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1 Introduction
In recent years, the existence of positive periodic solutions of the prey-predatormodel has
been widely studied [–]. The qualitative analysis of predator-prey systems is an interest-
ingmathematical problem and has attracted a great attention ofmanymathematicians and
biologists [, ]. Recently, Xu and Chen [] investigated the two-species ratio-dependent
predator-prey different model with time delay. Since a realistic model requires the inclu-
sion of the effect of changing environment, recently, Shihua and Feng [] have considered
the following model:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x′
(t) = x(t)(a(t) – a(t)x(t) – a(t)x(t)

m(t)x(t)+x(t)
)

+D(t)(x(t) – x(t)) – h(t),

x′
(t) = x(t)(a(t) – a(t)x(t)) +D(t)(x(t) – x(t)) – h(t),

x′
(t) = x(t)(–a(t) – a(t)x(t) + a(t)x(t–τ )

m(t)x(t–τ )+x(t–τ ) ) – h(t),

(.)

where Di(t) (i = , ), ai(t) (i = , , ), a(t), a(t), a(t), a(t) and m(t) are strictly posi-
tive continuous w-periodic functions.
In the paper, we will study the following model:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x′
(t) = x(t)(g(t,x(t)) – a(t)x(t)

m(t)x(t)+x(t)
)

+D(t)(x(t) – x(t)) – h(t),

x′
(t) = x(t)(g(t,x(t)) +D(t)(x(t) – x(t)) – h(t),

x′
(t) = x(t)(–a(t) – a(t)x(t) + a(t)x(t–τ )

m(t)x(t–τ )+x(t–τ ) ) – h(t),

(.)
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where Di(t) (i = , ), a(t), a(t), m(t) are the same as in model (.). Some assumptions
on the above functions on gi(t,x) (i = , ) will be given in next section.
Our aim in this paper is to establish a sufficient condition for the existence and attrac-

tivity of at least a positive w-periodic solution of model (.).

2 Main result
To obtain the existence of positive periodic solutions of system (.), we summarize some
concepts and results from [] that will be basic for this section.
Let X, Z be Banach spaces, let L :DomL ⊂ X → Y be a linear mapping, and let N : X →

Z be a continuous mapping. The mapping L will be called a Fredholm mapping of index
zero if dimKerL = codim ImL < +∞ and ImL is closed in Z. If L is a Fredholmmapping of
index zero, there exist continuous projectors P : X → Z and Q : Z → Z such that ImP =
KerL and ImL = KerQ = Im(I – Q). It follows that L/DomL ∩ KerP : (I – P)X → ImL is
invertible. We denote the inverse of that map by Kp. If � is an open-bounded subset of X,
the mappingN will be called L-compact on� ifQN(�) is bounded andKp(I –Q)N : � →
X is compact. Since ImQ is isomorphic to KerL, there exists an isomorphism J : ImQ →
KerL.
In the proof of our existence theorem, we will use the continuation theorem of Gaines

and Mawhin [].

Lemma . [] Let L be a Fredholm mapping of index zero and let N be L-compact on �.
Suppose the following:

(i) for each λ ∈ (, ), every solution x of Lx = λNx is such that x∈ ∂�;
(ii) QNx �=  for each x ∈ ∂� ∩KerL;
(iii) deg{JQN ,� ∩KerL, } �= .

The Lx =Nx has at least one solution in DomL∩ �.
For convenience, we introduce the notations

f =

w

∫ w


f (t)dt, f L = min

t∈[,w]
∣∣f (t)∣∣, f M = max

t∈[,w]
∣∣f (t)∣∣,

where f is a continuous w-periodic function.
Our main result on the global existence of a positive periodic solution of system (.) is

stated in the following theorem.

Theorem . Assume that

(H) there exists a constant A such that for ∀x ∈ R, t ∈ R, when x≥ A,

g
(
t, ex

) ≤ ;

(H) there exists a constant B such that for ∀x ∈ R, when x≥ B,

g
(
t, ex

) ≤ ;

(H) there exists a constant C (C < A) such that for ∀x ∈ R, t ∈ R, when x≤ C,

exg
(
t, ex

) ≥
(
a
m

)M

ex + hM ;
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(H) there exists a constant D (D < B) such that for ∀x ∈ R, t ∈ R, when x ≤ D,

exg
(
t, ex

) ≥ hM ;

(H) aMed > hlml .

Then system (.) has at least one positive w-periodic solution.

Proof Consider the system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u′
(t) = g(t, eu(t)) – a(t)eu(t)

m(t)eu(t)+eu(t)

+D(t)(eu(t)–u(t) – ) – h(t)e–u(t),

u′
(t) = g(t, eu(t)) +D(t)(eu(t)–u(t) – ) – h(t)e–u(t),

u′
(t) = –a(t) – a(t)eu(t) + a(t)eu(t–τ )

m(t)eu(t)+e
u(t–τ ) – h(t)e–u(t).

(.)

Let xi(t) = eui(t), i = , , , then system (.) changes into system (.). Hence it is easy to see
that system (.) has a w-periodic solution (u∗

 (t),u∗
(t),u∗

(t))T , then (eu∗
 (t), eu∗

(t), eu∗
(t))T

is a positive w-periodic solution of system (.). Therefore, for (.) to have at least one
positive w-periodic solution, it is sufficient that (.) has at least one w-periodic solution.
In order to apply Lemma . to system (.), we take

X = Z =
{
u(t) =

(
u(t),u(t),u(t)

)T ∈ C
(
R,R),u(t +w) = u(t)

}

and

‖u‖ = ∥∥(
u(t),u(t),u(t)

)T∥∥ =
∑
i=

max
t∈[,w]

∣∣ui(t)∣∣

for any u ∈ Z (or Z). Then X and Z are Banach spaces with the norm ‖ · ‖. Let

Nu =

⎡
⎢⎢⎣
g(t, eu(t)) – a(t)eu(t)

m(t)eu(t)+eu(t)
+D(t)(eu(t)–u(t) – ) – h(t)e–u(t)

g(t, eu(t)) +D(t)(eu(t)–u(t) – ) – h(t)e–u(t)

–a(t) – a(t)eu(t) + a(t)eu(t–τ )

m(t)eu(t)+e
u(t–τ ) – h(t)e–u(t)

⎤
⎥⎥⎦ , u ∈ X,

Lu = u′ =
du(t)
dt

, pu =

w

∫ w


u(t)dt, u ∈ X;

Qz =

w

∫ w


z(t)dt, z ∈ Z.

Then it follows that

KerL = R, ImL =
{
z ∈ Z :

∫ w


z(t)dt = 

}
is closed in Z,

dimKerL =  = codim ImL,

and P, Q are continuous projectors such that

ImP =KerL, KerQ = ImL = Im(I –Q).
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Therefore, L is a Fredholm mapping of index zero. Furthermore, the generalized inverse
(to L) Kp : ImL→ KerP ∩DomL is given by

Kp(z) =
∫ t


z(s)ds –


w

∫ w



∫ t


z(s)dsdt.

Thus

QNu =

⎡
⎢⎣
/w

∫ w
 F(s)ds

/w
∫ w
 F(s)ds

/w
∫ w
 F(s)ds

⎤
⎥⎦

and

Kp(I –Q)Nu =

⎡
⎢⎣

∫ t
 F(s)ds – /w

∫ w


∫ t
 F(s)dsdt + (/ – t/w)

∫ w
 F(s)ds∫ t

 F(s)ds – /w
∫ w


∫ t
 F(s)dsdt + (/ – t/w)

∫ w
 F(s)ds∫ t

 F(s)ds – /w
∫ w


∫ t
 F(s)dsdt + (/ – t/w)

∫ w
 F(s)ds

⎤
⎥⎦ ,

where

F(s) = g
(
s, eu(s)

)
–

a(s)eu(s)

m(s)eu(s) + eu(s)
+D(s)

(
eu(s)–u(s) – 

)
– h(s)e–u(s),

F(s) = g
(
s, eu(s)

)
+D(s)

(
eu(s)–u(s) – 

)
– h(s)e–u(s)

and

F(s) = –a(s) – a(s)eu(s) +
a(s)eu(s–τ )

m(s)eu(s–τ ) + eu(s–τ ) – h(s)e–u(s).

Obviously, QN and Kp(I – Q)N are continuous. It is not difficult to show that Kp(I –
Q)N(�) is compact for any open bounded � ⊂ X by using the Arzela-Ascoli theorem.
Moreover,QN(�) is clearly bounded. Thus,N is L-compact on � with any open bounded
set � ⊂ X.
Now we reach the point where we search for an appropriate open bounded subset � for

the application of the continuation theorem (Lemma .). Corresponding to the operator
equation Lx = λNx, λ ∈ (, ), we have

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u′
(t) = λ[g(t, eu(t)) – a(t)eu(t)

m(t)eu(t)+eu(t)

+D(t)(eu(t)–u(t) – ) – h(t)e–u(t)],

u′
(t) = λ[g(t, eu(t)) +D(t)(eu(t)–u(t) – ) – h(t)e–u(t)],

u′
(t) = λ[–a(t) – a(t)eu(t) + a(t)eu(t–τ )

m(t)eu(t)+e
u(t–τ ) – h(t)e–u(t)].

(.)

Assume that u = u(t) ∈ X is a solution of system (.) for a certain λ ∈ (, ).
Because of (u(t),u(t),u(t))T ∈ X, there exist ξi,ηi ∈ [,w] such that

ui(ξi) = max
t∈[,w]

ui(t), ui(ηi) = min
t∈[,w]

ui(t), i = , , .
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It is clear that

u′
i(ξi) = , u′

i(ηi) = , i = , , .

From this and system (.), we obtain

g
(
ξ, eu(ξ)

)
–

a(ξ)eu(ξ)

m(ξ)eu(ξ) + eu(ξ)
+D(ξ)

(
eu(ξ)–u(ξ) – 

)
– h(ξ)e–u(ξ) = , (.)

g
(
ξ, eu(ξ)

)
+D(ξ)

(
eu(ξ)–u(ξ) – 

)
– h(ξ)e–u(ξ) = , (.)

–a(ξ) – a(ξ)eu(ξ) +
a(ξ)eu(ξ–τ )

m(ξ)eu(ξ–τ )+eu(ξ–τ ) – h(ξ)e–u(ξ) = , (.)

g
(
η, eu(η)

)
–

a(η)eu(η)

m(η)eu(η) + eu(η)
+D(η)

(
eu(η)–u(η) – 

)

– h(η)e–u(η) = , (.)

g
(
η, eu(η)

)
+D(η)

(
eu(η)–u(η) – 

)
– h(η)e–u(η) = , (.)

–a(η) – a(η)eu(η) +
a(η)eu(η–τ )

m(η)eu(η–τ )+eu(η–τ ) – h(η)e–u(η) = . (.)

There are two cases to consider for (.) and (.).
Case . Assume that u(ξ) ≥ u(ξ), then u(ξ)≥ u(ξ).
From this and (.), we have

g
(
ξ, eu(ξ)

)
=

a(ξ)eu(ξ)

m(ξ)eu(ξ) + eu(ξ)
–D(ξ)

(
eu(ξ)–u(ξ) – 

)
+ h(ξ)e–u(ξ) > ,

which, together with condition (H) in Theorem ., gives

u(ξ) < A. (.)

Thus

u(ξ) ≤ u(ξ) < A. (.)

Case . Assume that u(ξ) ≤ u(ξ), then u(ξ) < u(ξ).
From this and (.), we have

g
(
ξ, eu(ξ)

)
= –D(ξ)

(
eu(ξ)–u(ξ) – 

)
+ h(ξ)e–u(ξ) > ,

which, together with condition (H) in Theorem ., gives

u(ξ) < B. (.)

Thus

u(ξ)≤ u(ξ) < B. (.)

http://www.advancesindifferenceequations.com/content/2013/1/52
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From Case  and Case , we obtain

u(ξ) <max{A,B} def= d, (.)

u(ξ) <max{A,B} = d. (.)

From (.), we get

aeu(ξ) ≤ a(ξ)eu(ξ) ≤ a(ξ)eu(ξ–τ )

m(ξ)eu(ξ–τ )+eu(ξ–τ ) < aM.

Thus

u(ξ)≤ ln

(
aM
al

)
def= d. (.)

There are two cases to consider for (.) and (.).
Case . Assume that u(η) ≤ u(η), then u(η) < u(η). From this and (.), we have

g
(
η, eu(η)

)
=

a(η)eu(η)

m(η)eu(η) + eu(η)
–D(η)

(
eu(η)–u(η) – 

)
+ h(η)e–u(η)

<
a(η)eu(η)

m(η)eu(η) + eu(η)
+ h(η)e–u(η) <

(
a
m

)M

+ hM e–u(η),

which, together with condition (H) in Theorem ., gives

u(η) > C. (.)

Hence

u(η) > u(η) > C. (.)

Case . Assume that u(η) ≥ u(η), then u(η) ≥ u(η). From this and (.), we have

g
(
η, eu(η)

)
= –D(η)

(
eu(η)–u(η) – 

)
+ h(η)e–u(η) < hM e–u(η),

which, together with condition (H) in Theorem ., gives

u(η) >D. (.)

Hence

u(η) > u(η) >D. (.)

From Case  and Case , we have

u(η) >min{C,D} def= ρ, (.)

u(η) >min{C,D} = ρ. (.)

http://www.advancesindifferenceequations.com/content/2013/1/52
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From Theorem .(H), we get

u(η) > ln

(
hl

aM – al

)
. (.)

From (.)-(.), we obtain, for ∀t ∈ R,

∣∣u(t)∣∣ ≤ max
{|d|, |ρ|

} def= R,
∣∣u(t)∣∣ ≤max

{|d|, |ρ|
} def= R

and

∣∣u(t)∣∣ ≤ max
{|a|, |ρ|

} def= R.

Clearly, Ri (i = , , ) are independent of λ. Denote M =
∑

i= Ri + R, here R is taken
sufficiently large such that each solution (α∗,β∗,γ ∗)T of the system

g
(
t, eα

)
–

aeγ

m(t)eγ + eα
+D

(
eβ–α – 

)
– h̄e–α = ,

g
(
t, eβ

)
+D

(
eα–β – 

)
– h̄e–β = , (.)

–a – aer +
aeα

m(t)eγ + eα
– h̄e–γ = 

satisfies ‖(α∗,β∗,γ ∗)T‖ = |α∗|+ |β∗|+ |γ ∗| <M, provided that system (.) has a solution
or a number of solutions, and that

max
{|d|, |ρ|

}
+max

{|d|, |ρ|
}
+max

{|d|, |ρ|
}
<M,

where ti ∈ (,w) will appear in QNu below.
Now we take � = {u = (u(t),u(t),u(t))T ∈ X : ‖u‖ <M}. This satisfies condition (i) of

Lemma..When u ∈ ∂�∩KerL = ∂�∩R, u is a constant vector inR with
∑

i= |ui| =M.
If system (.) has one or more solutions, then

QNu =

⎡
⎢⎣
g(t, eu ) – aeu

m(t)eu+eu
+D(eu–u – ) – h̄e–u

g(t, eu ) +D(eu–u – ) – h̄e–u

–a – aeu + aeu
m(t)eu+eu

– h̄e–u

⎤
⎥⎦ �= (, , )T ,

where ti ∈ (,w) are one constant.
If system (.) does not have a solution, then naturally

QNu �= (, , )T .

This shows that condition (ii) of Lemma . is satisfied finally. We will prove that condi-
tion (iii) of Lemma . is satisfied. We only prove that when u ∈ ∂� ∩ KerL = ∂� ∩ R,
deg{JQNu, ∂�∩KerL, (, , )T } �= .When u ∈ ∂�∩KerL = ∂�∩R, u is a constant vec-
tor in R with

∑
i= |ui| =M. Our proof will be broken into three steps as follows.

http://www.advancesindifferenceequations.com/content/2013/1/52
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Step . We prove

deg
{
JQNu,� ∩KerL, (, , )T

}

= deg

{(
g
(
t, eu

)
, g

(
t, eu

)
, –a – aeu +

aeu
m(t)eu + eu

– he–u
)T

,

� ∩KerL, (, , )T
}
.

To this end, we define the mapping φ :DomL× [, ]→ X by

φ(u,u,u,μ) =

⎡
⎢⎣

g(t, eu )
g(t, eu )

–aeu + aeu
m(t)eu+eu

⎤
⎥⎦

+μ

⎡
⎢⎣
– aeu

m(t)eu+eu
+D(eu–u – ) – h̄eu

D(eu–u – ) – h̄eu

–a – h̄e–u

⎤
⎥⎦ ,

where μ ∈ [, ] is a parameter, when u = (u,u,u)T ∈ ∂� ∩ KerL = ∂� ∩ R, u is
a constant vector in R with

∑
i= |ui| = M. We will show that when u ∈ ∂� ∩ KerL,

φ(u,u,u,μ) �= , if the conclusion is not true, i.e., the constant vector uwith
∑

i= |ui| =
M satisfies φ(u,u,u,μ) = , then from

g
(
t, eu

)
+μ

(
–aeu

m(t)eu + eu
+D

(
eu–u – 

))
– h̄eu = ,

g
(
t, eu

)
+μ

(
D

(
eu–u – 

)
– h̄eu

)
= ,

–aeu +
aeu

m(t)eu + eu
–μ

(
a + h̄e–u

)
= 

it follows the arguments of (.)-(.) that

|ui| < Ri, i = , , .

Thus

∑
i=

|ui| <
∑
i=

Ri <M,

which contradicts the fact that
∑

i= |ui| =M.
According to topological degree theory, we have

deg
{(
JQN ,� ∩KerL, (, , )T

)}
= deg

{
φ(u,u,u, )T ,� ∩KerL, (, , )T

}
= deg

{
φ(u,u,u, )T ,� ∩KerL, (, , )T

}

= deg

{(
g

(
t, eu

)
, g

(
t, eu

)
, –aeu +

aeu
m(t)eu + eu

)T

,� ∩KerL, (, , )T
}
.

http://www.advancesindifferenceequations.com/content/2013/1/52
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Step . We prove

deg

{(
g

(
t, eu

)
, g

(
t, eu

)
, –aeu +

aeu
m(t)eu + eu

)T

,� ∩KerL, (, , )T
}

= deg

{(
a – aeu , g

(
t, eu

)
, –aeu +

aeu
m(t)eu + eu

)T

,� ∩KerL, (, , )T
}
,

where a, a are two chosen positive constants such that

C < ln
a
a

< A.

To this end, we define the mapping φ :DomL× [, ] → X by

φ(u,u,u,μ) = μ

⎡
⎢⎣

a – aeu

g(t, eu )
–aeu + aeu

m(t)eu+eu

⎤
⎥⎦

+ ( –μ)

⎡
⎢⎣

g(t, eu )
g(t, eu )

–aeu + aeu
m(t)eu+eu

⎤
⎥⎦

=

⎡
⎢⎣

μ(a – aeu ) + ( –μ)g(t, eu )
g(t, eu )

–aeu + aeu
m(t)eu+eu

⎤
⎥⎦ ,

whereμ ∈ [, ] is a parameter.Wewill prove thatwhenu ∈ ∂�∩KerL,φ(u,u,u,μ) �=
(, , )T . When u ∈ ∂� ∩KerL = ∂� ∩R, u is a constant vector in R with

∑
i= |ui| =M.

Now we consider two possible cases:

(i) u ≥ A; (ii) u < A.

(i) When u ≥ A, from condition (iii) in Theorem ., we have g(t, eu ) ≤ . More-
over, a – aeu ≤ a – aeA < , thus μ(a – aeu ) + ( – μ)g(t, eu ) < . Therefore,
φ(u,u,u,μ) �= (, , )T .
(ii) When u < A, if u ≤ C, from condition (H) in Theorem ., we have g(t, eu ) > .

However, a – aeu ≥ a – aeC > . Therefore, φ(u,u,u,μ) �= (, , )T . If u > C, we
also consider two possible cases: (a) u ≥ B; (b) u < B. (a) When u ≥ B, from condition
(H) in Theorem ., we have

g
(
t, eu

)
< .

Therefore φ(u,u,u,μ) �= (, , )T . (b) When u < B, if u ≤ D, then from condition
(H) in Theorem ., we obtain g(t, eu ) > . Consequently, φ(u,u,u,μ) �= (, , )T .
If u >D, we can claim when u ∈ ∂� ∩KerL = ∂� ∩R, φ(u,u,u,μ) �= (, , )T . Oth-
erwise, from

–aeu +
aeu

m(t)eu + eu
= 

http://www.advancesindifferenceequations.com/content/2013/1/52
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we have

eu <
a
a

and

eu >
–aeρ +

√
(–aeρ ) +  – am(t)aeρ

am(t)
> ,

i.e.,

u < lna – lna,

u > ln
–aeρ +

√
(–aeρ ) +  – am(t)aeρ

am(t)
.

Thus

|u| <max
{|d|, |ρ|

}
,

|u| <max
{|d|, |ρ|

}

and

|u| <max
{|d|, |ρ|

}
.

Therefore

∑
i=

|ui| < max
{|d|, |ρ|

}
+max

{|d|, |ρ|
}

+max
{|d|, |ρ|

}
<M,

which contradicts the fact that
∑

i= |ui| =M. Based on the above discussion, for any u ∈
∂� ∩KerL, we have φ(u,u,u,μ) �= (, , )T . According to topological degree theory,
we obtain

deg

{(
g

(
t, eu

)
, g

(
t, eu

)
, –aeu +

aeu
m(t)eu + eu

)T

,� ∩KerL, (, , )T
}

= deg
{
φ(u,u,u, )T ,� ∩KerL, (, , )T

}
= deg

{
φ(u,u,u, )T ,� ∩KerL, (, , )T

}

= deg

{(
a – aeu , g

(
t, eu

)
, –aeu +

aeu
m(t)eu + eu

)T

,� ∩KerL, (, , )T
}
.

Step . We prove

deg

{(
a – aeu , g

(
t, eu

)
, –aeu +

aeu
m(t)eu + eu

)T

,� ∩KerL, (, , )T
}

= deg

{(
a – aeu ,a – aeu , –aeu +

aeu
m(t)eu + eu

)T

,� ∩KerL, (, , )T
}
.
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To this end, we define the mapping φ :DomL× [, ]→ X by

φ(u,u,u,μ) = μ

⎡
⎢⎣

a – aeu

a – aeu

–aeu + aeu
m(t)eu+eu

⎤
⎥⎦

+ ( –μ)

⎡
⎢⎣

a – aeu

g(t, eu )
–aeu + aeu

m(t)eu+eu

⎤
⎥⎦

=

⎡
⎢⎣

a – aeu

μ(a – aeu ) + ( –μ)g(t, eu )
–aeu + aeu

m(t)eu+eu

⎤
⎥⎦ ,

whereμ ∈ [, ] is a parameter and a, a are two chosen positive constants such thatD <
ln a

a
< B. We will prove that when u ∈ ∂� ∩KerL, φ(u,u,u,μ) �= (, , )T . If it is not

true, then the constant vector u satisfies φ(u,u,u,μ) �= (, , )T with
∑

i= |ui| =M.
Thus we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a – aeu = , (.)

μ(a – aeu ) + ( –μ)g(t, eu ) = , (.)

–aeu + aeu
m(t)eu+eu

= . (.)

(.) implies

C < u = ln
a
a

< A. (.)

We claim that u < B; otherwise, if u ≥ B, then from condition (H) in Theorem ., we
have

( – u)g
(
t, eu

)
< .

Consequently,

μ
(
a – aeu

)
+ ( –μ)g

(
t, eu

)
< ,

which contradicts (.).We also claim that u >D. If u ≤ D, then g(t, eu ) > .However,
a – aeu > a – aeD > .
Thus

u
(
a – aeu

)
+ ( –μ)g

(
t, eu

)
> ,

which contradicts (.). (.) gives

–aeu +
aeu

m(t)eu + eu
= ,

http://www.advancesindifferenceequations.com/content/2013/1/52


Du and Wu Advances in Difference Equations 2013, 2013:52 Page 12 of 14
http://www.advancesindifferenceequations.com/content/2013/1/52

that is,

u < lna – lna,

u > ln
–aeρ +

√
(–aeρ ) +  – am(t)aeρ

am(t)
.

Thus

|u| <max
{|d|, |ρ|

}
,

|u| <max
{|d|, |ρ|

}

and

|u| <max
{|d|, |ρ|

}
.

Therefore

∑
i=

|ui| < max
{|d|, |ρ|

}
+max

{|d|, |ρ|
}

+max
{|d|, |ρ|

}
<M,

which leads to a contradiction. Therefore, by means of topological degree theory, we have

deg

{(
a – aeu , g

(
t, eu

)
, –aeu +

aeu
m(t)eu + eu

)
,� ∩KerL, (, , )T

}

= deg
{
φ(u,u,u, )T ,� ∩KerL, (, , )T

}
= deg

{
φ(u,u,u, )T ,� ∩KerL, (, , )T

}

= deg

{(
a – aeu ,a – aeu , –aeu +

aeu
m(t)eu + eu

)
,� ∩KerL, (, , )T

}
.

From the proof of the three steps above, we obtain

deg
{
JQNu,� ∩KerL, (, , )T

}

= deg

{(
a – aeu ,a – aeu , –aeu +

aeu
m(t)eu + eu

)
,� ∩KerL, (, , )T

}
.

Because of condition (H) in Theorem ., the system of algebraic equations

⎧⎪⎪⎨
⎪⎪⎩
a – ax = ,

a – ay = ,

–aI + ax
m(t)z+x

= 

has a unique solution (x∗, y∗, z∗)T which satisfies

x∗ =
a
a

> , y∗ =
a
a

> , z∗ =
ax∗ +

√
(ax∗) + am(t)ax∗

am(t)
> .

http://www.advancesindifferenceequations.com/content/2013/1/52
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Thus

deg

{(
a – aeu ,a – aeu , –aeu +

aeu
m(t)eu + eu

)
,� ∩KerL, (, , )T

}

= sign

∣∣∣∣∣∣∣
–ax∗  

 –ay∗ 
· · ·  –az∗ – am(t)x∗z∗

[m(t)z∗+x∗]

∣∣∣∣∣∣∣
= –.

Therefore, from (.), we have

deg
{
JQNu,� ∩KerL, (, , )T

}
= –.

This completes the proof of Theorem .. �

3 An example
Consider the system

⎧⎪⎪⎨
⎪⎪⎩
x′
 = x(t)(a(t) – a(t)x(t) – a(t)x(t)

m(t)x(t)+x(t)
) +D(t)(x(t) – x(t)),

x′
 = x(t)(a(t) – a(t)x(t)) +D(t)(x(t) – x(t)),

x′
 = x(t)(–a(t) + a(t)x(t–T)

m(t)x(t–T)+x(t–T)
),

(.)

where τ >  is a positive constant, all the parameters are positive continuous w-periodic
functions with periodic w > .
In Theorem ., g(t, ex) = a(t) – a(t)ex, g(t, ex) = a(t) – a(t)ex. It is easily shown

that if x ≥ ln( a
m


al
) = A, then g(t, ex) ≤  and if x ≥ ln( a

M


al
) = B, then g(t, ex) ≤ . We also

can show if

x ≤ ln
aM – ( am )M

al
= C,

g
(
t, ex

) ≥
(
a
m

)M

and if x≤ ln
aM
al

=D, then g(t, ex) > .

(H) am > ( am )M ,
(H) a > a.

By Theorem ., we have the following theorem.

Theorem . If (H) and (H) hold, the system (.) has at least one positive w-periodic
solution. Consider the system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x′
 = x(t)(a(t) – a(t)x(t) – a(t)x(t)x(t)

m(t)x(t)+x

 (t)

) +D(t)(x(t) – x(t)),

x′
 = x(t)(a(t) – a(t)x(t)) +D(t)(x(t) – x(t)),

x′
 = x(t)(–a(t) +

a(t)x (t–τ )
m(t)x(t–τ )+x (t–τ ) ),

(.)

http://www.advancesindifferenceequations.com/content/2013/1/52


Du and Wu Advances in Difference Equations 2013, 2013:52 Page 14 of 14
http://www.advancesindifferenceequations.com/content/2013/1/52

where z >  is a positive constant, all the parameters are positive continuous w-periodic
functions with periodic w > .

In Theorem ., g(t, ex) = a(t)–a(t)ex, g(t, ex) = a(t)–a(t)ex. It is easily shown that
if x≥ ln

aM
al

= A, then g(t, ex) ≤  and if x≥ ln
aM
al

= B, then g(t, ex) ≤ .We also can show

if x ≤ ln
aM –( a


√
m )M

al
= C, g(t, ex) ≥ ( a


√
m )

m and if x ≤ ln
aM
al

=D, then g(t, ex) ≥ .

(H′
) aM > ( a


√
m )

M ,
(H′

) a > a.

By Theorem ., we have the following theorem.

Theorem . If (H′
) and (H′

) hold, system (.) has at least one positive w-periodic solu-
tion.
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