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Abstract
In this paper, the author is concerned with the fractional equation

CDα
0+u(t) = f (t,u(t), CDα1

0+u(t),
CDα2

0+u(t)), t ∈ (0, 1),

with the anti-periodic boundary value conditions

u(0) = –u(1), tβ1–1CDβ1
0+u(t)|t→0 = –tβ1–1CDβ1

0+u(t)|t=1,

tβ2–2CDβ2
0+u(t)|t→0 = –tβ2–2CDβ2

0+u(t)|t=1,

where CDγ
0+ denotes the Caputo fractional derivative of order γ , the constants α, α1,

α2, β1, β2 satisfy the conditions 2 < α ≤ 3, 0 < α1 ≤ 1 < α2 ≤ 2, 0 < β1 < 1 < β2 < 2.
Different from the recent studies, the function f involves the Caputo fractional
derivative CDα1

0+u(t) and
CDα2

0+u(t). In addition, the author put forward new anti-periodic
boundary value conditions, which are more suitable than those studied in the recent
literature. By applying the Banach contraction mapping principle and the
Leray-Schauder degree theory, some existence results of solutions are obtained.
MSC: 34A08; 34B15
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1 Introduction
In the present paper, we are concerned with the existence of solutions for the fractional
differential equation

CDα
+u(t) = f

(
t,u(t),CDα

+u(t),
CDα

+u(t)
)
, t ∈ (, ), (.)

with anti-periodic boundary value conditions

⎧⎨
⎩u() = –u(), tβ–CDβ

+u(t)|t→ = –tβ–CDβ
+u(t)|t=,

tβ–CDβ
+u(t)|t→ = –tβ–CDβ

+u(t)|t=,
(.)
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where CDγ
+ denotes the Caputo fractional derivative of order γ , the constants α, α, α,

β, β satisfy conditions  < α ≤ ,  < α ≤  < α ≤ ,  < β <  < β < , and f is a given
continuous function.
Differential equations of fractional order have recently proved to be valuable tools in

themodeling of many phenomena in various fields of science and engineering. Indeed, we
can findnumerous applications in viscoelasticity, electrochemistry, control, porousmedia,
electromagnetism, etc. (see [–]). There has been a significant development in the study
of fractional differential equations and inclusions in recent years; see the monographs of
Podlubny [], Kilbas et al. [], Lakshmikantham et al. [], Samko et al. [], Diethelm [],
and the survey by Agarwal et al. []. For some recent contributions on fractional differ-
ential equations, see [–] and the references therein.
Anti-periodic boundary value problems occur in the mathematic modeling of a variety

of physical processes and have recently received considerable attention. For examples and
details of anti-periodic fractional boundary conditions, see [–]. In [], Agarwal and
Ahmad studied the solvability of the following anti-periodic boundary value problem for
nonlinear fractional differential equation:

⎧⎪⎪⎨
⎪⎪⎩
Dα

+u(t) = f (t,u(t)), t ∈ (,T),  < α ≤ ,

u() = –u(T), u′() = –u′(T),

u′′() = –u′′(T), u′′′() = –u′′′(T),

(.)

where Dα
+ denotes the Caputo fractional derivative of order α. The existence results are

obtained by nonlinear alternative theorem.
In [], Wang, Ahmad, Zhang investigated the following impulsive anti-periodic frac-

tional boundary value problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

CDαu(t) = f (t,u(t)),  < α ≤ , t ∈ J ′,

�u(tk) =Qk(u(tk)), k = , , . . . ,p,

�u′(tk) = Ik(u(tk)), k = , , . . . ,p,

�u′′(tk) = I*k(u(tk)), k = , , . . . ,p,

u() = –u(), u′() = –u′(), u′′() = –u′′(),

(.)

where Dα
+ denotes the Caputo fractional derivative of order α. By applying some well-

known fixed point principles, some existence and uniqueness results are obtained.
In [], Ahmad, Nieto studied the following anti-periodic fractional boundary value

problem:

CDqx(t) = f
(
t,x(t)

)
, t ∈ [,T],  < q ≤ ,

x() = –x(T), CDpx() = –CDpx(T),  < p < ,
(.)

where CDq denotes the Caputo fractional derivative of order q. By applying some standard
fixed point principles, some existence and uniqueness results are obtained.
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In [], Wang and Liu considered the following anti-periodic fractional boundary value
problem:

CDαx(t) = f
(
t,x(t),CDqx(t)

)
, t ∈ [,T],  < q < ,  ≤ α – q,

x() = –x(T), CDpx() = –CDpx(T),  < p < .
(.)

By using Schauder’s fixed point theorem and the contraction mapping principle, some
existence and uniqueness results are obtained.
By careful analysis, we have found that the anti-periodic boundary value condition

CDpx() = –CDpx(T) ( < p < ) in equations (.) and (.) actually is equivalent to the
boundary value condition CDpx(T) =  ( < p < ). It means that, in a sense, in (.)-(.),
the feature of anti-periodicity partially disappears. So, in the present paper, we put for-
ward new anti-periodic boundary value conditions (.) so that the anti-periodicity is ex-
pressed. In fact, when β → , β → , the anti-periodic boundary value conditions in (.)
are changed into the boundary value conditions

u() = –u(), u′() = –u′(), u′′() = –u′′(),

which are coincident with anti-periodic boundary value conditions (.) and (.) men-
tioned above. So, the anti-periodic boundary value conditions in (.) in the present pa-
per are more suitable than those in (.) and (.). Moreover, different from the literature
mentioned above, the function f in (.) involves the Caputo fractional derivative CDα

+u(t)
and CDα

+u(t), which brings more difficulty to the study. To investigate the existence, re-
searchers often equip a Banach space with the norm ‖u‖ = ‖u‖ + ‖CDα

+u‖ + ‖CDα
+u‖.

However, if such a normwas taken in the study, the introduced conditions would get more
complex. So, we take the norm ‖u‖ =max{‖u′‖,‖u′′‖} by finding some implicit relations.
As a result, the conditions introduced are quite simple. By applying the Banach contrac-
tion mapping principle and the Leray-Schauder degree theory, some existence results of
solutions are obtained in this paper.
The organization of this paper is as follows. In Section , we present some necessary

definitions and preliminary results that will be used to prove ourmain results. In Section ,
we put forward and prove our main results. Finally, we give two examples to demonstrate
our main results.

2 Preliminaries
In this section, we introduce some preliminary facts which are used throughout this paper.
Let N be the set of positive integers, R be the set of real numbers.

Definition . ([]) The Riemann-Liouville fractional integral of order α >  of a function
y : (a,b]→ R is given by

Iαa+y(t) =


�(α)

∫ t


(t – s)α–y(s)ds, t ∈ (a,b].

http://www.advancesindifferenceequations.com/content/2013/1/53
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Definition . ([]) The Riemann-Liouville fractional derivative of order α >  of a func-
tion y : (a,b]→R is given by

Dα
a+y(t) =


�(n – α)

(
d
dt

)n ∫ t



y(s)
(t – s)α–n+

ds, t ∈ (a,b],

where n = [α] + , [α] denotes the integer part of α.

Definition . ([]) The Caputo fractional derivative of order α >  of a function y on
(a,b] is defined via the above Riemann-Liouville derivatives by

(CDα
a+y

)
(x) =

(
Dα

a+

[
y(t) –

n–∑
k=

y(k)(a)
k!

(t – a)k
])

(x), x ∈ (a,b].

Lemma . ([]) Let α >  and y ∈ C[a,b]. Then

(CDα
a+I

α
a+y

)
(x) = y(x)

holds on [a,b].

Lemma . ([]) If  < α /∈N and y ∈ ACn[a,b], then

Dα
a+y(t) =


�(n – α)

∫ t

a

y(n)(s)
(t – s)α–n+

ds, t ∈ [a,b],

where ACn[a,b] = {u : [a,b]→R and u(n–) ∈ AC[a,b]}.

Lemma . ([]) Let n ∈Nwith n ≥ , α ∈ (n–,n]. If y ∈ Cn–[a,b] and CDα
a+y ∈ C(a,b),

then

Iαa+
CDα

a+y(t) = y(t) –
n–∑
k=

y(k)(a)
k!

(t – a)k

holds on (a,b).

Let X = {u|u ∈ C[, ],u() = –u()}. It is well known that X is a Banach space endowed
with the norm ‖u‖ =max{‖u‖,‖u′‖,‖u′′‖}, where ‖u(i)‖ =maxt∈[,] |u(i)|.
For any u ∈ X, from u() = –u(), there exists a tu ∈ (, ) such that u(tu) = . So, from the

fact that u(t) =
∫ t
tu u

′(s)ds, t ∈ [, ], it follows that |u(t)| ≤ | ∫ t
tu |u′(s)|ds| ≤ ‖u′‖, t ∈ [, ].

Thus, ‖u‖ ≤ ‖u′‖, and so ‖u‖ =max{‖u′‖,‖u′′‖}.
In what follows, we regard X as the Banach space with the norm

‖u‖ =max
{∥∥u′∥∥

,
∥∥u′′∥∥



}
.

We have the following lemma.

http://www.advancesindifferenceequations.com/content/2013/1/53
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Lemma . For a given h ∈ C[, ], the function u is a solution of the following anti-
periodic boundary value problem:

⎧⎪⎪⎨
⎪⎪⎩

CDα
+u(t) = h(t), t ∈ (, ),

u() = –u(), tβ–CDβ
+u(t)|t→ = –tβ–CDβ

+u(t)|t=,

tβ–CDβ
+u(t)|t→ = –tβ–CDβ

+u(t)|t=.

(.)

If and only if u ∈ C[, ] is a solution of the integral equation

u(t) =
∫ t



(t – s)α–

�(α)
h(s)ds +

∫ 



[
–


�(α)

( – s)α– +
( – t)�( – β)

�(α – β)
( – s)α–β–

+
 – β + t – ( – β)t

( – β)
· �( – β)
�(α – β)

( – s)α–β–
]
h(s)ds. (.)

Proof Let u ∈ C[, ] be a solution of (.). Then, by Lemma ., we have

u(t) = c + ct + ct + Iα+h(t), t ∈ [, ], (.)

for some c, c, c ∈ R. Furthermore,

CDβ
+u(t) =

c
�( – β)

t–β +
c

�( – β)
t–β + Iα–β

+ h(t), t ∈ [, ], (.)

CDβ
+u(t) =

c
�( – β)

t–β + Iα–β
+ h(t), t ∈ [, ]. (.)

From (.)-(.), we have

tβ–CDβ
+u(t) =

c
�( – β)

+
c

�( – β)
t + tβ–Iα–β

+ h(t), t ∈ (, ), (.)

tβ–CDβ
+u(t) =

c
�( – β)

+ tβ–Iα–β
+ h(t), t ∈ (, ). (.)

Now, we show that

lim
t→+

tβ–Iα–β
+ h(t) = , lim

t→+
tβ–Iα–β

+ h(t) = .

In fact, since h ∈ C[, ], there exists anM >  such that |h(t)| ≤ M for all t ∈ [, ]. Then,
from the fact that  < β <  < β <  < α ≤ , we have

∣∣Iα–β
+ h(t)

∣∣ = 
�(α – β)

∣∣∣∣
∫ t


(t – s)α–β–h(s)ds

∣∣∣∣
≤ 

�(α – β)

∫ t


(t – s)α–β–

∣∣h(s)∣∣ds
≤ M

�(α – β)

∫ t


(t – s)α–β– ds

=
M

�(α – β + )
tα–β , t ∈ (, ].

http://www.advancesindifferenceequations.com/content/2013/1/53
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Thus,

∣∣tβ–Iα–β
+ h(t)

∣∣ ≤ M
�(α – β + )

tα–, t ∈ (, ],

and so

lim
t→+

tβ–Iα–β
+ h(t) = ,

noting that  < α ≤ .
Similarly, we also have

∣∣tβ–Iα–β
+ h(t)

∣∣ ≤ M
�(α – β + )

tα–, t ∈ (, ],

and so

lim
t→+

tβ–Iα–β
+ h(t) = ,

noting that  < α ≤ .
So, from (.)-(.), we have

⎧⎨
⎩tβ–CDβ

+u(t)|t→ = c
�(–β)

,

tβ–CDβ
+u(t)|t= =

c
�(–β)

+ c
�(–β)

+ Iα–β
+ h(),

(.)

⎧⎨
⎩tβ–CDβ

+u(t)|t→ = c
�(–β)

,

tβ–CDβ
+u(t)|t= =

c
�(–β)

+ Iα–β
+ h().

(.)

Thus, by the boundary value condition in (.), combined with (.), (.)-(.), we
have

c + c + c + Iα+h() = , (.)

c
�( – β)

+
c

�( – β)
+ Iα–β

+ h() = , (.)

c
�( – β)

+ Iα–β
+ h() = . (.)

From (.)-(.), we have

c = –


Iα+h() +

�( – β)


Iα–β
+ h() –

(β – )�( – β)
( – β)

Iα–β
+ h(), (.)

c = –
�( – β)


Iα–β
+ h() +

�( – β)
( – β)

Iα–β
+ h(), (.)

c = –
�( – β)


Iα–β
+ h(). (.)

http://www.advancesindifferenceequations.com/content/2013/1/53
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Substituting (.)-(.) into (.), we obtain

u(t) = Iα+h(t) –


Iα+h() +

( – t)


�( – β)Iα–β
+ h()

+
 – β + t – ( – β)t

( – β)
�( – β)Iα–β

+ h(), t ∈ [, ].

That is, u satisfies (.).
Conversely, if u is a solution of the fractional integral equation (.), then by finding the

second derivative for both sides of (.), we have

u′′(t) =


�(α – )

∫ t


(t – s)α–h(s)ds

–
�( – β)
�(α – β)

∫ 


( – s)α–β–h(s)ds, t ∈ [, ]. (.)

Noting that h ∈ C[, ], it follows from (.) that u ∈ C[, ]. Again, by Lemma . and
(.), a direct computation shows that the solution given by (.) satisfies (.). This com-
pletes the proof. �

Now, we define the operator A as

(Ah) =
∫ t



(t – s)α–

�(α)
h(s)ds +

∫ 



[
–


�(α)

( – s)α– +
( – t)�( – β)

�(α – β)
( – s)α–β–

+
 – β + t – ( – β)t

( – β)
· �( – β)
�(α – β)

( – s)α–β–
]
h(s)ds (.)

for h ∈ C[, ].
From the proof of Lemma ., we know that the operator Amaps C[, ] into X.
Now, we establish the following lemma, which will play an important role in the forth-

coming analysis.

Lemma . For any u ∈ X and  < α ≤  < α ≤ , we have
(i) ‖u‖ ≤ ‖u′‖, and so ‖u‖ ≤ ‖u‖;
(ii) ‖CDα

+u‖ ≤ 
�(–α)

‖u′‖, and so ‖CDα
+u‖ ≤ 

�(–α)
‖u‖;

(iii) ‖CDα
+u‖ ≤ 

�(–α)
‖u′′‖, and so ‖CDα

+u‖ ≤ 
�(–α)

‖u‖.

Proof Conclusion (i) has been proved as before. We come to show that conclusions (ii)-
(iii) are true. Obviously, when α = , α = , the conclusions are true. So, we only consider
the case  < α <  < α < . In fact, by Lemma ., for any u ∈ X, we have

∣∣CDα
+u(t)

∣∣ = 
�( – α)

∣∣∣∣
∫ t


(t – s)–αu′(s)ds

∣∣∣∣
≤ ∥∥u′∥∥




�( – α)

∫ t


(t – s)–α ds

≤ 
�( – α)

∥∥u′∥∥
, t ∈ [, ].

http://www.advancesindifferenceequations.com/content/2013/1/53


Chai Advances in Difference Equations 2013, 2013:53 Page 8 of 15
http://www.advancesindifferenceequations.com/content/2013/1/53

So,

∥∥CDα
+u

∥∥
 ≤ 

�( – α)
∥∥u′∥∥

.

Similarly, we have that ‖CDα
+u‖ ≤ 

�(–α)
‖u′′‖. �

We also need the following lemmas.

Lemma . ([]) Let X be a Banach space. Assume that � is an open bounded subset of
X with θ ∈ �, and T : �̄ → X is a completely continuous operator such that

‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂�.

Then T has a fixed point in �̄.

Lemma . (Leray-Schauder []) Let X be a Banach space. Assume that T : X → X is
a completely continuous operator and the set V = {u ∈ X|u = μTu,  < μ < } is bounded.
Then T has a fixed point in X.

3 Main results
We list the following hypotheses which will be used in the sequel:

(H) f ∈ C([, ]×R×R×R,R).
(H)  < α ≤ ,  < α ≤  < α ≤ ,  < β <  < β < .
(H) There exist constants L, L, and L such that

∣∣f (t,x, y, z) – f (t,x, y, z)
∣∣ ≤ L|x – x| + L|y – y| + L|z – z|

for xi, yi, zi ∈R, i = , , , and t ∈ [, ].

First, we establish the following lemma to obtain our main results.

Lemma . Assume that (H)-(H) hold. Then the operator T : X → X is completely con-
tinuous, where T is defined by

(Tu)(t) = (AFu)(t), (Fu)(t) = f
(
t,u(t),CDα

+u(t),
CDα

+u(t)
)
, t ∈ [, ],

and the operator A is given by (.).

Proof For any u ∈ X, we have that CDα
+u,CD

α
+u ∈ C[, ]. Then Fu ∈ C[, ] from the

hypothesis (H). Thus, Tu ∈ X from (.) and the proof of Lemma ..
First, by a direct computation, we know that the following relations hold:

(Tu)′(t) =
∫ t



(t – s)α–

�(α – )
Fu(s)ds –

�( – β)
�(α – β)

∫ 


( – s)α–β–Fu(s)ds

+
�( – β)
�(α – β)

∫ 



 – ( – β)t
( – β)

( – s)α–β–Fu(s)ds, (.)

http://www.advancesindifferenceequations.com/content/2013/1/53
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(Tu)′′(t) =
∫ t



(t – s)α–

�(α – )
(Fu)(s)ds

–
�( – β)
�(α – β)

∫ 


( – s)α–β–(Fu)(s)ds. (.)

Now, we show that T is a compact operator.
Let V be an arbitrary bounded set in X. Then there exists an L >  such that ‖u‖ ≤ L.

Thus, by Lemma ., it follows that |u(t)| ≤ L, |CDα
+u(t)| ≤ 

�(–α)
L, |CDα

+u(t)| ≤ 
�(–α)

L
for all u ∈ V and t ∈ [, ].
So, by the hypothesis (H), there exists anM >  such that

∣∣(Fu)(t)∣∣ ≤ M, t ∈ [, ], for all u ∈ V . (.)

Consequently, by (.), (.) and observing that | – ( – β)t| ≤ ( – β), t ∈ [, ], we
have

∣∣(Tu)′(t)∣∣ ≤
(


�(α)

+
�( – β)

�(α – β + )
+

�( – β)
�(α – β + )

)
M,

and so

∥∥(Tu)′∥∥ ≤
(


�(α)

+
�( – β)

�(α – β + )
+

�( – β)
�(α – β + )

)
M. (.)

Similarly, by (.), (.), we have

∥∥(Tu)′′∥∥ ≤
(


�(α – )

+
�( – β)

�(α – β + )

)
M. (.)

Thus,

‖Tu‖ ≤
(


�(α – )

+
�( – β)

�(α – β + )
+

�( – β)
�(α – β + )

)
M.

That is, TV is uniformly bounded.
Now, we show that TV is equicontinuous.
In fact, for any u ∈ V and t, t ∈ [, ] with t < t, since |Fu(t)| ≤ M, t ∈ [, ], from (.)

it follows that

∣∣(Tu)′(t) – (Tu)′(t)
∣∣ ≤ M

�(α)
(
tα– – tα–

)
+M

∫ 



(t – t)�( – β)
�(α – β)

( – s)α–β– ds

= M
[


�(α)

(
tα– – tα–

)
+

�( – β)
�(α – β + )

(t – t)
]
, (.)

and

∣∣(Tu)′′(t) – (Tu)′′(t)
∣∣ ≤ M

�α – )
[
tα– – tα– + (t – t)α–

]
. (.)

So, inequalities (.)-(.) imply thatTV is equicontinuous. By theArzela-Ascoli theorem,
T is a compact operator.
Finally, we prove that T is continuous.

http://www.advancesindifferenceequations.com/content/2013/1/53
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Assume that {un} is an arbitrary sequence in X with un → u, u ∈ X. Then there is an
L >  such that ‖un‖ ≤ L, ‖u′

n‖ ≤ L, ‖u′′
n‖ ≤ L, n = , , , . . . , and so

∥∥CDα
+un

∥∥
 ≤ L

�( – α)
,

∥∥CDα
+un

∥∥
 ≤ L

�( – α)
, n = , , , . . . ,

from Lemma ..
On the other hand, for an arbitrary ε > , there is a δ >  such that

∣∣f (t,x, y, z) – f (t,x, y, z)
∣∣ < ε (.)

for all t ∈ [, ], xi ∈ [–L,L], yi ∈ [– L
�(–α)

, L
�(–α)

], zi ∈ [– L
�(–α)

, L
�(–α)

] with |x – x| < δ,
|y – y| < δ, |z – z| < δ, because of the uniform continuity of f on

[, ]× [–L,L]×
[
–

L
�( – α)

,
L

�( – α)

]
×

[
–

L
�( – α)

,
L

�( – α)

]
.

In view of the fact that un → u, there is an N ≥  such that

‖un – u‖ < δ,
∥∥CDα

+un –
CDα

+u
∥∥
 < δ,

∥∥CDα
+un –

CDα
+u

∥∥
 < δ (.)

when n≥ N .
Thus, from (.)-(.) together with (.)-(.), by a similar deducing as (.)-(.), we

have

∥∥(Tun)′ – (Tu)′
∥∥
 ≤

[


�(α)
+

�( – β)
�(α – β + )

+
�( – β)

�(α – β + )

]
ε

and

∥∥(Tun)′′ – (Tu)′′
∥∥
 ≤

[


�(α – )
+

�( – β)
�(α – β + )

]
ε.

Hence,

‖Tun – Tu‖ ≤
[


�(α – )

+
�( – β)

�(α – β + )
+

�( – β)
�(α – β + )

]
ε.

That is, T is continuous in X. �

To state our main results in this paper, we first introduce some notations for conve-
nience.
Let f = lim|x|+|y|+|z|→maxt∈[,] |f (t,x,y,z)|

|x|+|y|+|z| , f∞ = lim|x|+|y|+|z|→∞ maxt∈[,] |f (t,x,y,z)|
|x|+|y|+|z| .

Set D = 
�(α–) +

�(–β)
�(α–β+)

+ �(–β)
�(α–β+)

, E =  + 
�(–α)

+ 
�(–α)

, L = L + L
�(–α)

+ L
�(–α)

,
where Li (i = , , ) are given in (H).
We are in a position to state the first result in the present paper.

Theorem. Suppose (H)-(H) hold. If DL < , then BVP (.)-(.) has a unique solution.
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Proof For any u, v ∈ X, by (H) and Lemma ., we have

∣∣f (t,u(t),CDα
+u(t),

CDα
+u(t)

)
– f

(
t, v(t),CDα

+v(t),
CDα

+v(t)
)∣∣

≤ L
∣∣u(t) – v(t)

∣∣ + L
∣∣CDα

+u(t) –
CDα

+v(t)
∣∣ + L

∣∣CDα
+u(t) –

CDα
+v(t)

∣∣
≤ L‖u – v‖ + L

∥∥CDα
+(u – v)

∥∥
 + L

∥∥CDα
+(u – v)

∥∥


≤ L‖u – v‖ + L
�( – α)

∥∥(u – v)′
∥∥
 +

L
�( – α)

∥∥(u – v)′′
∥∥


≤
(
L +

L
�( – α)

+
L

�( – α)

)
‖u – v‖

= L‖u – v‖.

So, it follows from (.) that

∣∣(Tu)′(t) – (Tv)′(t)
∣∣ ≤

{∫ t



(t – s)α–

�(α – )
ds +

�( – β)
�(α – β)

∫ 


( – s)α–β– ds

+
�( – β)
�(α – β)

∫ 



| – ( – β)t|
( – β)

( – s)α–β– ds
}
L‖u – v‖.

Thus, observing that | – ( – β)t| ≤ ( – β), we have

∥∥(Tu)′ – (Tv)′
∥∥
 ≤

[


�(α)
+

�( – β)
�(α – β + )

+
�( – β)

�(α – β + )

]
L‖u – v‖.

Similarly,

∥∥(Tu)′′ – (Tv)′′
∥∥
 ≤

[


�(α – )
+

�( – β)
�(α – β + )

]
L‖u – v‖.

Thus,

‖Tu – Tv‖ ≤
[


�(α – )

+
�( – β)

�(α – β + )
+

�( – β)
�(α – β + )

]
L‖u – v‖

= DL‖u – v‖.

As DL < , T is a contraction mapping. So, by the contraction mapping principle, T has
a unique fixed point u. That is, u is the unique solution of BVP (.)-(.) by Lemma ..

�

Our next existence result is based on Lemma ..

Theorem . Assume that (H)-(H) hold. If f < λ, then BVP (.)-(.) has at least one
solution, where λ = (DE)–.

Proof By Lemma ., we know that T : X → X is completely continuous. Again, in view of
f < λ, there exists an r >  such that

∣∣f (t,x, y, z)∣∣ ≤ λ
(|x| + |y| + |z|), t ∈ [, ] (.)

when |x| + |y| + |z| ≤ r.

http://www.advancesindifferenceequations.com/content/2013/1/53
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Take r = E–r, where E = (+ 
�(–α)

+ 
�(–α)

). Set� = {x ∈ X : ‖x‖ < r}. For any u ∈ ∂�,
we have that u ∈ X with ‖u‖ = r. Thus, ‖u‖ ≤ r, ‖u′‖ ≤ r, and ‖u′′‖ ≤ r. So, Lemma .
ensures that

∥∥CDα
+u

∥∥
 ≤ 

�( – α)
r,

∥∥CDα
+u

∥∥
 ≤ 

�( – α)
r.

Therefore,

∣∣u(t)∣∣ + ∣∣CDα
+u(t)

∣∣ + ∣∣CDα
+u(t)

∣∣ ≤
(
 +


�( – α)

+


�( – α)

)
r = r, t ∈ [, ].

Thus, from (.), it follows that

∣∣f (t,u(t),CDα
+u(t),

CDα
+u(t)

)∣∣ ≤ λ

(
 +


�( – α)

+


�( – α)

)
r

= λEr, t ∈ [, ].

Thus, by a similar deducing to that in (.) and (.), we have

∥∥(Tu)′∥∥ ≤ λ

(


�(α)
+

�( – β)
�(α – β + )

+
�( – β)

�(α – β + )

)
Er

and

∥∥(Tu)′′∥∥ ≤ λ

(


�(α – )
+

�( – β)
�(α – β + )

)
Er.

Thus, ‖Tu‖ ≤ λDEr, whereD = 
�(α–) +

�(–β)
�(α–β+)

+ �(–β)
�(α–β+)

. As λ = (DE)–, we have that
‖Tu‖ ≤ r = ‖u‖.
So, by virtue of Lemma ., T has at least one fixed point u. That is, u is a solution of

BVP (.)-(.) by Lemma .. The proof is complete. �

The last result of this section is based on the Leray-Schauder fixed point theorem,
namely Lemma ..

Theorem . Suppose that (H)-(H) hold. If f∞ < λ, then BVP (.)-(.) has at least one
solution, where λ = (DE)–.

Proof As before, T : X → X is completely continuous. From f∞ < λ, we can choose a ε ∈
(,λ) such that f∞ < λ – ε. Then there is an R >  such that

∣∣f (t,x, y, z)∣∣ < (λ – ε)
(|x| + |y| + |z|)

holds when |x| + |y| + |z| ≥ R for t ∈ [, ].
LetM =maxt∈[,],|x|+|y|+|z|≤R |f (t,x, y, z)|. Then we always have

∣∣f (t,x, y, z)∣∣ ≤ M + (λ – ε)
(|x| + |y| + |z|). (.)

Set V = {u : u ∈ X,u = μTu,  < μ < }. Now, we show that V is a bounded set.

http://www.advancesindifferenceequations.com/content/2013/1/53
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In fact, for any u ∈ V , from Lemma . and (.), it follows that

∣∣f (t,u(t),CDα
+u(t),

CDα
+u(t)

)∣∣
≤ M + (λ – ε)

(∣∣u(t)∣∣ + ∣∣CDα
+u(t)

∣∣ + ∣∣CDα
+u(t)

∣∣)
≤ M + (λ – ε)

(‖u‖ +
∥∥CDα

+u
∥∥
 +

∥∥CDα
+u

∥∥


)
≤ M + (λ – ε)

(
 +


�( – α)

+


�( – α)

)
‖u‖

=M + (λ – ε)E‖u‖, for t ∈ [, ]. (.)

Thus, by (.) combined with (.) and observing that |–(–β)t| ≤ (–β), we have
immediately

∣∣(Tu)′(t)∣∣ ≤
{∫ t



(t – s)α–

�(α – )
ds +

�( – β)
�(α – β)

∫ 


( – s)α–β– ds

+
�( – β)
�(α – β)

∫ 


( – s)α–β– ds

}[
M + (λ – ε)E‖u‖

]

≤
[


�(α)

+
�( – β)

�(α – β + )
+

�( – β)
�(α – β + )

]
· [M + (λ – ε)E‖u‖

]
. (.)

Similarly, we have

∣∣(Tu)′′(t)∣∣ ≤
[


�(α – )

+
�( – β)

�(α – β + )

]
· [M + (λ – ε)E‖u‖

]
. (.)

So, from (.)-(.), we have

‖Tu‖ ≤
[


�(α – )

+
�( – β)

�(α – β + )
+

�( – β)
�(α – β + )

]
· [M + (λ – ε)E

]‖u‖
= D(M + (λ – ε)E‖u‖.

Now, the relation u = μTu with  < μ <  implies

‖u‖ = μ‖Tu‖ ≤ DM + (λ – ε)DE‖u‖.

Because λDE = , the above inequality implies ‖u‖ ≤ M
εE . That is, V is a bounded set. So,

by Lemma ., we have that T has at least one fixed point u. That is, u is a solution of BVP
(.)-(.) by Lemma .. This completes the proof. �

Example . Consider the following anti-periodic boundary value problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

CD


+u(t) =

λ
+t

|u(t)|
+|u(t)| – λe–t ln[ + (CD



+ u(t))  + (CD



+ u(t)) ],

u() = –u(), t– 
 CD



+u(t)|t→ = –t– 

 CD


+u(t)|t=,

t– 
 CD



+u(t)|t→ = –t– 

 CD


+u(t)|t=,

(.)

where α = 
 , α = 

 , α = 
 , β = 

 , β = 
 , and  < λ < 

√
π�(  )

(+π )(+�(  ))
. Clearly, the function

f = λ
t+

|x|
+|x| – λe–t ln( + y + z) satisfies |f (t,x, yz, z) – f (t,x, y, z)| ≤ λ(|x – x| + |y –
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y|+ |z –z|). Further,D = 
�(α–) +

�(–β)
�(α–β+)

+ �(–β)
�(α–β+)

= (+π )

√

π
, L = L + L

�(–α)
+ L

�(–α)
=

λ
+�(  )
�(  )

. As DL = λ
(+π )(+�(  ))


√

π�(  )
< , all the assumptions of Theorem . are satisfied.

Hence BVP (.) has a unique solution.

Example . Consider the following anti-periodic boundary value problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

CD


+u(t) = μ sinu(t) + ecos t[(CD



+ u(t))  – (CD



+ u(t)) ], t ∈ (, ),

u() = –u(), t– 
 CD



+u(t)|t→ = –t– 

 CD


+u(t)|t=,

t– 
 CD



+u(t)|t→ = –t– 

 CD


+u(t)|t=,

(.)

where α = 
 , α = 

 , α = 
 , β = 

 , β = 
 , and  < μ < 

√
π�(  )

(+π )(+�(  ))
. Clearly, the func-

tion f = μ sinx + ecos t(y – z) satisfies f ≤ μ, where f = lim|x|+|y|+|z|→maxt∈[,] f (t,x,y,z)
|x|+|y|+|z| .

Further, D = 
�(α–) +

�(–β)
�(α–β+)

+ �(–β)
�(α–β+)

= (+π )

√

π
, E =  + 

�(–α)
+ 

�(–α)
= +�(  )

�(  )
,

λ = (DE)– = 
√

π�(  )
(+π )(+�(  ))

. As f < λ, all the assumptions of Theorem . are satisfied.
Hence BVP (.) has at least one solution.
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