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Abstract
This paper studies the problem for exponential stability of switched recurrent neural
networks with interval time-varying delay. The time delay is a continuous function
belonging to a given interval, but not necessarily differentiable. By constructing a set
of argumented Lyapunov-Krasovskii functionals combined with the Newton-Leibniz
formula, a switching rule for exponential stability of switched recurrent neural
networks with interval time-varying delay is designed via linear matrix inequalities,
and new sufficient conditions for the exponential stability of switched recurrent
neural networks with interval time-varying delay via linear matrix inequalities (LMIs)
are derived. A numerical example is given to illustrate the effectiveness of the
obtained result.
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1 Introduction
In recent years, neural networks (especially recurrent neural networks, Hopfield neural
networks, and cellular neural networks) have been successfully applied in many areas
such as signal processing, image processing, pattern recognition, fault diagnosis, asso-
ciative memory, and combinatorial optimization; see, for example, [–]. One of the best
important works in these applications is to study the stability of the equilibrium point of
neural networks. A major purpose is to find stability conditions i.e., the conditions for
the stability of the equilibrium point of neural networks. The stability and control of re-
current neural networks with time delay have attracted considerable attention in recent
years [–]. Inmany practical systems, it is desirable to design neural networks which are
not only asymptotically or exponentially stable but can also guarantee an adequate level
of system performance. In the area of control, signal processing, pattern recognition, and
image processing, delayed neural networks have many useful applications. Some of these
applications require the equilibrium points of the designed network to be stable. In both
biological and artificial neural systems, time delays due to integration and communica-
tion are ubiquitous and often become a source of instability. The time delays in electronic
neural networks are usually time-varying and sometimes vary violently with respect to
time due to the finite switching speed of amplifiers and faults in the electrical circuitry.
The Lyapunov-Krasovskii functional technique has been among the popular and effective
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tools in the design of guaranteed cost controls for neural networks with time delay. Nev-
ertheless, despite such diversity of results available, most existing works either assumed
that the time delays are constant or differentiable [–]. To the best of our knowledge, a
switching rule and exponential stability for switched recurrent neural networks with inter-
val time-varying delay, non-differentiable time-varying delays have not been fully studied
yet (see, e.g., [–, –] and the references therein), and they are important in both
theories and applications. This motivates our research.
In this paper, we investigate the exponential stability for a switched recurrent neural

networks problem. The novel features here are that the delayed neural network under
consideration is with various globally Lipschitz continuous activation functions, and the
time-varying delay function is interval, non-differentiable. Based on constructing a set of
augmented Lyapunov-Krasovskii functionals combined with Newton-Leibniz formula, a
switching rule for exponential stability of switched recurrent neural networks with inter-
val time-varying delay and new delay-dependent exponential stability criteria for switched
recurrent neural networks with interval time-varying delay are established in terms of
LMIs, which allow simultaneous computation of two bounds that characterize the expo-
nential stability rate of the solution and can be easily determined by utilizing MATLABs
LMI control toolbox.
The outline of the paper is as follows. Section  presents definitions and some well-

known technical propositions needed for the proof of the main result. LMI delay-
dependent exponential stability criteria for switched recurrent neural networks with in-
terval time-varying delay criteria, a switching rule for exponential stability of switched
recurrent neural networks with interval time-varying delay, and a numerical example
showing the effectiveness of the result are presented in Section . The paper ends with
conclusions and cited references.

2 Preliminaries
The following notations will be used in this paper. R+ denotes the set of all real non-
negative numbers; Rn denotes the n-dimensional space with the scalar product 〈x, y〉
or xTy of two vectors x, y and the vector norm ‖ · ‖; Mn×r denotes the space of all
matrices of (n × r)-dimensions. AT denotes the transpose of matrix A; A is symmetric
if A = AT ; I denotes the identity matrix; λ(A) denotes the set of all eigenvalues of A;
λmax(A) = max{Reλ;λ ∈ λ(A)}, λmin(A) = min{Reλ;λ ∈ λ(A)}. xt := {x(t + s) : s ∈ [–h, ]},
‖xt‖ = sups∈[–h,] ‖x(t + s)‖; C([, t],Rn) denotes the set of allRn-valued continuously dif-
ferentiable functions on [, t]; L([, t],Rm) denotes the set of all the R

m-valued square
integrable functions on [, t].
Matrix A is called semi-positive definite (A≥ ) if 〈Ax,x〉 ≥  for all x ∈R

n; A is positive
definite (A > ) if 〈Ax,x〉 >  for all x �= ; A > B means A – B > . The notation diag{· · · }
stands for a block-diagonal matrix. The symmetric term in a matrix is denoted by ∗.
Consider the following switched recurrent neural networks with interval time-varying

delay:

ẋ(t) = –Aγ (x(t)x(t) +Wγ (x(t))f
(
x(t)

)
+Wγ (x(t))g

(
x
(
t – h(t)

))
, t ≥ ,

x(t) = φ(t), t ∈ [–h, ],
(.)
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where x(t) = [x(t),x(t), . . . ,xn(t)]T ∈R
n is the state of the neural, n is the number of neu-

rals, and

f
(
x(t)

)
=

[
f
(
x(t)

)
, f

(
x(t)

)
, . . . , fn

(
xn(t)

)]T ,
g
(
x(t)

)
=

[
g

(
x(t)

)
, g

(
x(t)

)
, . . . , gn

(
xn(t)

)]T
are the activation functions; γ (·) : Rn → N := {, , . . . ,N} is the switching rule, which is a
function depending on the state at each time and will be designed. A switching function
is a rule which determines a switching sequence for a given switching system. Moreover,
γ (x(t)) = j implies that the system realization is chosen as the jth system, j = , , . . . ,N . It
is seen that the system (.) can be viewed as an autonomous switched system in which
the effective subsystem changes when the state x(t) hits predefined boundaries.
Aj = diag(aj,aj, . . . ,anj), aij >  represents the self-feedback term; Wj, Wj denote the

connection weights, the discretely delayed connection weights, and the distributively de-
layed connection weight, respectively. The time-varying delay function h(t) satisfies the
condition

 ≤ h ≤ h(t)≤ h.

The initial functions φ(t) ∈ C([–h, ],Rn) with the norm

‖φ‖ = sup
t∈[–h,]

√∥∥φ(t)
∥∥ +

∥∥φ̇(t)
∥∥.

In this paper, we consider various activation functions and assume that the activation func-
tions f (·), g(·) are Lipschitzian with the Lipschitz constants fi, ei > :

∣∣fi(ξ) – fi(ξ)
∣∣ ≤ fi|ξ – ξ|, i = , , . . . ,n,∀ξ, ξ ∈R,∣∣gi(ξ) – gi(ξ)
∣∣ ≤ ei|ξ – ξ|, i = , , . . . ,n,∀ξ, ξ ∈R.

(.)

Definition . The zero solution of switched recurrent neural networks with interval
time-varying delay (.) is α-exponentially stable if there exist two positive numbers α > ,
N >  such that every solution x(t,φ) satisfies the following condition:

∥∥x(t,φ)∥∥ ≤ Ne–αt‖φ‖, ∀t ≥ .

We introduce the following technical well-known propositions, which will be used in
the proof of our results.

Proposition . (Schur complement lemma []) Given constant matrices X, Y , Z with
appropriate dimensions satisfying X = XT ,Y = YT > . Then X +ZTY–Z <  if and only if

(
X ZT

Z –Y

)
< .
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Proposition . (Integral matrix inequality []) For any symmetric positive definite ma-
trix M > , scalar σ >  and vector function ω : [,σ ] → R

n such that the integrations
concerned are well defined, the following inequality holds:

(∫ σ


ω(s)ds

)T

M
(∫ σ


ω(s)ds

)
≤ σ

(∫ σ


ωT (s)Mω(s)ds

)
.

3 Main results
Let us set

w = –[P + αI]Aj –AT
j [P + αI] +

∑
i=

Gi – PAj –AT
j P

–
∑

i=

e–αhiHi + PFD–
 FP,

w = P +AjP, w = e–αhH +AjP,

w = e–αhH +AjP, w = P +AjP,

w =
∑

i=

WijDiWT
ij +

∑
i=

hi Hi + (h – h)U – P,

w = P, w = P, w = P,

w = –e–αhG – e–αhH – e–αhU +
∑

i=

WijDiWT
ij ,

w = , w = –αhU ,

w =
∑

i=

WijDiWT
ij – e–αhU – e–αhG – e–αhH,

w = e–αhU ,

w =
∑

i=

WijDiWT
ij – e–αhU – e–αhU + PED–

 EP,

E = diag{ei, i = , . . . ,n}, F = diag{fi, i = , . . . ,n},
λ = λmin

(
P–),

λ = λmax
(
P–) + hλmax

[
P–

( ∑
i=

Gi

)
P–

]

+ hλmax

[
P–

( ∑
i=

Hi

)
P–

]
+ (h – h)λmax

(
P–UP–).

Theorem . The zero solution of the switched recurrent neural networks with interval
time-varying delay (.) is α-exponentially stable if there exist a positive number α > ,
symmetric positive definite matrices P, U , G, G, H, H, and diagonal positive definite
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matrices Di, i = ,  satisfying the following LMIs:

⎡
⎢⎢⎢⎢⎢⎢⎣

w w w w w

∗ w w w w

∗ ∗ w w w

∗ ∗ ∗ w w

∗ ∗ ∗ ∗ w

⎤
⎥⎥⎥⎥⎥⎥⎦
< , j = , , . . . ,N , (.)

the switching rule is chosen as γ (x(t)) = j.Moreover, the solution x(t,φ) of the system satis-
fies

∥∥x(t,φ)∥∥ ≤
√

λ

λ
e–αt‖φ‖, ∀t ≥ .

Proof Let Y = P–, y(t) = Yx(t). We consider the following Lyapunov-Krasovskii func-
tional:

V (t,xt) =
∑
i=

Vi(t,xt),

V = xT (t)Yx(t),

V =
∫ t

t–h
eα(s–t)xT (s)YGYx(s)ds,

V =
∫ t

t–h
eα(s–t)xT (s)YGYx(s)ds,

V = h
∫ 

–h

∫ t

t+s
eα(τ–t)ẋT (τ )YHY ẋ(τ )dτ ds,

V = h
∫ 

–h

∫ t

t+s
eα(τ–t)ẋT (τ )YHY ẋ(τ )dτ ds,

V = (h – h)
∫ t–h

t–h

∫ t

t+s
eα(τ–t)ẋT (τ )YUYẋ(τ )dτ ds.

It is easy to check that

λ
∥∥x(t)∥∥ ≤ V (t,xt) ≤ λ‖xt‖, ∀t ≥ . (.)

Taking the derivative of V, we have

V̇ = xT (t)Y ẋ(t)

= yT (t)
[
–PAT

j –AjP
]
y(t) + yT (t)Wjf (·)Py(t) + yT (t)Wjg(·)Py(t);

V̇ = yT (t)Gy(t) – e–αhyT (t – h)Gy(t – h) – αV;

V̇ = yT (t)Gy(t) – e–αhyT (t – h)Gy(t – h) – αV;

V̇ = hẏ
T (t)Hẏ(t) – he–αh

∫ t

t–h
ẋT (s)Hẋ(s)ds – αV;
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V̇ = h ẏ
T (t)Hẏ(t) – he–αh

∫ t

t–h
ẏT (s)Hẏ(s)ds – αV;

V̇ = (h – h)ẏT (t)Uẏ(t) – (h – h)e–αh
∫ t–h

t–h
ẏT (s)Uẏ(s)ds – αV.

Applying Proposition . and the Leibniz-Newton formula

∫ t

s
ẏ(τ )dτ = y(t) – y(s),

we have, for i = , ,

–hi
∫ t

t–hi
ẏT (s)Hiẏ(s)ds≤ –

[∫ t

t–hi
ẏ(s)ds

]T

Hi

[∫ t

t–hi
ẏ(s)ds

]

≤ –
[
y(t) – y

(
t – h(t)

)]THi
[
y(t) – y

(
t – h(t)

)]
= –yT (t)Hiy(t) + yT (t)Hiy

(
t – h(t)

)
– yT (t – hi)Hiy(t – hi). (.)

Note that

∫ t–h

t–h
ẏT (s)Uẏ(s)ds =

∫ t–h(t)

t–h
ẏT (s)Uẏ(s)ds +

∫ t–h

t–h(t)
ẏT (s)Uẏ(s)ds.

Applying Proposition . gives

[
h – h(t)

] ∫ t–h(t)

t–h
ẏT (s)Uẏ(s)ds≥

[∫ t–h(t)

t–h
ẏ(s)ds

]T

U
[∫ t–h(t)

t–h
ẏ(s)ds

]

≥ [
y
(
t – h(t)

)
– y(t – h)

]TU[
y
(
t – h(t)

)
– y(t – h)

]
.

Since h – h(t)≤ h – h, we have

[h – h]
∫ t–h(t)

t–h
ẏT (s)Uẏ(s)ds≥ [

y
(
t – h(t)

)
– y(t – h)

]TU[
y
(
t – h(t)

)
– y(t – h)

]
,

then

–[h – h]
∫ t–h(t)

t–h
ẏT (s)Uẏ(s)ds≤ –

[
y
(
t – h(t)

)
– y(t – h)

]TU[
y
(
t – h(t)

)
– y(t – h)

]
.

Similarly, we have

–(h – h)
∫ t–h

t–h(t)
ẏT (s)Uẏ(s)ds≤ –

[
y(t – h) – y

(
t – h(t)

)]TU[
y(t – h) – y

(
t – h(t)

)]
.

Then we have

V̇ (·) + αV (·) ≤ yT (t)
[
–PAT

j –AjP
]
y(t) + yT (t)Wjf (·)Py(t)

+ yT (t)Wjg(·)Py(t) + yT (t)

( ∑
i=

Gi

)
y(t) + α

〈
Py(t), y(t)

〉
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+ ẏT (t)

( ∑
i=

hi Hi

)
ẏ(t) + (h – h)ẏT (t)Uẏ(t)

–
∑

i=

e–αhiyT (t – hi)Giy(t – hi)

– e–αh
[
y(t) – y(t – h)

]TH
[
y(t) – y(t – h)

]
– e–αh

[
y(t) – y(t – h)

]TH
[
y(t) – y(t – h)

]
– e–αh

[
y
(
t – h(t)

)
– y(t – h)

]TU[
y
(
t – h(t)

)
– y(t – h)

]
– e–αh

[
y(t – h) – y

(
t – h(t)

)]TU[
y(t – h) – y

(
t – h(t)

)]
. (.)

Using equation (.),

Pẏ(t) +AjPy(t) –Wjf (·) –Wjg(·) = ,

and multiplying both sides by [y(t), –ẏ(t), y(t – h), y(t – h), y(t – h(t))]T , we have

yT (t)Pẏ(t) + yT (t)AjPy(t) – yT (t)Wjf (·) – yT (t)Wjg(·) = ,

–ẏT (t)Pẏ(t) – ẏT (t)AjPy(t) + ẏT (t)Wjf (·) + ẏT (t)Wjg(·) = ,

yT (t – h)Pẏ(t) + yT (t – h)AjPy(t)

– yT (t – h)Wjf (·) – yT (t – h)Wjg(·) = , (.)

yT (t – h)Pẏ(t) + yT (t – h)AjPy(t) – yT (t – h)Wjf (·) – yT (t – h)Wjg(·) = ,

yT
(
t – h(t)

)
Pẏ(t) + yT

(
t – h(t)

)
AjPy(t)

– yT
(
t – h(t)

)
Wjf (·) – yT

(
t – h(t)

)
Wjg(·) = .

Adding all the zero items of (.) into (.) for the following estimations:


〈
Wjf (x), y

〉 ≤ 〈
WjDWT

j y, y
〉
+

〈
D–

 f (x), f (x)
〉
,


〈
Wjg(z), y

〉 ≤ 〈
WjDWT

j y, y
〉
+

〈
D–

 g(z), g(z)
〉
,


〈
D–

 f (x), f (x)
〉 ≤ 〈

FD–
 Fx,x

〉
,


〈
D–

 g(z), g(z)
〉 ≤ 〈

ED–
 Ez, z

〉
,

we obtain

V̇ (·) + αV (·) ≤ ζT (t)Ejζ (t), (.)

where ζ (t) = [yT (t), ẏT (t), yT (t – h), yT (t – h), yT (t – h(t))]T , and

Ej =

⎡
⎢⎢⎢⎢⎢⎢⎣

w w w w w

∗ w w w w

∗ ∗ w w w

∗ ∗ ∗ w w

∗ ∗ ∗ ∗ w

⎤
⎥⎥⎥⎥⎥⎥⎦
, j = , , . . . ,N .
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Therefore, by condition (.), we obtain from (.) that

V̇ (t,xt)≤ –αV (t,xt), ∀t ≥ . (.)

Integrating both sides of (.) from  to t, we obtain

V (t,xt)≤ V (φ)e–αt , ∀t ≥ .

Furthermore, taking condition (.) into account, we have

λ
∥∥x(t,φ)∥∥ ≤ V (xt) ≤ V (φ)e–αt ≤ λe–αt‖φ‖,

then

∥∥x(t,φ)∥∥ ≤
√

λ

λ
e–αt‖φ‖, t ≥ ,

which concludes the exponential stability of (.). This completes the proof of the theo-
rem. �

Example . Consider the switched recurrent neural networkswith interval time-varying
delay (.) for j = , where

A =

[
. 
 .

]
, A =

[
. 
 .

]
,

W =

[
–. .
. –.

]
, W =

[
–. .
. –.

]
,

W =

[
–. .
. –.

]
, W =

[
–. .
. –.

]
,

E =

[
. 
 .

]
, F =

[
. 
 .

]
,

⎧⎨
⎩h(t) = . + . sin t if t ∈ I =

⋃
k≥[kπ , (k + )π ],

h(t) =  if t ∈ R+ \ I .

Note that h(t) is non-differentiable, therefore, the stability criteria proposed in [–, –
, –] are not applicable to this system. We choose that α = ., h = ., h = .. By
using the Matlab LMI toolbox, we can solve linear matrix inequalities for P, U , G, G,
D, D, H and H which satisfy the conditions (.) in Theorem .. A set of solutions is
as follows:

P =

[
. –.
–. .

]
, U =

[
. –.
–. .

]
,

G =

[
. .
. .

]
, G =

[
. .
. .

]
,

http://www.advancesindifferenceequations.com/content/2013/1/44
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H =

[
. .
. .

]
, H =

[
. .
. .

]
,

D =

[
. .
. .

]
, D =

[
. .
. .

]
.

By Theorem ., the switched recurrent neural networks with interval time-varying de-
lay are exponentially stable and the switching rule is chosen as γ (x(t)) = j. Moreover, the
solution x(t,φ) of the system satisfies

∥∥x(t,φ)∥∥ ≤ .e–.t‖φ‖, ∀t ≥ .

4 Conclusion
In this paper, the problem of exponential stability for switched recurrent neural networks
with interval non-differentiable time-varying delay has been studied. By constructing a
set of time-varying Lyapunov-Krasovskii functional combined with Newton-Leibniz for-
mula, a switching rule for exponential stability of switched recurrent neural networks with
interval time-varying delay has been presented and new sufficient conditions for the ex-
ponential stability for the system have been derived in terms of LMIs.
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