e–6 8.54e–6 5.57e–5

1.0 α = 0.5 1.42e–7 6.25e–7 1.05e–5 6.01e–5 2.89e–4
0.75 5.51e–7 8.22e–7 2.94e–6 3.18e–7 8.85e–6
0.95 6.30e–7 2.00e–6 3.90e–7 5.59e–6 4.19e–5

with the initial condition

u(x, ) =  ()

and the boundary conditions

u(, t) = , u(, t) = t. ()

The exact solution for this problem is

u(x, t) = xt. ()

Taking the Laplace transform of problem ()-() and using (), we obtain


s–α

[
s	(x, s)

]
+�(x, s) =

x
s–α

+
x

s
, ()

where	(x, s) and h�(x, s) denote the Laplace transform of u(x, t) and u(x, t), respectively,
and

	(, s) = , 	(, s) =

s
.

According to HPM, we construct a homotopy for Eq. () as follows:

	(x, s) =

sα

(
x
s–α

– p�(x, s) +
x

s

)
. ()

Following the method of Section  (), we find that

	(x, s) =
x
s

+
!x

sα+
,

	(x, s) =
–
sα

(
!x

s
+
(!)x�(α + )
�(α + )sα+

+
x�(α + )
�(α + )sα+

)
, ()
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Figure 5 Logarithm of absolute errors obtained by the LHPM at x = 0.5, 1 with n = 10, p = 10 for
various values of t.

	(x, s) =
× !x

sα+�(α + )

(
�(α + ) +

!�(α + )�(α + )
�(α + )�(α + )sα+

+ 
x�(α + )�(α + )

�(α + )sα+

+ !
x�(α + )
�(α + )sα+

+ (!)
x�(α + )�(α + )
�(α + )�(α + )sα+

)

and so on.
By means of (), we obtain

H(x, s) =
x
s

+
× !x

sα+�(α + )

(
!�(α + )�(α + )
�(α + )�(α + )sα+

+ 
x�(α + )�(α + )

�(α + )sα+
+ (!)

x�(α + )�(α + )
�(α + )�(α + )sα+

)
. ()
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Figure 6 The exact solution and the numerical solution obtained by the LHPMwith x = 0.5, 1 for
n = 2,3, 9, p = 10, α = 0.25 for various values of t.

Taking the inverse Laplace transform of (), the approximate solution of ()-() is
found to be

un(x, t) = L–
(
Hn(x, s)

)
= xt +

× !x�(α + )�(α + )
�(α + )�(α + )�(α + )

tα+

+  × !
x�(α + )�(α + )

�(α + )�(α + )�(α + )
tα+

+ (!)
x�(α + )�(α + )

�(α + )�(α + )�(α + )
tα+. ()

In Table , we list the absolute errors using the LHPMwith α = ., ., ., ., .,
n = , x = . for various values of t. It follows from the table that the numerical solutions
are in good agreement with the exact solution.
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Table 4 Absolute errors by LHPMwith α = 0.8, 0.85, 0.90, 0.95, 0.99, n = 2, x = 0.5 for various
values of t for Example 4

α/t 0.2 0.4 0.6 0.8 1.0

0.80 1.3346e–8 5.2110e–6 1.7455e–4 0.0022 0.0168
0.85 9.3581e–9 3.9129e–6 1.3612e–4 0.0018 0.0136
0.90 6.5531e–9 2.9345e–6 1.0604e–4 0.0014 0.0110
0.95 4.5828e–9 2.1981e–6 8.2538e–5 0.0011 0.0089
0.99 3.4393e–9 1.7429e–6 6.7497e–5 9.3087e–4 0.0075

6 Conclusions
In this paper, we have developed a new numerical method for solving fractional partial
differential equations. This method is based on Laplace transform, the homotopy pertur-
bation method and Stehfest’s numerical algorithm for calculating inverse Laplace trans-
form. We demonstrate the efficiency and accuracy of the proposed method by applying
it to three typical examples. It is found that the approximate solutions produced by our
method are in complete agreement with the corresponding exact solutions. Moreover, in
view of its simplicity, our method is applicable to a wide class of initial-boundary value
problems occurring in applied sciences.
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