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Abstract
The employment of the fuzzy method to solve differential equations has been well
studied. In this article, Mathieu differential equations of the quadrupole mass filter
(QMF) have been solved by using the fuzzy method. This method has not been yet
investigated in the QMF with fuzzy initial conditions. We survey the physical
properties of the confined ion. The results of numerical simulations are presented and
discussed.
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1 Quadrupolemass filter with hyperbolic rods
The quadrupole mass filter (QMF) principle was established by Paul and Steinwedel [].
It consists of four parallel hyperbolic cross-section rod electrodes as shown in Figure . If
opposite pairs of electrodes have steady potentials� and –�, it follows that the potential
in the space between them is

�(x, y) = �
(
r + z

)
, ()

where r and z are position coordinates from centerline and

� =Udc +Vac cos(�t), ()

where Udc is direct potential, Uac is the zero to peak amplitude of the RF voltage, and �

is RF angular frequency [–]. Equation () satisfies the Laplace equation and boundary
conditions of the system. In each of the perpendicular directions r and z, the equation of
motion for a particle of massm and charge e in such a time varying field may be written

dz
dζ  +

(
az – qz cos(ζ )

)
z = , ()

dr
dζ  –

(
ar – qr cos(ζ )

)
r = , ()

where ζ = �t
 , and

az = –ar = 
e
m

× Udc

r� and qz = –qr = 
e
m

× Vac

r� . ()
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Figure 1 Quadrupole mass filter with hyperbolic
cross-section rods.

Here r is the distance from the rod surface to the z axis. These equations are forms of
Mathieu’s differential equation [–]. The solutions of this equation are complex and are
discussed in the literature []. The solutions are classified as stable and unstable. If the
amplitude of oscillatory motion is less or equal to one, the charged particle does not strike
the rods and then its trajectory is stable. When the amplitude of a particle trajectory is
larger than one, then the particle motion is mathematically unstable.

2 Preliminaries of the fuzzy sets
In this section we prepare some definitions and properties of fuzzy sets [–].
Fuzzy sets: According to Zadeh (), a fuzzy set is a generalization of a classical set

that allows a membership function to take any value in the unit interval [, ]. The formal
definition of a fuzzy set [] is as follows.

Definition  Let � be a universal set. A fuzzy set A in � is defined by a membership
function A(x) that maps every element in � to the unit interval [, ]. A fuzzy set A in �

may also be presented as a set of ordered pairs of a generic element x and its membership
value, as shown in the following equation:

A =
{(
x,A(x)

)|x ∈ �
}
. ()

Definition  Let A be a fuzzy interval defined in R. The α-cut of A is the crisp set [A]

that contains all elements in R such that the membership values of A is greater than or
equal to a, that is,

[A]α =
{
x ∈ R|A(x)≥ α

}
, α ∈ (, ]. ()

For a fuzzy interval A, its α-cuts are closed intervals in R, and we denote them by

[A]α =
[
aα
 ,a

α

]
, α ∈ (, ]. ()
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Definition  A fuzzy interval A is called equipossible fuzzy if it is fully determined by the
pair (a,b) of crisp numbers with a < b and its membership function is given by

A(x) =

⎧⎨
⎩
; if a ≤ x≤ b,

; otherwise.
()

Definition  A fuzzy interval A is called triangular fuzzy if it is fully determined by the
triplet (a,b, c) of crisp numbers with a < b < c and its membership function is given by

A(x) =

⎧⎪⎪⎨
⎪⎪⎩

x–a
b–a ; if a ≤ x≤ b,
x–c
b–c ; if b ≤ x≤ c,

; otherwise.

()

Definition  Let f : (a,b) → E and x ∈ (a,b). We say that f is strongly generalized
H-differentiable at x, if there exists an element f ′(x) ∈ E such that
() for all h >  sufficiently near to , ∃f (x + h)� f (x), ∃f (x)� f (x – h) and the limits

lim
h→+

f (x + h)� f (x)
h

= lim
h→+

f (x)� f (x – h)
h

= f ′(x)

or
() for all h <  sufficiently near to , ∃f (x + h)� f (x), ∃f (x)� f (x – h) and the limits

lim
h→–

f (x)� f (x + h)
h

= lim
h→–

f (x – h)� f (x)
h

= f ′(x).

In the special case when f is a fuzzy-valued function, we have the following result.

Theorem  [] Let f : R → E be a function and denote f (t) = (f (t, r), f (t, r)) for each r ∈
[, ]. Then
• if f is differentiable in the first form () in Definition , then f (t, r) and f (t, r) are
differentiable functions and f ′(t) = (f ′(t, r), f ′(t, r)),

• if f is differentiable in the second form () in Definition , then f (t, r) and f (t, r) are
differentiable functions and f ′(t) = (f ′(t, r), f ′(t, r)).

3 The quadrupole mass filter motion equations with fuzzy initial values
In this section we use the presented new algorithm for solving the equations of motion for
a singly charged positive ion in the QMF by fuzzy initial values.
We consider the equations of motion in the QMF with fuzzy initial values as follows:

z′′(ξ ) = –(az – qz cosξ )z; z̃(ξ) = z̃, z̃′(ξ) = z̃′
, ()

r′′(ξ ) = (ar – qr cosξ )r; r̃(ξ) = r̃, r̃′(ξ) = r̃′, ()

where z, r are fuzzy functions of ξ and z̃(ξ) = z̃, z̃′(ξ) = z̃′
 and r̃(ξ) = r̃, r̃′(ξ) = r̃′ are

trapezoidal or trapezoidal shaped fuzzy numbers.
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We denote the fuzzy functions z and r by z = [z, z] and r = [r, r], respectively. It means
that the α-level sets of z(ξ ) and r(ξ ) for ξ ∈ [ξ,T] are

[
z(ξ )

]
α
=

[
z(ξ ;α), z(ξ ;α)

]
,

[
z(ξ)

]
α
=

[
z(ξ;α), z(ξ;α)

]
, ()

[
r(ξ)

]
α
=

[
r(ξ;α), r(ξ;α)

]
,

[
r(ξ )

]
α
=

[
r(ξ ;α), r(ξ ;α)

]
, ()

[
z′(ξ)

]
α
=

[
z′(ξ;α), z′(ξ;α)

]
,

[
r′(ξ)

]
α
=

[
r′(ξ;α), r′(ξ;α)

]
()

with α ∈ (, ].

4 Fuzzy initial value problems
In this section, we first consider the following second-order ordinary differential equation
with fuzzy initial values [–]:

y′′(t) = f
(
t, y(t), y′(t)

)
, t ∈ [,T], ()

ỹ(t) = ỹ, ỹ′(t) = ỹ′
, ()

where y is a fuzzy function of t, f (t, y, y′) is a fuzzy function of the crisp variable t and
the fuzzy variable y, y′; y′′ is the second fuzzy derivative of y and ỹ(t) = ỹ, ỹ′(t) = ỹ′

 are
trapezoidal or trapezoidal shaped fuzzy numbers.
We denote the fuzzy function y by y = [y, y]. It means that the α-level sets of y(t) for

t ∈ [t,T] are

[
y(t)

]
α
=

[
y(t;α), y(t;α)

]
, ()

[
y(t)

]
α
=

[
y(t;α), y(t;α)

]
, ()

[
y′(t)

]
α
=

[
y′(t;α), y′(t;α)

]
()

with α ∈ (, ].

5 Formulation of a new algorithm for solving second-order ordinary
differential equations

Consider a second-order initial value problem of the form

y′′(t) = f
(
t, y, y′(t)

)
+ g(t) +K ; n = , , . . . ,

y() = c, y′() = c.
()

Here, y() = c, y′() = c are called the initial conditions, while K is constant.
This was turned into an iterative scheme by substituting a guess �m(t) (m = , , , , . . .)

for the value of y(t) on the right, and the result as the definition of�m(t), which substitutes
for the value of y(t) on the left. The new algorithm was defined to compute the sequence
{�m}+∞

m= as follows:

� = y(t); ()

� =
∫ t

t
y′(t)dt +

∫ t

t

∫ t

t

[
f
(
t, y, y′(t)

)
+ g(t) +K

]
dt dt; ()
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�m =
∫ t

t

∫ t

t
f
(
t,�m–,� ′

m–
)
dt dt (m > ). ()

The answer of Eq. (), y(t), is defined as approximated by the following series:

y(t) 
 ỹ(t) =
M∑
i=

�i. ()

Here,M is the order of approximation and ỹ is the approximate answer for Eq. ().

6 To solve quadrupole mass filter systems
In this section we solve Eqs. () and () with the fuzzy initial values by a proposed algo-
rithm as follows:

[
z(ξ)

]
α
=

[
z(ξ;α), z(ξ;α)

]
= [c – a + aα, c + a – aα], ()

[
z′(ξ)

]
α
=

[
z′(ξ;α), z′(ξ;α)

]
= [–a + aα,a – aα], ()

[
r(ξ)

]
α
=

[
r(ξ;α), r(ξ;α)

]
= [c – a + aα, c + a – aα], ()

[
r′(ξ)

]
α
=

[
r′(ξ;α), r′(ξ;α)

]
= [–a + aα,a – aα]. ()

With this fuzzy initial values the exact solutions (see Appendix ) are as follows:

z(ξ ;α) = (c – a + aα)MathieuC(az,qz, ξ ) + (–a + aα)MathieuS(az,qz, ξ ),

z(ξ ;α) = (c + a – aα)MathieuC(az,qz, ξ ) + (a – aα)MathieuS(az,qz, ξ ),

r(ξ ;α) = (c – a + aα)MathieuC(ar ,qr , ξ ) + (–a + aα)MathieuS(ar ,qr , ξ ),

r(ξ ;α) = (c + a – aα)MathieuC(ar ,qr , ξ ) + (a – aα)MathieuS(ar ,qr , ξ ).

HereMathieuC andMathieuS are even and odd functions of ξ , respectively; and c = z(),
c = r() are initial conditions and a, a are constant. Now, by using Eqs. () up to (),
the mth-order solution of Eqs. () and () with initials conditions () up to () is as
follows:

[�z,,�z,] = c – a + aα,

[�z,,�z,] =
∫ ξ

ξ

[
z(ξ;α), z(ξ;α)

]
dξ –

∫ ξ

ξ

∫ ξ

ξ

(
az – qz cos(ξ )

)[
z(ξ ;α), z(ξ ;α)

]
dξ dξ ,

[�z,m,�z,m] =
∫ ξ

ξ

∫ ξ

ξ

(
az – qz cos(ξ )

)
[�z,m–,�z,m–]dξ dξ (m > ),

[�r,,�r,] = c – a + aα,

[�r,,�r,] =
∫ ξ

ξ

[
r(ξ;α), r(ξ;α)

]
dξ +

∫ ξ

ξ

∫ ξ

ξ

(
ar – qr cos(ξ )

)[
r(ξ ;α), r(ξ ;α)

]
dξ dξ ,

[�r,m,�r,m] =
∫ ξ

ξ

∫ ξ

ξ

(
ar – qr cos(ξ )

)
[�r,m–,�r,m–]dξ dξ (m > ),

http://www.advancesindifferenceequations.com/content/2013/1/45


Seddighi Chaharborj et al. Advances in Difference Equations 2013, 2013:45 Page 6 of 12
http://www.advancesindifferenceequations.com/content/2013/1/45

which can be easily solved by symbolic computation software such as Matlab, Maple and
Mathematica. After finding �z,m, �z,m and �r,m, �r,m, we have

[
z(ξ ;α), z(ξ ;α)

] 

M∑

m=

[�z,m,�z,m], ()

[
r(ξ ;α), r(ξ ;α)

] 

M∑

m=

[�r,m,�r,m]. ()

Here,M is the order of approximation. By Maple software (see Appendix ), we now suc-
cessively obtain

z(ξ ;α) = c – a + aα + (–a + aα)ξ +
(
–


aza – qzaα – qzc + qza

+


azaα +



azc

)
ξ  +

(
–


aza –



qzaα +



qza +



azaα

)
ξ 

+
(
–


qza +



qz c +



qzaα –




aza +


azaqz –



azcqz

+


qzaα +



qzc –



qza +




azaα –


azaαqz +




az c
)

ξ

+
(
–




qza +


qzaα –




aza +



azaqz +



qzaα –


qza

+



azaα –




azaαqz
)

ξ  + · · ·

= (c – a + aα)MathieuC(az,qz, ξ ) + (–a + aα)MathieuS(az,qz, ξ ),

z(ξ ;α) = c + a – aα + (a – aα)ξ +
(


aza + qzaα – qzc – qza

–


azaα +



azc

)
ξ  +

(


aza +



qzaα –



qza –



azaα

)
ξ 

+
(


qza +



qz c –



qzaα +




aza –


azaqz –



azcqz

–


qzaα +



qzc +



qza –




azaα +


azaαqz +




az c
)

ξ

+
(




qza –


qzaα +




aza –



azaqz –



qzaα +


qza

–



azaα +




azaαqz
)

ξ  + · · ·

= (c + a – aα)MathieuC(az,qz, ξ ) + (a – aα)MathieuS(az,qz, ξ ),

r(t;α) = c – a + aα + (–a + aα)ξ +
(


ara + qraα + qrc – qra

–


araα –



arc

)
ξ  +

(


ara +



qraα –



qra –



araα

)
ξ 

+
(
–


qr a +



qr c –



qraα –




ar a +


araqr –



arcqr

http://www.advancesindifferenceequations.com/content/2013/1/45
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+


qr aα –



qrc +



qra +




ar aα –


araαqr +




ar c
)

ξ

+
(
–




qr a –


qraα –




ar a +



araqr –



qr aα +


qra

+



ar aα –




araαqr
)

ξ  + · · ·

= (c – a + aα)MathieuC(ar ,qr , ξ ) + (–a + aα)MathieuS(ar ,qr , ξ ),

r(ξ ;α) = c + a – aα + (a – aα)ξ +
(


ara – qraα + qrc + qra

+


araα –



arc

)
ξ  +

(
–


ara –



qraα +



qra +



araα

)
ξ 

+
(


qr a +



qr c +



qraα +




ar a –


araqr –



arcqr

–


qr aα –



qrc –



qra –




ar aα +


araαqr +




ar c
)

ξ

+
(




qr a +


qraα +




ar a –



araqr –



qr aα –


qra

–



ar aα +




araαqr
)

ξ  + · · ·

= (c + a – aα)MathieuC(ar ,qr , ξ ) + (a – aα)MathieuS(ar ,qr , ξ ).

7 Numerical results
In this section we bring some numerical results for illustration (see Appendix ). Initial
parameters for these numerical results have been used as follows:

c = z() = .; c = r() = .;

z′() = ; r′() = ; a = a = .;

az = –ar = ; qz = –qr = ..

Figure (a) and (b) shows the approximate solutions with M = , (a): z(ξ ,α), z(ξ ,α),
(b): r(ξ ,α), r(ξ ,α), gold color: z(ξ ,α), r(ξ ,α) and green color: z(ξ ,α), r(ξ ,α). Figure (a)
and (b) shows that for α =  we have z(ξ ) = z(ξ ,α) = z(ξ ,α) and r(ξ ) = r(ξ ,α) = r(ξ ,α). Fig-
ure  shows the α-discretization of a fuzzy interval, blue color: z(,α), z(,α) and red color:
r(,α), r(,α). Figure (a) and (b) shows the ion trajectories in real time for az = ar = ,
qz = –qr = . and M = , (a): z(ξ , .), z(ξ , .), (b): r(ξ , .), r(ξ , .), blue line: z, r and
red line: z, r. Figure  shows the ion trajectory in z – r and z – r plans when az = –ar = ,
qz = –qr = . and M = , blue color (solid line): z(ξ , .) – z(ξ , .) and red color (dash
line): z(ξ , .) – z(ξ , .).

8 Discussion and conclusion
We have solved fuzzy differential equations of a quadrupole mass filter with fuzzy initial
conditions by a proposed new algorithm. The results obtained show that fuzzy solution is
compatible to an exact solution. For the illustration, the numerical results with order 
(M = ) have been presented. Figure (a) and (b) is the approximate solution withM = 

http://www.advancesindifferenceequations.com/content/2013/1/45
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Figure 2 (color online) The approximate solutions withM = 20. (a): z(ξ ,α), z(ξ ,α), (b): r(ξ ,α), r(ξ ,α), gold
color: z(ξ ,α), r(ξ ,α) and green color: z(ξ ,α), r(ξ ,α).

Figure 3 (color online) α-discretization of a fuzzy interval, blue color: z(2,α), z(2,α) and red color:
r(2,α), r(2,α).

for z and r, respectively. In this figure, for α =  we have found that z(ξ ) = z(ξ ,α) = z(ξ ,α)
and r(ξ ) = r(ξ ,α) = r(ξ ,α), respectively. Therefore, probability α =  gives the normal an-
swer for a quadrupole mass filter without fuzzy initial conditions. The method showed a
potential application to solve complicated linear and nonlinear differential equations in a
quadrupole field, especially in fine tuning accelerators and, generally speaking, in physics
of high energy.
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Figure 4 (color online) The ion trajectories in real time for az = ar = 0, qz = –qr = 0.4 andM = 20,
(a): z(ξ , 0.8), z(ξ , 0.8), (b): r(ξ , 0.8), r(ξ , 0.8), blue line: z, r and red line: z, r.

Figure 5 (color online) The ion trajectory in z – r and z – r plans when az = ar = 0, qz = –qr = 0.4 and
M = 20, blue color (solid line): z(ξ , 0.8) – z(ξ , 0.8) and red color (dash line): z(ξ , 0.8) – z(ξ , 0.8).

http://www.advancesindifferenceequations.com/content/2013/1/45
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Appendix 1
Maple code for deriving the analytical solutions:

restart:with(plots):

q[1]:=diff(z(t),t,t)+(az-2*qz*cos(2*t))*z(t)=0:

ini1:=z(0)=c[1]-a[1]+a[1]*alpha,D(z)(0)=-a[1]+a[1]*alpha:

dsolve({q[1],ini1},{z(t)}):

expand(series(rhs(%),t,6)):

q[2]:=diff(z(t),t,t)+(az-2*qz*cos(2*t))*z(t)=0:

ini2:=z(0)=c[1]+a[1]-a[1]*alpha,D(z)(0)=a[1]-a[1]*alpha:

dsolve({q[2],ini2},{z(t)}):

series(rhs(%),t,12):

q[3]:=diff(r(t),t,t)+(ar-2*qr*cos(2*t))*r(t)=0:

ini3:=r(0)=c[1]-a[1]+a[1]*alpha,D(r)(0)=-a[1]+a[1]*alpha:

dsolve({q[3],ini3},{r(t)}):

series(rhs(%),t,12):

q[4]:=diff(r(t),t,t)+(ar-2*qr*cos(2*t))*r(t)=0:

ini4:=r(0)=c[1]+a[1]-a[1]*alpha,D(r)(0)=a[1]-a[1]*alpha:

dsolve({q[4],ini4},{r(t)}):

series(rhs(%),t,12):

Appendix 2
Maple code for deriving the analytical solutions by the new proposed algorithm:

restart:with(plots):N:=30: alpha:=0.8:

x1[0]:=0.4+0.1*alpha:dx1[0]:=-0.1+0.1*alpha:

x2[0]:=0.6-0.1*alpha:dx2[0]:=0.1-0.1*alpha:

y1[0]:=0.4+0.1*alpha:dy1[0]:=-0.1+0.1*alpha:

y2[0]:=0.6-0.1*alpha:dy2[0]:=0.1-0.1*alpha: h:=1.0:k:=0.0:F[1]:=1:

a[x]:=0:a[y]:=0: q[x]:=0.4:q[y]:=0.4: x1[1]:=x1[0]:

x1[2]:=int(dx1[0],t=0..t)+h*int(int((a[x]-2*q[x]

*cos(2*t)/(1-k*cos(4*t)))*(x1[1]),t=0..t),t=0..t): x2[1]:=x2[0]:

x2[2]:=int(dx2[0],t=0..t)+h*int(int((a[x]-2*q[x]

*cos(2*t)/(1-k*cos(4*t)))*(x2[1]),t=0..t),t=0..t): y1[1]:=y1[0]:

y1[2]:=int(dy1[0],t=0..t)-int(int((a[y]-2*q[y]

*cos(2*t)/(1-k*cos(4*t)))*(y1[1]),t=0..t),t=0..t): y2[1]:=y2[0]:

y2[2]:=int(dy2[0],t=0..t)-int(int((a[y]-2*q[y]

*cos(2*t)/(1-k*cos(4*t)))*(y2[1]),t=0..t),t=0..t): for m from 3 by

1 to N do

x1[m]:=h^(m-1)*int(int((a[x]-2*q[x]*cos(2*t)/

(1-k*cos(4*t)))*(x1[m-1]),t=0..t),t=0..t):

x2[m]:=h^(m-1)*int(int((a[x]-2*q[x]*cos(2*t)/

(1-k*cos(4*t)))*(x2[m-1]),t=0..t),t=0..t):

y1[m]:=-int(int((a[y]-2*q[y]*cos(2*t)/

(1-k*cos(4*t)))*(y1[m-1]),t=0..t),t=0..t):

y2[m]:=-int(int((a[y]-2*q[y]*cos(2*t)/

(1-k*cos(4*t)))*(y2[m-1]),t=0..t)

,t=0..t): end do: X:=sum(x1[i],i=1..N): Y:=sum(y1[i],i=1..N):

XX:=sum(x2[i],i=1..N): YY:=sum(y2[i],i=1..N): Erx:=x1[N]:

Ery:=y1[N]: M:=50: p[1]:=plot(X,t=0..M,colour=blue,thickness =

3,numpoints=200); p[2]:=plot(Y,t=0..M,colour=blue,thickness =

3,numpoints=200); p[3]:=plot([X,Y,t=0..M],colour=blue,thickness =

3,numpoints=200); p[4]:=plot(XX,t=0..M,colour=red,thickness =

3,numpoints=200); p[5]:=plot(YY,t=0..M,colour=red,thickness =

3,numpoints=200); p[6]:=plot([XX,YY,t=0..M],colour=red,thickness =
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3,numpoints=200); display({p[1],p[4]}); display({p[2],p[5]});

display({p[3],p[6]});

Appendix 3
Maple code for plotting Figures  and :

restart:with(plots):N:=20: #alpha:=0.8:

x1[0]:=0.4+0.1*alpha:dx1[0]:=-0.1+0.1*alpha:

x2[0]:=0.6-0.1*alpha:dx2[0]:=0.1-0.1*alpha:

y1[0]:=0.4+0.1*alpha:dy1[0]:=-0.1+0.1*alpha:

y2[0]:=0.6-0.1*alpha:dy2[0]:=0.1-0.1*alpha: h:=1.0:k:=0.0:F[1]:=1:

a[x]:=0:a[y]:=0: q[x]:=0.4:q[y]:=0.4: x1[1]:=x1[0]:

x1[2]:=int(dx1[0],t=0..t)+h*int(int((a[x]-2*q[x]*cos(2*t)/

(1-k*cos(4*t)))*(x1[1]),t=0..t),t=0..t): x2[1]:=x2[0]:

x2[2]:=int(dx2[0],t=0..t)+h*int(int((a[x]-2*q[x]*cos(2*t)/

(1-k*cos(4*t)))*(x2[1]),t=0..t),t=0..t): y1[1]:=y1[0]:

y1[2]:=int(dy1[0],t=0..t)-int(int((a[y]-2*q[y]*cos(2*t)/

(1-k*cos(4*t)))*(y1[1]),t=0..t),t=0..t): y2[1]:=y2[0]:

y2[2]:=int(dy2[0],t=0..t)-int(int((a[y]-2*q[y]*cos(2*t)/

(1-k*cos(4*t)))*(y2[1]),t=0..t),t=0..t): for m from 3 by 1 to N do

x1[m]:=h^(m-1)*int(int((a[x]-2*q[x]*cos(2*t)/

(1-k*cos(4*t)))*(x1[m-1]),t=0..t),t=0..t):

x2[m]:=h^(m-1)*int(int((a[x]-2*q[x]*cos(2*t)/

(1-k*cos(4*t)))*(x2[m-1]),t=0..t),t=0..t):

y1[m]:=-int(int((a[y]-2*q[y]*cos(2*t)/(1-k*cos(4*t)))*(y1[m-1])

,t=0..t),t=0..t):

y2[m]:=-int(int((a[y]-2*q[y]*cos(2*t)/(1-k*cos(4*t)))*(y2[m-1])

,t=0..t),t=0..t):

end do: X:=sum(x1[i],i=1..N): Y:=sum(y1[i],i=1..N):

XX:=sum(x2[i],i=1..N): YY:=sum(y2[i],i=1..N): Erx:=x1[N]:

Ery:=y1[N]: with(ImageTools): with(plottools):

sx:=evalf(subs(t=3,X)); sy:=evalf(subs(t=3,Y));

sxx:=evalf(subs(t=3,XX)); syy:=evalf(subs(t=3,YY));

p[1]:=plot({sx,sxx},alpha=0..1,color=blue,

numpoints=200,linestyle=dashdot , axes = box, axesfont = [TIMES,

16],labelfont = [TIMES,BOLD,14],thickness=2);

p[2]:=plot({sy,syy},alpha=0..1,color=red

,numpoints=200,linestyle=dash

, axes = box, labelfont=[SYMBOL], axesfont = [TIMES, 16],labelfont

= [TIMES,BOLD,14] ,thickness=2); q[1]:=rotate(p[1],Pi/2):

q[2]:=rotate(p[2],Pi/2): display(q[1],q[2]);

plot3d({X,XX},alpha=0..1, t=0..5, axes = box, axesfont = [TIMES,

14] ,labelfont = [TIMES,BOLD,12]); plot3d({Y,YY},alpha=0..1,

t=0..5, axes = box, axesfont = [TIMES, 14] ,labelfont =

[TIMES,BOLD,12]);
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