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Abstract
In this paper, we investigate the growth of transcendental meromorphic solutions of
some types of systems of complex functional equations and obtain the lower bounds
for Nevanlinna lower order for meromorphic solutions of such equations. Our results
are improvement of the previous theorems given by Gao, Zheng and Chen. Some
examples are also given to illustrate our results.
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1 Introduction andmain results
Throughout this paper, the term ‘meromorphic’ will always mean meromorphic in the
complex plane C. Considering a meromorphic function f , we shall assume that readers
are familiar with the fundamental results and the standard notations of the Nevanlinna
value distribution theory of meromorphic functions such as m(r, f ), N(r, f ), T(r, f ), the
first and second main theorems, lemma on the logarithmic derivatives etc. of Nevanlinna
theory (see Hayman [], Yang [] and Yi and Yang []). We also use ρ(f ), μ(f ), λ(f ) and
λ( f ) to denote the order, the lower order, the exponent of convergence of zeros and the
exponent of convergence of poles of f (z), respectively, and S(r, f ) to denote any quantity
satisfying S(r, f ) = o(T(r, f )) for all r outside a possible exceptional set of finite logarithmic
measure limr→∞

∫
[,r)∩E

dt
t < ∞.

Recently, there have been a number of papers focusing on the growth of solutions of dif-
ference equations, value distribution and uniqueness of differences analogues of Nevan-
linna’s theory (including [–]). Based on these results given in [–], people obtained
many interesting theorems in the fields of complex analysis.
In , Silvennoinen [] studied the growth and existence of meromorphic solutions

of functional equations of the form f (p(z)) = R(z, f (z)) and obtained the following result.

Theorem . [] Let f be a non-constant meromorphic solution of the equation

f
(
p(z)

)
= R

(
z, f (z)

)
=

∑m
i= ai(z)f (z)i∑n
j= bj(z)f (z)j

,

where p(z) is an entire function, ai, bj are small meromorphic functions with respect to f .
Then p(z) is a polynomial.
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In , Gao [] studied the problem when the above equation is replaced by the fol-
lowing system of function equations:

⎧⎪⎪⎨
⎪⎪⎩
f(p(z)) = R(z, f(z)) =

∑m
i= ai(z)f(z)

i∑n
j= bj(z)f(z)

j ,

f(p(z)) = R(z, f(z)) =
∑m

i= ci(z)f(z)
i∑n

j= dj(z)f(z)
j ,

()

where p(z) is an entire function, R(z, f(z)), R(z, f(z)) are irreducible rational functions,
the coefficients are small functions; and he obtained the following.

Theorem . [, Theorem ] Let (f, f) be a non-constant meromorphic solution of sys-
tem (). Then p(z) is a polynomial.

After his works, Gao [, ], Xu et al. [] further investigated the growth and existence
of meromorphic solutions of some types of systems of complex functional equations and
obtained a series of results (see [, , , ]). Inspired by the ideas of Refs. [–,
, ], we investigate some properties of solutions of some types of systems of complex
functional equations and obtain the following results.
The first theorem is about meromorphic solutions with few zeros and poles of a type of

system of complex functional equations.

Theorem. Let cj ∈C\{} and suppose that f, f are a pair of non-rationalmeromorphic
solutions of the system

⎧⎨
⎩

∏n
j= f(z + cj) =

a(z)+a(z)f(z)+···+ap (z)f(z)p
b(z)+b(z)f(z)+···+bq (z)f(z)q ,∏n

j= f(z + cj) =
e(z)+e(z)f(z)+···+ep (z)f(z)p
d(z)+d(z)f(z)+···+dq (z)f(z)q ,

()

with the coefficients ai(z), bi(z), ei(z), di(z) being small functions with respect to f, f and
ap (z)bq (z)ep (z)dq (z) �≡ . If

max
{
λ(ft),λ(/ft)

}
< ρ(ft), t = , , ()

then system () is of the form

⎧⎨
⎩

∏n
j= f(z + cj) = c(z)f(z)s ,∏n
j= f(z + cj) = c(z)f(z)s ,

where c(z), c(z) are meromorphic functions, T(r, c) +T(r, c) = S(r, f) + S(r, f), s, s ∈ Z.

Theorem . Suppose that (f, f) are a pair of transcendental meromorphic solutions of
the system of q-shift difference equations

⎧⎨
⎩

∑n
j= aj (z)f(qjz + cj) =

∑d
i= bi (z)f(z)i,∑n

j= aj (z)f(qjz + cj) =
∑d

i= bi (z)f(z)i,
()
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where cj ∈C \ {}, q ∈ C, |q| > , dd ≥  and the coefficients atj (z), bti (z) (t = , ) are ratio-
nal functions. If ft (t = , ) are entire or have finitely many poles, then there exist constants
Kt >  (t = , ) and r >  such that for all r ≥ r,

logM(r, ft) ≥ Kt(dd)
log r

n log |q| , t = , .

Theorem . Suppose that (f, f) are a pair of transcendental meromorphic solutions of
the system of q-shift difference equations

⎧⎨
⎩

∑n
j= aj (z)f(qjz + cj) = P(z,f(z))

Q(z,f(z))
,∑n

j= aj (z)f(qjz + cj) = P(z,f(z))
Q(z,f(z))

,
()

where cj ∈ C \ {}, q ∈ C, |q| > , the coefficients atj (z), t = , , are rational functions, and
Pt , Qt are relatively prime polynomials in ft over the field of rational functions satisfying
pt = degft Pt , lt = degft Qt , dt = pt – lt ≥ , t = , . If ft (t = , ) have infinitely many poles,
then for sufficiently large r,

n(r, ft) ≥ Kt(dd)
log r

(n+n) log |q| , t = , ,

and

μ(f) +μ(f) ≥ (logd + logd)
(n + n) log |q| .

Remark . Since system () is a particular case of system (), from the conclusions of
Theorem ., we can get the following result.
Under the assumptions of Theorem .. If ft (t = , ) have infinitely many poles, then

there exist constants Kt >  (t = , ) and r >  such that for all r ≥ r,

n(r, ft) ≥ Kt(dd)
log r

n log |q| , t = , ,

and

μ(f) +μ(f) ≥ logd + logd
n log |q| .

Example . The function (f(z), f(z)) = ( ezz ,
ez
–z ) satisfies the system of the form

⎧⎨
⎩

∑n
j=

jz+cj
ecj zj

f(jz + cj) =
∑n

j= f(z)
j ,∑n

j=
–(jz+cj)

ecj zj
f(jz + cj) =

∑n
j= f(z)

j ,

with rational coefficients, where |q| =  > , d = d = n and cj ∈ C. Since n < n = d = d
for all n ∈ N+, we have logM(r, ft) = r – log r ≥ 

 r =

 (dd)

log r
n log |q| (r → ∞) and μ(ft) =

σ (ft) =  = log(dd)
n log |q| for t = , . This shows that the conclusion of Theorem . is sharp

and the equality in the consequent result μ(f) +μ(f) ≥ (logd+logd)
(n+n) log |q| of Remark . can be

arrived.
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Let q, cj be stated as in Theorem ., set

F(z; f,n,q, cj) =
∑

λ∈I dλ (z)f(qz + c)
i
λ f(qz + c)

i
λ · · · f(qnz + cn )

i
λn∑

μ∈J eμ (z)f(qz + c)
j
μ f(qz + c)

j
μ · · · f(qnz + cn )

j
μn

,

F(z; f,n,q, cj) =
∑

λ∈I dλ (z)f(qz + c)
i
λ f(qz + c)

i
λ · · · f(qnz + cn )

i
λn∑

μ∈J eμ (z)f(qz + c)
j
μ f(qz + c)

j
μ · · · f(qnz + cn )

j
μn

.

Now, we will investigate the lower order of meromorphic solutions of a type of system
of complex function equations and obtain a result as follows.

Theorem . Suppose that (f, f) are a pair of transcendental meromorphic solutions of
the system of q-difference equations

⎧⎪⎪⎨
⎪⎪⎩
F(z; f,n,q, cj) =

∑s
j= a


j (z)f(z)

j

∑l
j= b


j (z)f(z)

j
,

F(z; f,n,q, cj) =
∑s

j= a

j (z)f(z)

j

∑l
j= b


j (z)f(z)

j
,

()

where It = {(iλt , iλt , . . . , iλtnt )}, Jt = {jμt

, jμt


, . . . , jμt

nt
} are finite index sets satisfying

max
λt ,μt

{iλt + iλt + · · · + iλtnt , jμt

+ jμt


+ · · · + jμt

nt
} = σt , t = , ,

and dt =max{st , lt} ≥ , t = , , and all coefficients of () are of growth S(r, f), S(r, f). If

dd > nnσσ, ()

then for sufficiently large r,

T(r, ft)≥ Kt

(
dd

nnσσ

) log r
(n+n) log |q|

, t = , ,

where Kt >  are constants. Thus, the lower order of f, f satisfy

μ(f) +μ(f) ≥ (logdd – lognnσσ)
(n + n) log |q| .

Example . The functions (f(z), f(z)) = (ez , e–z ) satisfy the system of function equa-
tions

⎧⎨
⎩

f(z+c)+f(z+c)f(z+c)
f(z+c)

= af(z)+a
f(z)

,
f(z+c)+f(z+c)f(z+c)

f(z+c)
= bf(z)+b

f(z)
,

with small function coefficients

a = e–zc–zcec

–c


 , a = e–zc–c


 , b = ezc+c


–zc–c


 , b = ezc+c


 ,
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where q = n = n = σ = σ = , d = d = , dd =  > nnσσ, c, c ∈ C and a, a,
b, b are small functions of f, f. We have μ(ft) = σ (ft) = , t = ,  and

μ(f) +μ(f) =  >  =
(logdd – lognnσσ)

(n + n) log |q| .

This shows that Theorem . may hold.

2 The proof of Theorem 1.3
Denote Gt(z) =

∏nt
j= ft(z + cj), t = , . By applying Valiron-Mohon’ko theorem [] to (),

we have

T(r,G) =max{p,q}T(r, f) + S(r, f) + S(r, f),

T(r,G) =max{p,q}T(r, f) + S(r, f) + S(r, f).
()

From (), we can take constants ξt , δt such that

max
{
λ(ft),λ(/ft)

}
< ξt < δt < ρ(ft), t = , ,

then we have

T
(
r,
f ′
t
ft

)
=N(r, ft) +N

(
r,

ft

)
+ S(r, ft) =O

(
rξt

)
+ S(r, ft), t = , .

From () and the definitions of Gt (t = , ), similar to the above argument, we have

T
(
r,
G′

t
Gt

)
= N

(
r,
G′

t
Gt

)
+m

(
r,
G′

t
Gt

)

≤ ntN(r +C, ft) + ntN
(
r,

ft

)
+ S(r, f) + S(r, f)

= O
(
rξt

)
+ S(r, f) + S(r, f),

where C := max{|ci|, |cj|, i = , , . . . ,n; j = , , . . . ,n}. From (), we know that zeros and
poles are Borel exceptions of ft (t = , ), and from [, Satz .], we have that ft (t = , )
is of regular growth. Hence, there exists r >  such that T(r, ft) > rδt for r > r. So, we can
get that

T
(
r,
G′

t
Gt

)
= S(r, f) + S(r, f), T

(
r,
f ′
t
ft

)
= S(r, f) + S(r, f), t = , .

Now, we rewrite system () as

⎧⎨
⎩

bp (z)
ap (z)

G(z) = P(z,f)
Q(z,f)

= u(z, f),
dp (z)
ep (z)

G(z) = P(z,f)
Q(z,f)

= u(z, f),
()

without loss of generality, assume that Pt , Qt are monic polynomials in ft with coeffi-
cients of growth S(r, f), S(r, f). Set Ft :=

f ′t
ft , Ut :=

u′
t

ut , t = , . From (), we have T(r,Ut) =

http://www.advancesindifferenceequations.com/content/2013/1/378
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S(r, f) + S(r, f). And because

⎧⎨
⎩

P′
Q–PQ′


Q


= u′
 =Uu = UP

Q
,

P′
Q–PQ′


Q


= u′
 =Uu = UP

Q
,

it follows that⎧⎨
⎩P′

Q – PQ′
 =UPQ,

P′
Q – PQ′

 =UPQ.

Substituting f ′
t = Ftft , t = , , to the above equalities and comparing the leading coeffi-

cients, we can get

(pt – qt)Ft =Ut , t = , .

Solving the above equations, we get

ut = πt
(
ft(z)

)p–q , πt ∈C, t = , . ()

From () and (), it follows that

⎧⎨
⎩
G(z) = π

ap (z)
bp (z)

(f(z))p–q ,

G(z) = π
ep (z)
dp (z)

(f(z))p–q .

Thus, we complete the proof of Theorem ..

3 Proofs of Theorems 1.4 and 1.5
3.1 The proof of Theorem 1.4
Because the coefficients atj (z), bti (z) (t = , ) are rational functions, we can rewrite () as
follows:⎧⎨

⎩
∑n

j=A
j (z)f(qjz + cj) =

∑d
i= B

i (z)f(z)i,∑n
j=A

j (z)f(qjz + cj) =
∑d

i= B
i (z)f(z)i,

()

where the coefficients At
j (z), Bt

i (z) (t = , ) are polynomials. We will consider two cases as
follows.
Case . Since (f, f) are a pair of solutions of system () or () and ft , t = , , are tran-

scendental entire, set pti = degAt
j (j = , , . . . ,n), qti = degBt

i (i = , , . . . ,di), t = , , and
C := max{|ci|, |cj|, i = , , . . . ,n; j = , , . . . ,n}. Taking mt = max{pt, . . . ,ptn} + , and from
|q| >  andM(r, ft(qjz + cj)) ≤M(|q|jr + |cj|, ft), we have that

⎧⎨
⎩M(r,

∑d
i= B

i (z)f(z)i) =M(r,
∑n

j=A
j (z)f(qjz + cj)) ≤ nrmM(|q|nr +C, f),

M(r,
∑d

i= B
i (z)f(z)i) =M(r,

∑n
j=A

j (z)f(qjz + cj)) ≤ nrmM(|q|nr +C, f),
()

when r is sufficiently large. Since Bt
i (i = , , . . . ,dt ; t = , ) are polynomials and ft (t = , )

are transcendental entire functions, we have M(r,
∑d–

i= B
i f(z)i) = o(M(r, f(z)d )) and

http://www.advancesindifferenceequations.com/content/2013/1/378
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M(r,
∑d–

i= B
i f(z)i) = o(M(r, f(z)d )). Then, for sufficiently large r, it follows that

⎧⎨
⎩M(r,

∑d
i= B

i (z)f(z)i) ≥ 
M(r,B

d f(z)
d ),

M(r,
∑d

i= B
i (z)f(z)i) ≥ 

M(r,B
d f(z)

d ).
()

From () and (), for sufficiently large r it follows that

⎧⎨
⎩logM(|q|nr +C, f) ≥ d logM(r, f) + g(r),

logM(|q|nr +C, f)≥ d logM(r, f) + g(r),
()

where |gt(r)| < Kt log r, t = , , for some constants Kt > . From (), for sufficiently large
r, we get

logM
(|q|nr +C +C|q|n, f

) ≥ dd logM(r, f) + g
(|q|nr +C

)
+ dg(r). ()

Iterating (), we have

logM

(
|q|nkr +C

k–∑
ν=

|q|νn, f
)

≥ (dd)k logM(r, f) + E
k(r) + E

k (r) (k ∈N), ()

where

∣∣E
k(r)

∣∣ =
∣∣∣∣∣(dd)k–g(|q|nr +C

)
+ · · · + g

(
|q|(k–)nr +C

k–∑
ν=

|q|νn
)∣∣∣∣∣

≤ K(dd)k–
k–∑
j=

log |q|(j+)nr +C
∑j–

ν= log |q|νn
(dd)j

≤ K(dd)k–
∞∑
j=

log |q|(j+)nr +C
∑j–

ν= log |q|νn
(dd)j

,

and

∣∣E
k (r)

∣∣ =
∣∣∣∣∣d(dd)k–g(r) + · · · + dg

(
|q|(k–)nr +C

k–∑
ν=

|q|νn
)∣∣∣∣∣

≤ Kd(dd)k–
k–∑
j=

log |q|(j–)nr +C
∑j–

ν= |q|νn
(dd)j

≤ Kd(dd)k–
∞∑
j=

log |q|(j–)nr +C
∑j–

ν= |q|νn
(dd)j

.

Observe that |q| > , then for sufficiently large r, we have

log |q|(j+)nr +C
j∑

ν=

|q|νn ≤ log |q|(j+)n + log r + log(j + )C + log |q|jn

≤ j(j + )n
(
log |q|) log j logC log r.

http://www.advancesindifferenceequations.com/content/2013/1/378
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And since dd ≥ , it follows that the series
∑∞

i=
j(j+)n(log |q|) log j

(dd)i
is convergent. Thus,

for sufficiently large r, we have

∣∣Et
k(r)

∣∣ ≤ K ′
t (dd)

k log r, t = , , ()

where K ′
t >  (t = , ) are some constants. Since f is a transcendental entire function, for

sufficiently large r, we have

logM(r, f) ≥ K ′ log r, ()

where K ′ >max{K ′
,K ′

}. Hence, from ()-(), there exists r ≥ e such that for r ≥ r, we
have

logM

(
|q|nkr +C

k–∑
ν=

|q|νn, f
)

≥ K ′(dd)k log r. ()

Thus, for each sufficiently large R, there exists k ∈N such that

R ∈
[
|q|nkr +C

k–∑
ν=

|q|νn, |q|n(k+)r +C
k+∑
ν=

|q|νn
)
,

i.e.,

k >
logR + log(|q|n – ) – log r – logC – n log |q|

n log |q| . ()

From () and (), we have

logM(R, f) ≥ logM

(
|q|nkr +C

k–∑
ν=

|q|νn, f
)

≥ K ′(dd)k log r

≥ K ′′(dd)
logR

n log |q| , ()

where

K ′′ = K ′(dd)
log(|q|n–)–log r–logC–n log |q|

n log |q| .

Similar to the above argument, we can get that there exist constants K >  and r > 
such that for all r ≥ r,

logM(r, f) ≥ K (dd)
log r

n log |q| . ()

Case . Suppose that (f, f) are a pair of solutions of system () and ft (t = , ) are
meromorphic with finitely many poles. Then there exist polynomials Pt(z) such that
gt(z) = Pt(z)ft(z) (t = , ) are entire functions. Substituting ft(z) = gt (z)

Pt (z) into () and again
multiplying away the denominators, we can get a system similar to (). By using the same

http://www.advancesindifferenceequations.com/content/2013/1/378
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argument as in the above, we can get that for sufficiently large r,

logM(r, ft) = logM(r, gt) +O()≥ (
K ′′
t – ε

)
(dd)

log r
n log |q| ≥ K ′′′

t (dd)
log r

n log |q| ,

where K ′′′
t (> ) (t = , ) are some constants.

From Case  and Case , this completes the proof of Theorem ..

3.2 The proof of Theorem 1.5
Since the coefficients of Pt(z, ft(z)), Qt(z, ft(z)) are rational functions, we can choose a suf-
ficiently large constant R (> ) such that the coefficients of Pt(z, ft(z)), Qt(z, ft(z)) (t = , )
have no zeros or poles in {z ∈ C : |z| > R}. Assume that (f, f) is a solution of system ()
and ft (t = , ) are transcendental, since ft (t = , ) have infinitely many poles. Thus, with-
out loss of generality, we choose a pole z of f of multiplicity μ ≥  satisfying |z| > R.
Since d = s – t ≥ , then the right-hand side of the second equation in () has a pole of
multiplicity dμ at z. Therefore, there exists at least one index j ∈ {, , . . . ,n} such that
qjz+cj is a pole of f ofmultiplicityμ′

 ≥ dμ. If |qjz+cj | ≤ R, this processwill be termi-
nated andwe have to choose another pole z of f in thewaywe did above. If |qjz +cj | > R,
since d = s – t ≥ , then the right-hand side of the first equation in () has a pole of mul-
tiplicity dμ′

 ≥ ddμ. Therefore, there exists at least one index j′ ∈ {, , . . . ,n} such that
qj′ (qjz + cj ) + cj′ is a pole of f of multiplicity μ ≥ dμ′

 ≥ ddμ.
We proceed to follow the step above, we can get a sequence

{ζk}∞k= :=
{ k∏

i=

qji+j
′
i z +

k∑
s=

k∏
i=s+

qji+j
′
i
(
qj

′
s cjs + cj′s

)}∞

k=

,

where ζk is a pole of f with multiplicity μk , js ∈ {, , . . . ,n} and j′s ∈ {, , . . . ,n}. From
the above discussion, we can get μk ≥ (dd)kμ. Obviously, we have |ζk| → ∞ as k → ∞.
Then there exists a positive integer k ∈ N+ such that for sufficiently large k (≥ k),

μ(dd)k ≤ μ
[
 + dd + · · · + (dd)k

] ≤ n
(|ζk|, f)

≤ n

(
|q|(n+n)k|z| +C

(|q|n + 
) k–∑

i=

|q|i(n+n), f
)
, ()

where C := max{|ci|, |cj|, i = , , . . . ,n; j = , , . . . ,n}. Thus, for each sufficiently large r,
there exists k ∈ N+ such that r ∈ [ηk ,ηk+), where ηk := |q|(n+n)k|z| + C(|q|n + )×∑k–

i= |q|i(n+n), it follows that

k >
log r – log |z| – logC – log(|q|n + ) – (n + n) log |q| + log(|q|n+n – )

(n + n) log |q| . ()

From () and (), we have

n(r, f) ≥ μ(dd)k ≥ μ(dd)
log r–log |z|–logC–log(|q|n +)–(n+n) log |q|+log(|q|n+n–)

(n+n) log |q|

≥ Kd
log r

(n+n) log |q| ,

http://www.advancesindifferenceequations.com/content/2013/1/378


Wang et al. Advances in Difference Equations 2013, 2013:378 Page 10 of 12
http://www.advancesindifferenceequations.com/content/2013/1/378

where

K = μ(dd)
– log |z|–logC–log(|q|n +)–(n+n) log |q|+log(|q|n+n–)

(n+n) log |q| .

And there exists r >  and for all r ≥ r, we have

K(dd)
log r

(n+n) log |q| ≤ n(r, f) ≤ 
log

T(r, f).

Similar to the above discussion, we can get that there exists r >  and for all r ≥ r, we
have

K ′
(dd)

log r
(n+n) log |q| ≤ n(r, f) ≤ 

log
T(r, f).

From these inequalities, we can get μ(f) +μ(f) ≥ (logd+logd)
(n+n) log |q| easily.

Thus, the proof of Theorem . is completed.

4 Proof of Theorem 1.6
Lemma . [, Lemma ] Let f, f, . . . , fn be meromorphic functions. Then

T
(
r,

∑
λ∈I

f
iλ
 f

iλ
 · · · f iλnn

)
≤ σ

n∑
i=

T(r, fi) + log s,

where I = {iλ , iλ , . . . , iλn} is an index set consisting of s elements, and σ =maxλ∈I{iλ + iλ +
· · · + iλn}.

Proof of Theorem . From |q| > , cj ∈ C and [, p.], we have T(r, ft(qjz + cj)) =
T(|q|jr + |cj|, ft) +O(), t = , . For any given ε ( < ε <

√
dd–

√
nnσσ√

dd+
√
nnσσ

), applying Valiron-
Mohon’ko theorem [] and Lemma . to (), it follows that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d( – ε)T(r, f)≤ dT(r, f) + S(r, f) ≤ σ
∑n

j=T(|q|jr +C, f) + S(r, f)

≤ nσ( + ε)T(|q|nr +C, f),

d( – ε)T(r, f)≤ dT(r, f) + S(r, f) ≤ σ
∑n

j=T(|q|jr +C, f) + S(r, f)

≤ nσ( + ε)T(|q|nr +C, f),

()

outside of a possible exceptional set of finite linear measure. Then from () there exists
r >  such that

⎧⎨
⎩
T(|q|n+nr +C(|q|n + ), f) ≥ dd(–ε)

nnσσ(+ε)T(r, f),

T(|q|n+nr +C(|q|n + ), f) ≥ dd(–ε)
nnσσ(+ε)T(r, f),

()

holds for all r > r. Iterating (), for any k ∈N+ and r ≥ r, we have

⎧⎨
⎩
T(|q|(n+n)kr +C(|q|n + )

∑k–
i= |q|i(n+n), f)≥ ( dd(–ε)

nnσσ(+ε) )
kT(r, f),

T(|q|(n+n)kr +C(|q|n + )
∑k–

i= |q|i(n+n), f)≥ ( dd(–ε)
nnσσ(+ε) )

kT(r, f).

http://www.advancesindifferenceequations.com/content/2013/1/378


Wang et al. Advances in Difference Equations 2013, 2013:378 Page 11 of 12
http://www.advancesindifferenceequations.com/content/2013/1/378

By employing the same argument as in the proof of Theorem ., for sufficiently large �,
from the above inequalities, we can get

⎧⎨
⎩T(�, f)≥ KT(r, f)( dd(–ε)

nnσσ(+ε) )
log�

(n+n) log |q| ,

T(�, f) ≥ K ′
T(r, f)(

dd(–ε)
nnσσ(+ε) )

log�
(n+n) log |q| ,

()

where

K =
(

dd( – ε)

nnσσ( + ε)

) – log |z|–logC–log(|q|n +)–(n+n) log |q|+log(|q|n+n–)
(n+n) log |q|

,

K ′
 =

(
dd( – ε)

nnσσ( + ε)

) – log |z|–logC–log(|q|n +)–(n+n) log |q|+log(|q|n+n –)
(n+n) log |q|

.

Letting ε → , from () we have

⎧⎨
⎩T(�, f)≥ K( dd

nnσσ
)

log�
(n+n) log |q| ,

T(�, f) ≥ K ′
(

dd
nnσσ

)
log�

(n+n) log |q| ,
()

where K, K ′
 are constants satisfying

K = T(r, f)
(

dd
nnσσ

) – log |z|–logC–log(|q|n +)–(n+n) log |q|+log(|q|n+n –)
(n+n) log |q|

,

K ′
 = T(r, f)

(
dd

nnσσ

) – log |z|–logC–log(|q|n +)–(n+n) log |q|+log(|q|n+n –)
(n+n) log |q|

.

Thus, from () the lower order of f, f satisfy

μ(f) +μ(f) ≥  log(dd) –  log(nnσσ)
(n + n) log |q| .

Hence, we complete the proof of Theorem .. �

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
HW, HYX completed the main part of this article, HW, YH, HYX corrected the main theorems. All authors read and
approved the final manuscript.

Author details
1Department of Informatics and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, Jiangxi 333403, China. 2College
of Business, Jingdezhen Ceramic Institute, Jingdezhen, Jiangxi 333403, China.

Acknowledgements
The authors thank the referees for their valuable suggestions to improve the present article. The first author was
supported by the NNSF of China (61202313), the Natural Science Foundation of Jiang-Xi Province in China (2010GQS0119
and 20132BAB211001).

Received: 14 October 2013 Accepted: 3 December 2013 Published: 24 Dec 2013

http://www.advancesindifferenceequations.com/content/2013/1/378


Wang et al. Advances in Difference Equations 2013, 2013:378 Page 12 of 12
http://www.advancesindifferenceequations.com/content/2013/1/378

References
1. Hayman, WK: Meromorphic Functions. Clarendon, Oxford (1964)
2. Yang, L: Value Distribution Theory. Springer, Berlin (1993)
3. Yi, HX, Yang, CC: Uniqueness Theory of Meromorphic Functions. Kluwer Academic, Dordrecht (2003). Chinese

original: Science Press, Beijing (1995)
4. Chen, ZX, Huang, ZB, Zheng, XM: On properties of difference polynomials. Acta Math. Sci. 31B(2), 627-633 (2011)
5. Halburd, RG, Korhonen, RJ: Nevanlinna theory for the difference operator. Ann. Acad. Sci. Fenn., Math. 31, 463-478

(2006)
6. Heittokangas, J, Korhonen, RJ, Laine, I, Rieppo, J, Zhang, JL: Value sharing results for shifts of meromorphic functions,

and sufficient conditions for periodicity. J. Math. Anal. Appl. 355, 352-363 (2009)
7. Laine, I, Yang, CC: Value distribution of difference polynomials. Proc. Jpn. Acad., Ser. A, Math. Sci. 83, 148-151 (2007)
8. Liu, K, Yang, LZ: Value distribution of the difference operator. Arch. Math. 92, 270-278 (2009)
9. Zhang, JL, Korhonen, RJ: On the Nevanlinna characteristic of f (qz) and its applications. J. Math. Anal. Appl. 369,

537-544 (2010)
10. Barnett, DC, Halburd, RG, Korhonen, RJ, Morgan, W: Nevanlinna theory for the q-difference operator and

meromorphic solutions of q-difference equations. Proc. R. Soc. Edinb., Sect. A, Math. 137, 457-474 (2007)
11. Chiang, YM, Feng, SJ: On the Nevanlinna characteristic of f (z + η) and difference equations in the complex plane.

Ramanujan J. 16, 105-129 (2008)
12. Halburd, RG, Korhonen, RJ: Difference analogue of the lemma on the logarithmic derivative with applications to

difference equations. J. Math. Anal. Appl. 314, 477-487 (2006)
13. Silvennoinen, H: Meromorphic solutions of some composite functional equations. Ann. Acad. Sci. Fenn., Math. Diss.

13, 14-20 (2003)
14. Gao, LY: On meromorphic solutions of a type of system of composite functional equations. Acta Math. Sci. 32B(2),

800-806 (2012)
15. Gao, LY: Systems of complex difference equations of Malmquist type. Acta Math. Sin. 55, 293-300 (2012)
16. Gao, LY: Estimates of N-function andm-function of meromorphic solutions of systems of complex difference

equations. Acta Math. Sci. 32B(4), 1495-1502 (2012)
17. Xu, HY, Liu, BX, Tang, KZ: Some properties of meromorphic solutions of systems of complex q-shift difference

equations. Abstr. Appl. Anal. 2013, Article ID 680956 (2013)
18. Xu, HY, Cao, TB, Liu, BX: The growth of solutions of systems of complex q-shift difference equations. Adv. Differ. Equ.

2012, 216 (2012)
19. Xu, HY, Xuan, ZX: Some properties of solutions of a class of systems of complex q-shift difference equations. Adv.

Differ. Equ. 2013, 271 (2013)
20. Heittokangas, J, Korhonen, RJ, Laine, I, Rieppo, J, Tohge, K: Complex difference equations of Malmquist type. Comput.

Methods Funct. Theory 1(1), 27-39 (2001)
21. Zheng, XM, Chen, ZX: Some properties of meromorphic solutions of q-difference equations. J. Math. Anal. Appl. 361,

472-480 (2010)
22. Laine, I: Nevanlinna Theory and Complex Differential Equations. de Gruyter, Berlin (1993)
23. Jank, G, Volkmann, L: Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf

Diffrentialgleichungen. Birkhäuser, Basel (1985)
24. Bergweiler, W, Ishizaki, K, Yanagihara, N: Meromorphic solutions of some functional equations. Methods Appl. Anal.

5(3), 248-259 (1998) Correction: Methods Appl. Anal. 6(4), 617-618 (1999)

10.1186/1687-1847-2013-378
Cite this article as:Wang et al.: Growth and poles of solutions of systems of complex composite functional
equations. Advances in Difference Equations 2013, 2013:378

http://www.advancesindifferenceequations.com/content/2013/1/378

	Growth and poles of solutions of systems of complex composite functional equations
	Abstract
	MSC
	Keywords

	Introduction and main results
	The proof of Theorem 1.3
	Proofs of Theorems 1.4 and 1.5
	The proof of Theorem 1.4
	The proof of Theorem 1.5

	Proof of Theorem 1.6
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


