
Zhang and Wu Advances in Difference Equations 2013, 2013:377
http://www.advancesindifferenceequations.com/content/2013/1/377

RESEARCH Open Access

On the reciprocal sums of the generalized
Fibonacci sequences
Han Zhang and Zhengang Wu*

*Correspondence:
sky.wzgfff@163.com
Department of Mathematics,
Northwest University, Xi’an, Shaanxi,
P.R. China

Abstract
The Fibonacci sequence has been generalized in many ways. One of them is defined
by the relation un = aun–1 + un–2 if n is even, un = bun–1 + un–2 if n is odd, with initial
values u0 = 0 and u1 = 1, where a and b are positive integers. In this paper, we
consider the reciprocal sum of un and then establish some identities relating to
‖(∑∞

k=n
1
uk
)–1‖, where ‖x‖ denotes the nearest integer to x.
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1 Introduction
For any integer n ≥ , the well-known Fibonacci sequence Fn is defined by the second-
order linear recurrence sequence Fn+ = Fn+ + Fn, where F =  and F = . The Fibonacci
sequence has been generalized in many ways, for example, by changing the initial values,
by changing the recurrence relation, and so on. Edson and Yayenie [] defined a further
generalized Fibonacci sequence un depending on two real parameters used in a non-linear
recurrence relation, namely,

un =

{
aun– + un– if n is even and n≥ ,
bun– + un– if n is odd and n≥ ,

()

with initial values u =  and u = , where a, b are positive integers. This new sequence
is actually a family of sequences where each new choice of a and b produces a distinct
sequence. When a = b = , we have the classical Fibonacci sequence and when a = b = ,
we obtain the Pell numbers. Even further, if we set a = b = k for some positive integer k,
we obtain the k-Fibonacci numbers.
Various properties of the Fibonacci numbers and related sequences have been studied by

many authors, see [–]. Recently, Ohtsuka and Nakamura [] studied the partial infinite
sums of reciprocal Fibonacci numbers and proved that

⌊( ∞∑
k=n


Fk

)–⌋
=

{
Fn– if n is even and n≥ ,
Fn– –  if n is odd and n≥ ,

where �x� (the floor function) denotes the greatest integer less than or equal to x.
Some related works can also be found in [–]. In particular, in [], the authors stud-

ied a problem which is a little different from that of [], namely that of determining the
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nearest integer to (
∑∞

k=n

vk
)–. Specifically, suppose that ‖x‖ = �x+ 

� (the nearest integer
function), and {vn}n≥ is an integer sequence satisfying the recurrence formula

vn = avn– + avn– + · · · + asvn–s (s ≥ )

for any positive integer a,a, . . . ,am, with the initial conditions v ≥ , vk ∈ N,  ≤ k ≤
s – . Then, provided a ≥ a ≥ · · · ≥ am ≥ , we can conclude that there exists a positive
integer n such that

∥∥∥∥∥
( ∞∑

k=n


vk

)–∥∥∥∥∥ = vn – vn–

for all n > n.
Because the Fibonacci sequence has been generalized to a higher-order recursive se-

quence, any study on linear recursive sequences has little significance in this context, and
we have to consider other non-linear recursive sequences. Themain purpose of this paper
is concerned with finding expressions for

∥∥∥∥∥
( ∞∑

k=n


uk

)–∥∥∥∥∥.
In fact, this problem is difficult because each item of this sequence relies on the previous
relation. In order to resolve the question, we consider the reciprocal sums in two direc-
tions: on the one hand to the subsequence upk+q and on the other to the product form
ukuk+c+, where p, q, c are non-negative integers and p≥ . The results are as follows.

Theorem  Let {un} be a second-order sequence defined by (). For any even p ≥  and
non-negative integer q < p, there exists a positive integer n such that

∥∥∥∥∥
( ∞∑

k=n


upk+q

)–∥∥∥∥∥ = upn+q – upn–p+q

for all n ≥ n.

Theorem  Let {un} be a second-order sequence defined by (). For any integer c ≥ , there
exists a positive integer n such that

∥∥∥∥∥
( ∞∑

k=n

akbk+c+

ukuk+c+

)–

–
(
unun+c+
anbn+c+

–
un–un+c
an–bn+c

)∥∥∥∥∥ = 

for all n ≥ n.

Open problem In the light of our investigation, for any positive integer s ≥  and l,
whether there exist identities for

( ∞∑
k=n


usk

)–

and

( ∞∑
k=n


ukuk+l

)–

represent two interesting, albeit challenging, open problems.
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2 Proofs of the theorems
We need the following lemma.

Lemma (Generalized Binet’s formula) The terms of the generalized Fibonacci sequence un
are given by

un =
a� n �–n+

(ab)� n � · αn – βn

α – β
,

where α = ab+
√
ab+ab
 , β = ab–

√
ab+ab
 .

Proof See Theorem  of []. �

Proof of Theorem  From the geometric series as ε → , we have


± ε

= ∓ ε +O
(
ε

)
=  +O(ε).

From Lemma and the identity αβ = –ab, we have

upk+q =

⎧⎪⎨
⎪⎩

αpk+q–βpk+q

a
pk+q–

 b
pk+q
 (α–β)

if q is even (so that pk + q is even),

αpk+q–βpk+q

ab
pk+q–

 (α–β)
if q is odd (so that pk + q is odd).

Let

A =

⎧⎪⎨
⎪⎩



a
pk+q–

 b
pk+q
 (α–β)

if q is even,


ab
pk+q–

 (α–β)
if q is odd.

Thus,

upk+q = Aαpk+q +O
( |β| pk

α
pk


)
.

Hence,


upk+q

=


Aαpk+q( +O( |β|
pk


α
pk

))
=


Aαpk+q

(
 +O

( |β| pk
α

pk


))

=


Aαpk+q +O
( |β| pk

α
pk


)
.

Thus,

∞∑
k=n


upk+q

=


αpn+q

A( – 
αp )

+O
( |β| pn

α
pn


)
=

αp

Aαpn+q(αp – )

(
 +O

( |β| pn
α

pn


))
.
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Taking the reciprocal of this expression yields

( ∞∑
k=n


upk+q

)–

=
Aαpn+q(αp – )

αp +O
( |β| pn

α
pn


)

= Aαpn+q –Aαpn–p+q +O
( |β| pn

α
pn


)

= upn+q – upn–p+q +O
( |β| pn

α
pn


)
. ()

Therefore, for any even p ≥  and integer  < q < p, there exists n ≥ n sufficiently large
such that the modulus of the last error term of identity () becomes less than /. This
completes the proof of Theorem . �

Proof of Theorem  In the first place, suppose that k ≥  is even. From Lemma we have

uk =


a k
 –b k


· αk – βk

α – β
,

and

uk+c+ =


a k
 +cb k

 +c
· αk+c+ – βk+c+

α – β
.

The identities (α – β) = ab + ab and αβ = –ab now yield

ukuk+c+ =
αk+c+ + βk+c+ – (αβ)k(αc+ + βc+)

ak+c–bk+c(α – β)

=
αk+c+

(ab + b)(ab)k+c
+O

((
αβ

ab

)k)

=
αk+c+

(ab + b)(ab)k+c
+O().

Further, if k ≥  is odd, the same identity is similarly obtained. Thus, in both cases we have


ukuk+c+

=


αk+c+

(ab+b)(ab)k+c +O()
=


αk+c+

(ab+b)(ab)k+c ( +O( (ab)k
αk

))

=
(ab + b)(ab)k+c

αk+c+ +O
(
(ab)k

αk

)
.

Hence,

akbk+c+

ukuk+c+
=
(ab + b)ak+cbk+c

αk+c+ +O
(
(ab)k

αk

)

=
ac+bc+ + acbc+

αc+ · (ab)
k

αk +O
(
(ab)k

αk

)
.
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Let B = ac+bc++acbc+
αc+

, then

akbk+c+

ukuk+c+
=
B(ab)k

αk +O
(
(ab)k

αk

)
.

Consequently,

∞∑
k=n

akbk+c+

ukuk+c+
= B

∞∑
k=n

(ab)k

αk +O

( ∞∑
k=n

(ab)k

αk

)

= B · ( ab
α
)n

 – ( ab
α
)

+O
(
(ab)n

αn

)
.

Taking the reciprocal of this expression yields

( ∞∑
k=n

akbk+c+

ukuk+c+

)–

=


B · ( abα )n

–( abα )
( +O( |β|n

αn ))

=
 – ( ab

α
)

B · ( ab
α
)n

(
 +O

( |β|n
αn

))

=
 – ( ab

α
)

B · ( ab
α
)n

+O
(


αn|β|n

)

=

B

·
(

α

ab

)n

–

B

·
(

α

ab

)n–

+O
(


αn|β|n

)
. ()

On the other hand,

unun+c+
anbn+c+

–
un–un+c
an–bn+c

=
αc+

ac+bc+ + acbc+
·
(

α

ab

)n

–
αc+

ac+bc+ + acbc+
·
(

α

ab

)n–

+O
(


anbn

)

=

B

·
(

α

ab

)n

–

B

·
(

α

ab

)n–

+O
(


anbn

)
. ()

Combining () and (), finally we have

( ∞∑
k=n

akbk+c+

ukuk+c+

)–

–
(
unun+c+
anbn+c+

–
un–un+c
an–bn+c

)
=O

(


anbn

)
. ()

It follows that for any integer c ≥ , there exists n ≥ n sufficiently large such that the
modulus of the last error term of identity () becomes less than /. This completes the
proof of Theorem . �
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