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Abstract
This paper is concerned with the problems of stability and l2-gain analysis for 2D
(two-dimensional) discrete switched systems with time-varying delays described by
the second FM state-space model. Firstly, we introduce the definition of the average
dwell time for a 2D discrete switched system, which is an extension of the ‘average
dwell time’ concept of a 1D (one-dimensional) switched system. Secondly, based on
the average dwell time approach, delay-dependent sufficient conditions for the
existence of the exponential stability for the 2D discrete switched system are derived
and l2-gain performance for the considered system is also analyzed. All the obtained
results are formulated in a set of LMIs (linear matrix inequalities). Finally, a numerical
example is given to illustrate the effectiveness of the proposed results.

Keywords: 2D systems; switched systems; time-varying delays; l2-gain; average
dwell time; linear matrix inequality

1 Introduction
D (Two-dimensional) systems, which are a class of multi-dimensional systems, have re-
ceived considerable attention over the past few decades due to their wide applications in
many areas such asmulti-dimensional digital filtering, linear image processing, signal pro-
cessing, and process control [–]. The D system theory is frequently used as an analysis
tool to solve some problems, e.g., iterative learning control [, ] and repetitive process
control [, ]. The problems on realization, stability analysis, stabilization, filter design,
and so on for D or nD systems have attracted a great deal of interest bymany researchers.
Xu et al. [, ] investigated the realization of D systems, and the problems of stability and
stabilization for these systems were studied extensively in [–]. The observer and filter
design problems have also been considered in [–].
It is known that modeling uncertainties and disturbances are unavoidable in practical

systems, and it is important to investigate the problems of H∞ control and robust stabi-
lization of D systems. Recently, many results on H∞ control for D systems have been
presented in [–]. Because time delays frequently occur in practical systems and are
often the source of instability, the H∞ control problem for a class of D discrete systems
with state delays has also been investigated in [, ].
On the other hand, since switched systems have numerous applications in many fields,

such asmechanical systems, automotive industry, switched power converters, this class of
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systems has also attracted considerable attention during the past several decades [–].
Recently, some approaches have been applied widely to deal with these systems; see, for
example, [–] and references cited therein. As stated in [, ], in many modeling
problems of physical processes, a D switching representation is needed. One can cite a
Dphysically basedmodel for advanced power bipolar devices and heat flux switching and
modulating in a thermal transistor. At present, there have been a few reports on D dis-
crete switched systems. Benzaouia et al. [] firstly considered D switched systems with
arbitrary switching sequences, and the process of switch is considered as a Markovian
jumping one. In addition, the stabilization problem of discrete D switched systems was
also studied in []. In [], we extended the concept of average dwell time in D switched
systems to D switched systems and designed a switching rule to guarantee the exponen-
tial stability of D switched delay-free systems. However, to the best of our knowledge, no
works have considered the disturbance attenuation property of D switched systems to
date. Moreover, because of the complicated behavior caused by the interaction between
the continuous dynamics and discrete switching, the problem of disturbance attenuation
performance analysis for D switched systems is more difficult to study, and the meth-
ods proposed in [–] cannot be directly applied to such systems. This motivates the
present study.
In this paper, we are interested in investigating the issues of the exponential stability and

l-gain analysis for D discrete switched systems with time-varying delays represented by
the second FM model. The main contributions of this paper can be summarized as fol-
lows: (i) Based on the average dwell time approach, a delay-dependent exponential stabil-
ity criterion for such systems is obtained and formulated in terms of LMIs (linear matrix
inequalities); (ii) The Lyapunov-Krasovskii function with exponential term, which is dif-
ferent from the previous ones, is constructed to investigate the stability of the considered
systems; and (iii) In order to investigate the disturbance attenuation property of the con-
sidered systems, we for the first time introduce the concept of l-gain for a D switched
system, which is an extension of the l-gain performance index in the D case. The l-gain
performance index can characterize the disturbance attenuation property of the underly-
ing systems, and then, based on the established stability results, delay-dependent sufficient
conditions for the existence of l-gain performance are derived in terms of LMIs, which
can be easily verified by using some standard numerical software. The proposed method
can also be applied to non-switched D discrete linear systems.
This paper is organized as follows. In Section , problem formulation and some nec-

essary lemmas are given. In Section , based on the average dwell time approach, delay-
dependent sufficient conditions for the existence of the exponential stability and l-gain
property are derived in terms of a set of matrix inequalities. A numerical example is pro-
vided to illustrate the effectiveness of the proposed approach in Section . Concluding
remarks are given in Section .

Notations Throughout this paper, the superscript ‘T ’ denotes the transpose, and the no-
tation X ≥ Y (X > Y ) means that matrix X – Y is positive semi-definite (positive definite,
respectively). ‖ · ‖ denotes the Euclidean norm. I represents an identity matrix with an
appropriate dimension. diag{ai} denotes a diagonal matrix with the diagonal elements ai,
i = , , . . . ,n. X– denotes the inverse of X. The asterisk ∗ in a matrix is used to denote
the term that is induced by symmetry. The set of all nonnegative integers is represented
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by Z+. The l norm of a D signal w(i, j) is given by

‖w‖ =
√√√√ ∞∑

i=

∞∑
j=

∥∥w(i, j)∥∥

and w(i, j) belongs to l{[,∞), [,∞)} if ‖w‖ < ∞.

2 Problem formulation and preliminaries
Consider the following D discrete switched systems with time-varying delays described
by the second FM model:

x(i + , j + ) = Aσ (i,j+)
 x(i, j + ) +Aσ (i+,j)

 x(i + , j) +Aσ (i,j+)
d x

(
i – d(i), j + 

)
+Aσ (i+,j)

d x
(
i + , j – d(j)

)
+ Bσ (i,j+)

 w(i, j + ) + Bσ (i+,j)
 w(i + , j), ()

z(i, j) =Hσ (i,j)x(i, j) + Lσ (i,j)w(i, j),

where x(i, j) ∈ Rn is the state vector, w(i, j) ∈ Rq is the noise input which belongs to
l{[,∞), [,∞)}, z(i, j) ∈ Rp is the controlled output. i and j are integers in Z+. σ (i, j) :
Z+ × Z+ → N = {, , . . . ,N} is the switching signal. N is the number of subsystems.
σ (i, j) = k, k ∈ N , denotes that the kth subsystem is active. Ak

 , Ak
, Ak

d, A
k
d, B

k
 , Bk

, Hk ,
and Lk are constant matrices with appropriate dimensions. d(i) and d(j) are delays along
horizontal and vertical directions, respectively. We assume that d(i) and d(j) satisfy

d ≤ d(i) ≤ d, d ≤ d(j) ≤ d, ()

where d, d, d, and d denote the lower and upper delay bounds along horizontal and
vertical directions, respectively.
In this paper, it is assumed that the switch occurs only at each sampling point of i or j.

The switching sequence can be described as

(
(i, j),σ (i, j)

)
,
(
(i, j),σ (i, j)

)
, . . . ,

(
(iπ , jπ ),σ (iπ , jπ )

)
, . . . , ()

where (iπ , jπ ) denotes the π th switching instant. It should be noted that the value of σ (i, j)
only depends upon i + j (see the references [, ]).

Remark  If there is only one subsystem in system (), it will degenerate to the following
D system:

x(i + , j + ) = Ax(i, j + ) +Ax(i + , j) +Adx
(
i – d(i), j + 

)
+Adx

(
i + , j – d(j)

)
+ Bw(i, j + ) + Bw(i + , j),

z(i, j) =Hx(i, j) + Lw(i, j).

Therefore, the addressed system () can be viewed as an extension of D time-varying
delays systems to switched systems.
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For system (), we consider a finite set of initial conditions, that is, there exist positive
integers z and z such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(i, j) = hij, ∀ ≤ j ≤ z, i = –d, –d + , . . . , ,

x(i, j) = vij, ∀≤ i ≤ z, j = –d, –d + , . . . , ,

h = v,

x(i, j) = , ∀j > z, i = –d, –d + , . . . , ,

x(i, j) = , ∀i > z, j = –d, –d + , . . . , ,

()

where z <∞ and z <∞ are positive integers, hij and vij are given vectors.

Definition  System () with w(i, j) =  is said to be exponentially stable under the switch-
ing signal σ (i, j) if for a given Z ≥ , there exist positive constants c and ξ such that

∑
i+j=D

∥∥x(i, j)∥∥ ≤ ξe–c(D–Z)
∑
i+j=Z

∥∥x(i, j)∥∥C ()

holds for all D≥ Z, where

∑
i+j=Z

∥∥x(i, j)∥∥C � sup
–d≤θh≤,
–d≤θv≤

∑
i+j=Z

{∥∥x(i – θh, j)
∥∥,∥∥x(i, j – θv)

∥∥,
∥∥η(i – θh, j)

∥∥,∥∥δ(i, j – θv)
∥∥},

η(i – θh, j) = x(i – θh + , j) – x(i – θh, j),

δ(i, j – θv) = x(i, j – θv + ) – x(i, j – θv).

Remark  From Definition , it is easy to see that when Z is given,
∑

i+j=Z ‖x(i, j)‖C will
be bounded and

∑
i+j=D ‖x(i, j)‖ will tend to be zero exponentially as D goes to infinity,

which also means ‖x(i, j)‖ will tend to be zero exponentially.

Definition  [] For any i + j = D > Z = iZ + jZ , let Nσ (i,j)(Z,D) denote the switching
number of the switching signal σ (i, j) on an interval (Z,D). If

Nσ (i,j)(Z,D) ≤ N +
D – Z

τa
()

holds for given N ≥ , τa ≥ , then the constant τa is called the average dwell time and
N is the chatter bound.

Remark  Definition  is an extension of the ‘average dwell time’ concept in a D switched
system, which can be seen in []. In what follows, based on the extended average dwell
time concept, we will investigate the problems of stability and l-gain analysis for a D
discrete switched systemwith time-varying delays. It should be noted that we have studied
the problems of stability analysis and stabilization of delay-free D switched systems using
the average dwell time approach in [].
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Remark  Similar to the D switched system case, Definition  means that if there ex-
ists a positive number τa such that the switching signal σ (i, j) has the average dwell time
property, the average time interval between consecutive switching is at least τa. The av-
erage dwell time method is used to restrict the switching number of the switching signal
during a time interval such that the stability or other performances of the system can be
guaranteed.

Definition  Consider D discrete switched system (). For a given scalar γ > , system
() is said to have l-gain γ under the switching signal σ (i, j) if it satisfies the following
conditions:
() When w(i, j) = , system () is asymptotically stable;
() Under the zero boundary condition, it holds that

∞∑
i=

∞∑
j=

‖z‖ < γ 
∞∑
i=

∞∑
j=

‖w‖, ∀ 
= w ∈ l
{
[,∞), [,∞)

}
,

where

‖w‖ =
∞∑
i=

∞∑
j=

∥∥∥∥∥
[
w(i, j + )
w(i + , j)

]∥∥∥∥∥


, ‖z‖ =
∞∑
i=

∞∑
j=

∥∥∥∥∥
[
z(i, j + )
z(i + , j)

]∥∥∥∥∥


.

Remark  It is not difficult to see that Definition  is an extension of the l-gain perfor-
mance index in the D case. γ characterizes the disturbance attenuation performance. The
smaller γ is, the better performance is.

Definition  Consider D discrete switched system (). For a given scalar γ > , system
() is said to have weighted l-gain γ under the switching signal σ (i, j) if it satisfies the
following conditions:
() When w(i, j) = , system () is asymptotically stable;
() Under the zero boundary condition, it holds that

∞∑
i=

∞∑
j=

αi+j‖z‖ < γ 
∞∑
i=

∞∑
j=

‖w‖, ∀ 
= w ∈ l
{
[,∞), [,∞)

}
.

Remark  Similar to the D switched system case, Definition means that system () can
also have disturbances attenuation properties when it satisfies conditions () and () in
Definition .

Lemma  Consider D discrete switched system (). Suppose that there exist a series of C

functions Vk : Rn → R (k ∈ N ) and two positive scalars λ and λ for which the following
inequality holds:

λ
∥∥x(i, j)∥∥ ≤ Vk

(
x(i, j)

)≤ λ
∥∥x(i, j)∥∥C , ∀i, j ∈ Z+,∀k ∈N ()

if there exists a number  < α <  for which Vk(x(i, j)) along with the solution of system ()
satisfies the inequality

∑
i+j=D

Vk
(
x(i, j)

)≤ α
∑

i+j=D–

Vk
(
x(i, j)

)
, D > Z =max(z, z), ∀k ∈N , ()
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and μ ≥  such that

∑
i+j=mπ

Vσ (iπ ,jπ )
(
x(i, j)

)≤ μ
∑

i+j=(mπ )–
Vσ (iπ–,jπ–)

(
x(i, j)

)
, π = , , . . . , ()

then D discrete switched system () is exponentially stable for every switching signal with
the average dwell time scheme

τa > τ ∗
a =

lnμ

– lnα
. ()

Proof Let χ = Nσ (i,j)(Z,D) denote the switch number of switching σ (i, j) on an interval
[Z,D), and let (iπ–χ+, jπ–χ+), (iπ–χ+, jπ–χ+), . . . , (iπ , jπ ) denote the switching points of
σ (i, j) over the interval [Z,D). Denoting mi = ii + ji, i = π – χ + , . . . ,π , it follows from
() and () that

∑
i+j=D

Vσ (iπ ,jπ )
(
x(i, j)

)
< αD–mπ

∑
i+j=mπ

Vσ (iπ ,jπ )
(
x(i, j)

)

≤ μαD–mπ
∑

i+j=(mπ )–
Vσ (iπ–,jπ–)

(
x(i, j)

)

< μαD–mπ αmπ–mπ–
∑

i+j=(mπ–)–
Vσ (iπ–,jπ–)

(
x(i, j)

)

= μαD–mπ–
∑

i+j=(mπ–)–
Vσ (iπ–,jπ–)

(
x(i, j)

)
< · · ·

< μχαD–Z
∑
i+j=Z

Vσ (iπ–χ ,jπ–χ )
(
x(i, j)

)
. ()

According to Definition , one obtains

χ =Nσ (i,j)(Z,D) ≤ N +
D – Z

τa
. ()

Then from (), we have

∑
i+j=D

Vσ (iπ ,jπ )
(
x(i, j)

)

< μχαD–Z
∑
i+j=Z

Vσ (iπ–χ ,jπ–χ )
(
x(i, j)

)

= μNe–(–
lnμ
τa –lnα)(D–Z)

∑
i+j=Z

Vσ (iπ–χ ,jπ–χ )
(
x(i, j)

)
. ()

From (), we get

∑
i+j=D

∥∥x(i, j)∥∥ ≤ λ–
 λμ

Ne–(–
lnμ
τa –lnα)(D–Z)

∑
i+j=Z

∥∥x(i, j)∥∥C . ()

Therefore, according to Definition , system () is exponentially stable under the average
dwell time scheme (). �
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3 Main results
3.1 Stability analysis
Theorem  Consider system () with w(i, j) = . For a given positive constant α < , if there
exist positive definite symmetric matrices Pk

h , Pk
v , Qk

h, Qk
v , Wk

h , Wk
v , Rk

h, Rk
v , and matrices

Nk
 =
[ Nk


Nk


]
, Nk

 =
[ Nk


Nk


]
, Mk

 =
[ Mk


Mk



]
, Mk

 =
[ Mk


Mk



]
, Xk =

[ Xk
 Xk


∗ Xk



]
>  and Yk =

[ Yk
 Yk


∗ Yk



]
> 

with appropriate dimensions, k ∈N , such that

⎡
⎢⎢⎢⎣

 �T
 (Pk

h + Pk
v )

√
d�

T
 Rk

h

√
d�

T
 Rk

v

∗ –(Pk
h + Pk

v )  
∗ ∗ –Rk

h 
∗ ∗ ∗ –Rk

v

⎤
⎥⎥⎥⎦ < , ()

[
Xk Nk



∗ Rk
h

]
≥ ,

[
Xk Nk



∗ Rk
h

]
≥ ,

[
Yk Mk



∗ Rk
v

]
≥ ,

[
Yk Mk



∗ Rk
v

]
≥ ,

()

where

� =
[
Ak
 Ak

 Ak
d Ak

d  
]
,

� =
[
Ak
 – I Ak

 Ak
d Ak

d  
]
,

� =
[
Ak
 Ak

 – I Ak
d Ak

d  
]
,

 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

    –αdNk
 

∗     –αdMk


∗ ∗   –αdNk
 

∗ ∗ ∗   –αdMk


∗ ∗ ∗ ∗ –αdWk
h 

∗ ∗ ∗ ∗ ∗ –αdWk
v

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

 = –αPk
h +Wk

h + (d – d + )Qk
h + αd

(
Nk

 +NkT

)
+ dα

dXk
,

 = –αPk
v +Wk

v + (d – d + )Qk
v + αd

(
Mk

 +MkT

)
+ dα

dYk
,

 = –αd
(
Nk

 –Nk
 –NkT


)
+ dα

dXk
,

 = –αd
(
Mk

 –Mk
 –MkT


)
+ dα

dYk
,

 = –αdQk
h + αd

(
Nk

 +NkT
 –Nk

 –NkT

)
+ dα

dXk
,

 = –αdQk
v + αd

(
Mk

 +MkT
 –Mk

 –MkT

)
+ dα

dYk
,

hold, then under the average dwell time scheme

τa > τ ∗
a =

lnμ

– lnα
, ()
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where μ ≥  and satisfies

Pk
h ≤ μPl

h, Pl
h ≤ μPk

h, Qk
h ≤ μQl

h,

Ql
h ≤ μQk

h, Wk
h ≤ μWl

h,

Wl
h ≤ μWk

h , Rk
h ≤ μRl

h, Rl
h ≤ μRk

h,

Pk
v ≤ μPl

v, Pl
v ≤ μPk

v , Qk
v ≤ μQl

v,
()

Ql
v ≤ μQk

v , Wk
v ≤ μWl

v, Wl
v ≤ μWk

v ,

Rk
v ≤ μRl

v, Rl
v ≤ μRk

v , ∀k, l ∈N ,

the system is exponentially stable.

Proof See the Appendix for the detailed proof, it is omitted here. �

Remark  In Theorem , we propose a sufficient condition for the existence of exponen-
tial stability for the considered D discrete switched system (). It is worth noting that this
condition is obtained by using the average dwell time approach.

3.2 l2-gain performance analysis
Theorem  Consider system (). For given positive constants γ and α < , if there exist
positive definite symmetric matrices Pk

h , Pk
v , Qk

h, Qk
v , Wk

h , Wk
v , Rk

h, Rk
v , and matrices Nk

 =[ Nk


Nk


]
, Nk

 =
[ Nk


Nk


]
, Mk

 =
[ Mk


Mk



]
, Mk

 =
[ Mk


Mk



]
, Xk =

[ Xk
 Xk


∗ Xk



]
>  and Yk =

[ Yk
 Yk


∗ Yk



]
>  with

appropriate dimensions, k ∈N , such that () and the following inequality

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

   �T
 (Pk

h + Pk
v )

√
d�

T
 Rk

h

√
d�

T
 Rk

v �T


∗ –γ I  BT
 (Pk

h + Pk
v )

√
dBT

 Rk
h

√
dBT

 Rk
v LTk

∗ ∗ –γ I BT
 (Pk

h + Pk
v )

√
dBT

 Rk
h

√
dBT

 Rk
v LTk

∗ ∗ ∗ –(Pk
h + Pk

v )   
∗ ∗ ∗ ∗ –Rk

h  
∗ ∗ ∗ ∗ ∗ –Rk

v 
∗ ∗ ∗ ∗ ∗ ∗ –I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< , ()

where

� =
[
Hk Hk    

]
,

hold, then under the average dwell time scheme (), the system is exponentially stable and
has weighted l-gain γ .

Proof It is easy to get that () can be deduced from (), and according to Theorem , we
can obtain that system () is exponentially stable.
Now we are in a position to consider the l-gain performance of system () under the

zero boundary condition. Following the proof line of Theorem , we get the following

http://www.advancesindifferenceequations.com/content/2013/1/56
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relationship for the kth subsystem:

Vh
k (i + , j + ) +Vv

k (i + , j + )

– αVh
k (i, j + ) – αVv

k (i + , j) + ‖z‖ – γ ‖w‖

≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(i, j + )
x(i + , j)

x(i – d(i), j + )
x(i + , j – d(j))
x(i – d, j + )
x(i + , j – d)
w(i, j + )
w(i + , j)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̃ +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AkT


AkT


AkT
d

AkT
d


BkT


BkT


⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(
Pk
h + Pk

v
)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AkT


AkT


AkT
d

AkT
d


BkT


BkT


⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AkT
 – I AkT



AkT
 AkT

 – I
AkT
d AkT

d
AkT
d AkT

d
 
 
BkT
 BkT



BkT
 BkT



⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
dRk

h 
 dRk

v

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AkT
 – I AkT



AkT
 AkT

 – I
AkT
d AkT

d
AkT
d AkT

d
 
 
BkT
 BkT



BkT
 BkT



⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(i, j + )
x(i + , j)

x(i – d(i), j + )
x(i + , j – d(j))
x(i – d, j + )
x(i + , j – d)
w(i, j + )
w(i + , j)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

–
i–∑

r=i–d(i)

⎡
⎢⎣

x(i, j + )
(i – d(i), j + )

η(r, j + )

⎤
⎥⎦

T [
Xk Nk



∗ Rk
h

]⎡⎢⎣
x(i, j + )

(i – d(i), j + )
η(r, j + )

⎤
⎥⎦αd

–
i–d(i)–∑
r=i–d

⎡
⎢⎣

x(i, j + )
x(i – d(i), j + )

η(r, j + )

⎤
⎥⎦

T [
Xk Nk



∗ Rk
h

]⎡⎢⎣
x(i, j + )

x(i – d(i), j + )
η(r, j + )

⎤
⎥⎦αd

–
j–∑

t=j–d(j)

⎡
⎢⎣

x(i + , j)
x(i + , j – d(j))

δ(i + , t)

⎤
⎥⎦

T [
Yk Mk



∗ Rk
v

]⎡⎢⎣
x(i + , j)

x(i + , j – d(j))
δ(i + , t)

⎤
⎥⎦αd

–
j–d(j)–∑
t=j–d

⎡
⎢⎣

x(i + , j)
x(i + , j – d(j))

δ(i + , t)

⎤
⎥⎦

T [
Yk Mk



∗ Rk
v

]⎡⎢⎣
x(i + , j)

x(i + , j – d(j))
δ(i + , t)

⎤
⎥⎦αd ,
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where

�̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̃ HkTHk     HkTLk HkTLk

∗ �̃     HkTLk HkTLk

∗ ∗ –αdQk
h     

∗ ∗ ∗ –αdQk
v    

∗ ∗ ∗ ∗ –αdWk
h   

∗ ∗ ∗ ∗ ∗ –αdWk
v  

∗ ∗ ∗ ∗ ∗ ∗ �̃ LkTLk

∗ ∗ ∗ ∗ ∗ ∗ ∗ �̃

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

�̃ = –αPk
h +Wk

h + (d – d + )Qk
h +HkTHk ,

�̃ = –αPk
v +Wk

v + (d – d + )Qk
v +HkTHk ,

�̃ = �̃ = LkTLk – γ I.

Then by the Schur complement lemma, we can obtain from () and () that

Vh
k (i + , j + ) +Vv

k (i + , j + )

– αVh
k (i, j + ) – αVv

k (i + , j) + ‖z‖ – γ ‖w‖ < . ()

Summing up both sides of () fromD– to  with respect to j and  toD– with respect
to i and applying the zero boundary condition, one gets

∑
i+j=D

Vσ (iπ ,iπ )(i, j) < α
∑

i+j=D–

Vσ (iπ ,iπ )(i, j) –
∑

i+j=D–

(i, j)

< αD–mπ
∑

i+j=mπ

Vσ (iπ ,iπ )(i, j) –
D–∑

m=mπ–

∑
i+j=m

αD––i–j(i, j)

≤ μαD–mπ
∑

i+j=(mπ )–
Vσ (iπ–,iπ–)(i, j) –

D–∑
m=mπ–

∑
i+j=m

αD––i–j(i, j)

<
∑

i+j=mπ–

μαD–(mπ–)Vσ (iπ–,iπ–)(i, j) –μαD–mπ
∑

i+j=mπ–

(i, j)

–
D–∑

m=mπ–

∑
i+j=m

αD––i–j(i, j)

=
∑

i+j=mπ–

μNσ (i,j)(i+j,D)αD–(mπ–)Vσ (iπ–,iπ–)(i, j)

–
D–∑

m=mπ–

∑
i+j=m

μNσ (i,j)(i+j+,D)αD––i–j(i, j)

<
∑

i+j=mπ–

μNσ (i,j)(i+j,D)αD–mπ–Vσ (iπ–,iπ–)(i, j)

–
D–∑

m=mπ––

∑
i+j=m

μNσ (i,j)(i+j+,D)αD––i–j(i, j)

http://www.advancesindifferenceequations.com/content/2013/1/56
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≤
∑

i+j=(mπ–)–
μNσ (i,j)(i+j–,D)αD–mπ–Vσ (iπ–,iπ–)(i, j)

–
D–∑

m=mπ––

∑
i+j=m

μNσ (i,j)(i+j+,D)αD––i–j(i, j)

< · · ·
<
∑
i+j=

μNσ (i,j)(i+j,D)αD–Vσ (,)(i, j)

–
D–∑
m=

∑
i+j=m

μNσ (i,j)(i+j+,D)αD––i–j(i, j), ()

where

(i, j) = ‖z‖ – γ ‖w‖ =
∥∥∥∥∥z(i + , j)
z(i, j + )

∥∥∥∥∥




– γ 

∥∥∥∥∥w(i + , j)
w(i, j + )

∥∥∥∥∥




.

Under the zero initial condition, it holds that

∑
i+j=

μNσ (i,j)(i+j,D)αD–Vσ (,)(i, j) = . ()

Thus we have

D–∑
m=

∑
i+j=m

μNσ (i,j)(i+j+,D)αD––i–j(i, j) < –
∑
i+j=D

Vσ (iπ ,iπ )(i, j) < . ()

Multiplying the both sides of () by μ–Nσ (i,j)(,D), we get the following inequality:

D–∑
m=

∑
i+j=m

μ–Nσ (i,j)(,i+j+)αD––i–j(i, j) < . ()

That is,

D–∑
m=

∑
i+j=m

μ–Nσ (i,j)(,i+j+)αD––i–j‖z‖ <
D–∑
m=

∑
i+j=m

μ–Nσ (i,j)(,i+j+)αD––i–j‖w‖.

Note that Nσ (i,j)(, i + j + ) ≤ (i + j)/τa, then using (), we have

μ–Nσ (i,j)(,i+j+) = e–Nσ (i,j)(,i+j+) lnμ ≥ e(i+j) lnα . ()

It follows that

D–∑
m=

∑
i+j=m

e(i+j) lnααD––i–j‖z‖ <
D–∑
m=

∑
i+j=m

μ–Nσ (i,j)(,i+j+)αD––i–j‖w‖ ()

⇒
D–∑
m=

∑
i+j=m

αD–‖z‖ < γ 
D–∑
m=

∑
i+j=m

αD––i–j‖w‖

http://www.advancesindifferenceequations.com/content/2013/1/56
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⇒
∞∑
D=

D–∑
m=

∑
i+j=m

αD–‖z‖ < γ 
∞∑
D=

D–∑
m=

∑
i+j=m

αD––i–j‖w‖

⇒
∞∑
m=

∑
i+j=m

αi+j‖z‖
∞∑

D=+m

αD––m < γ 
∞∑
m=

∑
i+j=m

‖w‖
∞∑

D=+m

αD––m

⇒ 
 – α

∞∑
m=

∑
i+j=m

αi+j‖z‖ < γ  
 – α

∞∑
m=

∑
i+j=m

‖w‖

⇒
∞∑
m=

∑
i+j=m

αi+j‖z‖ < γ 
∞∑
m=

∑
i+j=m

‖w‖

⇒
∞∑
i=

∞∑
j=

αi+j‖z‖ < γ 
∞∑
i=

∞∑
j=

‖w‖. ()

According to Definition , we obtain that system () is exponentially stable and has
weighted l-gain γ . The proof is completed. �

Remark  We would like to stress that the l-gain performance analysis problem of D
discrete switched systems is firstly considered in the paper. Although some results on
l-gain performance analysis of D systems have been obtained in [–], the existing
methods proposed in these papers cannot be directly applied to D switched systems. In
Theorem , sufficient conditions for the existence of l-gain performance for system ()
are derived in terms of a set of LMIs.

Remark  As for the applicability of Theorem , it is easy to see that a larger α and a
larger γ will be favorable to the feasibility of matrix inequality (), while a smaller α is
more expectable to decrease τ ∗

a , and a smaller γ means the better performance of the
system. Thus for the first time, we can chose a smaller α and a smaller γ , and then, by
adjusting the values of α and γ , we can find a feasible solution.

Remark  It is noticed that when μ =  in τa > τ ∗
a = lnμ

– lnα
, () turns out to be Pk

h = Pl
h,

Pk
v = Pl

v, Qk
h = Ql

h, Qk
v = Ql

v, Wk
h = Wl

h, Wk
v = Wl

v , Rk
h = Rl

h, Rk
v = Rl

v, ∀k, l ∈ N and thus a
common Lyapunov function exists for all subsystems. Then from () we get

D–∑
m=

∑
i+j=m

αD––i–j(i, j) < .

That is,

D–∑
m=

∑
i+j=m

αD––i–j‖z‖ < γ 
D–∑
m=

∑
i+j=m

αD––i–j‖w‖.

Summing D from  to ∞, we get

∞∑
D=

D–∑
m=

∑
i+j=m

αD––i–j‖z‖ < γ 
∞∑
D=

D–∑
m=

∑
i+j=m

αD––i–j‖w‖.
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Thus


 – α

∞∑
m=

∑
i+j=m

‖z‖ < γ  
 – α

∞∑
m=

∑
i+j=m

‖w‖.

That is,

∞∑
i=

∞∑
j=

‖z‖ < γ 
∞∑
i=

∞∑
j=

‖w‖.

Therefore, l-gain is achieved for switched system () under arbitrary switching. We state
the fact in the following corollary.

Corollary  Consider system (). For given positive constants γ and α < , if there exist
positive definite symmetric matrices Pk

h = Ph, Pk
v = Pv, Qk

h = Qh, Qk
v = Qv, Wk

h =Wh, Wk
v =

Wv, Rk
h = Rh, Rk

v = Rv, and matrices Nk
 =
[ Nk


Nk


]
, Nk

 =
[ Nk


Nk


]
, Mk

 =
[ Mk


Mk



]
, Mk

 =
[ Mk


Mk



]
, Xk =[ Xk

 Xk


∗ Xk


]
>  and Yk =

[ Yk
 Yk


∗ Yk



]
>  with appropriate dimensions such that () and ()

hold for k ∈ N , then the Ddiscrete switched system () achieves the l-gain under arbitrary
switching signals.

4 Numerical example
In this section, we present an example to illustrate the effectiveness of the proposed ap-
proach. Consider system () with parameters as follows:

A
 =

[
. 
 .

]
, A

 =

[
 .
 

]
,

A
d =

[
 .
 

]
, A

d =

[
. 
. 

]
,

B
 =

[
.
.

]
, B

 =

[
.


]
,

H =
[
. .

]
, L = .,

A
 =

[
 .
 .

]
, A

 =

[
 

. 

]
,

A
d =

[
 .
 

]
, A

d =

[
. 
 .

]
,

B
 =

[
.


]
, B

 =

[


.

]
,

H =
[
. .

]
, L = .,

d(i) =  +
∣∣sin(.π i)∣∣, d(j) =

∣∣sin(.π j)∣∣.

http://www.advancesindifferenceequations.com/content/2013/1/56
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According to Remark , we can firstly take α = . and γ = ., then solving () and ()
gives rise to the following solution:

P
h =

[
. –.
–. .

]
, P

h =

[
. –.
–. .

]
,

P
v =

[
. –.
–. .

]
, P

v =

[
. –.
–. .

]
,

Q
h =

[
. –.
–. .

]
, Q

h =

[
. –.
–. .

]
,

Q
v =

[
. –.
–. .

]
, Q

v =

[
. –.
–. .

]
,

W 
h =

[
. –.
–. .

]
, W 

h =

[
. –.
–. .

]
,

W 
v =

[
. –.
–. .

]
, W 

v =

[
. –.
–. .

]
,

R
h =

[
. .
. .

]
, R

h =

[
. .
. .

]
,

R
v =

[
. –,
–, .

]
, R

v =

[
. –.
–. .

]
,

and μ = ., then we obtain from () that τ ∗
a = .. Choosing τa = , some simulation

results are shown in Figures -, where the boundary condition of the system is

x(i, j) =


(j + )
, ∀ ≤ j ≤ , i = , x(i, j) =


(i + )

, ∀≤ i ≤ , j = ,

Figure 1 Response of state x1(i, j).
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Figure 2 Response of state x2(i, j).

Figure 3 Switching signal.

and w(i, j) = . exp(–.π (i + j)). It can be seen from Figures - that the system is
asymptotically stable. Furthermore, when the boundary condition is zero, by computing,
we get

∑∞
i=
∑∞

j= αi+j‖z‖ = . and
∑∞

i=
∑∞

j= ‖w‖ = ., and it satisfies condi-
tion () in Definition . Therefore, it can be observed that the system has weighted l-gain
γ = .. This demonstrates the effectiveness of the proposed approach.

5 Conclusions
This paper has investigated the problems of stability and l-gain analysis for D discrete
switched systems with time-varying delays described by the second FM model. A delay-
dependent exponential stability criterion is obtained via the average dwell time approach.
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Then some sufficient conditions for the existence of weighted l-gain for the considered
system are derived in terms of LMIs. Finally, an example is also given to illustrate the
applicability of the proposed results. Our future work will focus on extending the pro-
posed results to other kinds of D discrete switched systems such as D discrete switched
stochastic systems or D discrete switched nonlinear systems.

Appendix

Proof of Theorem  It is assumed that the kth subsystem is active on the interval
[mπ ,mπ+), and the lth subsystem is active on the interval [mπ–,mπ ). Now we consider
the Lyapunov function candidate for the kth subsystem

Vk
(
x(i, j)

)
= Vh

k
(
x(i, j)

)
+Vv

k
(
x(i, j)

)
, ()

where

Vh
k
(
x(i, j)

)
=

∑
g=

Vh
gk
(
x(i, j)

)
,

Vh
k(i, j) = x(i, j)TPk

hx(i, j),

Vh
k
(
x(i, j)

)
=

i–∑
r=i–d(i)

x(r, j)TQk
hx(r, j)α

i–r–,

Vh
k
(
x(i, j)

)
=

i–∑
r=i–d

x(r, j)TWk
h x(r, j)α

i–r–,

Vh
k
(
x(i, j)

)
=

–d∑
s=–d+

i–∑
r=i+s

x(r, j)TQk
hx(r, j)α

i–r–,

Vh
k
(
x(i, j)

)
=

∑
s=–d+

i–∑
r=i+s–

η(r, j)TRk
hη(r, j)α

i–r–,

Vv
k
(
x(i, j)

)
=

∑
g=

Vv
gk
(
x(i, j)

)
,

Vv
k
(
x(i, j)

)
= x(i, j)TPk

vx(i, j),

Vv
k
(
x(i, j)

)
=

j–∑
t=j–d(j)

x(i, t)TQk
vx(i, t)α

j–t–,

Vv
k
(
x(i, j)

)
=

j–∑
t=j–d

x(i, t)TWk
v x(i, t)α

j–t–,

Vv
k
(
x(i, j)

)
=

–d∑
s=–d+

j–∑
t=j+s

x(i, t)TQk
vx(i, t)α

j–t–,

Vv
k
(
x(i, j)

)
=

∑
s=–d+

j–∑
t=j+s–

δ(i, t)TRk
vδ(i, t)α

j–t–,
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η(r, j) = x(r + , j) – x(r, j),

δ(i, t) = x(i, t + ) – x(i, t).

Then we have

Vh
k(i + , j + ) – αVh

k(i, j + )

= xT (i + , j + )Pk
hx(i + , j + ) – αxT (i, j + )Pk

hx(i, j + ),

Vh
k(i + , j + ) – αVh

k(i, j + )

≤ x(i, j + )TQk
hx(i, j + ) – x

(
i – d(i), j + 

)TQk
hx
(
i – d(i), j + 

)
αd

+
i–d∑

r=i+–d

x(r, j + )TQk
hx(r, j + )αi–r ,

Vh
k(i + , j + ) – αVh

k(i, j + )

= x(i, j + )TWk
h x(i, j + ) – x(i – d, j + )TWk

h x(i – d, j + )αd ,

Vh
k(i + , j + ) – αVh

k(i, j + )

= (d – d)x(i, j + )TQk
hx(i, j + ) –

i–d∑
r=i–d+

x(r, j + )TQk
hx(r, j + )αi–r ,

Vh
k(i + , j + ) – αVh

k(i, j + )

≤ dη(i, j + )TRk
hη(i, j + ) –

i–∑
r=i–d

η(r, j + )TRk
hη(r, j + )αd ,

Vv
k(i + , j + ) – αVv

k(i + , j)

= xT (i + , j + )Pk
vx(i + , j + ) – αxT (i + , j)Pk

vx(i + , j),

Vv
k(i + , j + ) – αVv

k(i + , j)

≤ x(i + , j)TQk
vx(i + , j) – x

(
i + , j – d(j)

)TQk
vx
(
i + , j – d(j)

)
αd

+
j–d∑

t=j+–d

x(i + , t)TQk
vx(i + , t)αj–t ,

Vv
k(i + , j + ) – αVv

k(i + , j)

= x(i + , j)TWk
v x(i + , j) – x(i + , j – d)TWk

v x(i + , j – d)αd ,

Vv
k(i + , j + ) – αVv

k(i + , j)

= (d – d)x(i + , j)TQk
vx(i + , j) –

j–d∑
t=j+–d

x(i + , t)TQk
vx(i + , t)αj–t ,

Vv
k(i + , j + ) – αVv

k(i + , j)

≤ dδ(i + , j)TRk
vδ(i + , j) –

j–∑
t=j–d

δ(i + , t)TRk
vδ(i + , t)αd ,
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η(i, j + ) = x(i + , j + ) – x(i, j + )

=
(
Ak
 – I

)
x(i, j + ) +Ak

x(i + , j) +Ak
dx
(
i – d(i), j + 

)
+Ak

dx
(
i + , j – d(j)

)
+ Bk

w(i, j + ) + Bk
w(i + , j),

δ(i + , j) = x(i + , j + ) – x(i + , j)

= Ak
x(i, j + ) +

(
Ak
 – I

)
x(i + , j) +Ak

dx
(
i – d(i), j + 

)
+Ak

dx
(
i + , j – d(j)

)
+ Bk

w(i, j + ) + Bk
w(i + , j).

For simplicity, we denote

Vh
k (i, j) = Vh

k
(
x(i, j)

)
, Vv

k (i, j) = Vv
k
(
x(i, j)

)
, Vk(i, j) = Vk

(
x(i, j)

)
,

Vh
k (i, j + ) = Vh

k
(
x(i, j + )

)
, Vv

k (i + , j) = Vv
k
(
x(i + , j)

)
,

Vh
k (i + , j + ) = Vh

k
(
x(i + , j + )

)
, Vv

k (i + , j + ) = Vv
k
(
x(i + , j + )

)
.

Now let us discuss the case where w(i, j) = . It follows from () that

Vh
k (i + , j + ) +Vv

k (i + , j + ) – α
(
Vh
k (i, j + ) +Vv

k (i + , j)
)

≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(i, j + )
x(i + , j)

x(i – d(i), j + )
x(i + , j – d(j))
x(i – d, j + )
x(i + , j – d)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
� +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

AkT


AkT


AkT
d

AkT
d



⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(
Pk
h + Pk

v
)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

AkT


AkT


AkT
d

AkT
d



⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(i, j + )
x(i + , j)

x(i – d(i), j + )
x(i + , j – d(j))
x(i – d, j + )
x(i + , j – d)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ dη(i, j + )TRk
hη(i, j + ) –

i–∑
r=i–d

η(r, j + )TRk
hη(r, j + )αd

+ dδ(i + , j)TRk
vδ(i + , j) –

j–∑
t=j–d

δ(i + , t)TRk
vδ(i + , t)αd , ()

where

� = diag
{
�,�, –αdQk

h, –αdQk
v , –αdWk

h , –αdWk
v
}
,

� = –αPk
h +Wk

h + (d – d + )Qk
h, � = –αPk

v +Wk
v + (d – d + )Qk

v .

Notice that the following equations hold for any matrices Nk
 =
[ Nk


Nk


]
, Nk

 =
[ Nk


Nk


]
,Mk

 =[ Mk


Mk


]
, andMk

 =
[ Mk


Mk



]
with appropriate dimensions:

 = αd
[
xT (i, j + )Nk

 + xT
(
i – d(i), j + 

)
Nk


]

×
[
x(i, j + ) – x

(
i – d(i), j + 

)
–

i–∑
r=i–d(i)

η(r, j + )

]
, ()
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 = αd
[
xT (i, j + )Nk

 + xT
(
i – d(i), j + 

)
Nk


]

×
[
x
(
i – d(i), j + 

)
– x(i – d, j + ) –

i––d(i)∑
r=i–d

η(r, j + )

]
, ()

 = αd
[
xT (i + , j)Mk

 + xT
(
i + , j – d(j)

)
Mk


]

×
[
x(i + , j) – x

(
i + , j – d(j)

)
–

j–∑
t=j–d(j)

δ(i + , t)

]
, ()

 = αd
[
xT (i + , j)Mk

 + xT
(
i + , j – d(j)

)
Mk


]

×
[
x
(
i + , j – d(j)

)
– x(i + , j – d) –

j–d(j)–∑
t=j–d

δ(i + , t)

]
. ()

On the other hand, for any matrices Xk =
[ Xk

 Xk


∗ Xk


]
>  and Yk =

[ Yk
 Yk


∗ Yk



]
> , the following

equations also hold:

 = dα
d

[
x(i, j + )

x(i – d(i), j + )

]T
Xk

[
x(i, j + )

x(i – d(i), j + )

]

–
i–∑

r=i–d(i)

[
x(i, j + )

x(i – d(i), j + )

]T
Xk

[
x(i, j + )

x(i – d(i), j + )

]
αd

–
i––d(i)∑
r=i–d

[
x(i, j + )

x(i – d(i), j + )

]T
Xk

[
x(i, j + )

x(i – d(i), j + )

]
αd , ()

 = dα
d

[
x(i + , j)

x(i + , j – d(j))

]T
Yk

[
x(i + , j)

x(i + , j – d(j))

]

–
j–∑

t=j–d(j)

[
x(i + , j)

x(i + , j – d(j))

]T
Yk

[
x(i + , j)

x(i + , j – d(j))

]
αd

–
j––d(j)∑
t=j–d

[
x(i + , j)

x(i + , j – d(j))

]T
Yk

[
x(i + , j)

x(i + , j – d(j))

]
αd . ()

Adding the terms on the right-hand sides of equations ()-() to (), allows us to write
() as

Vh
k (i + , j + ) +Vv

k (i + , j + ) – α
(
Vh
k (i, j + ) +Vv

k (i + , j)
)

≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(i, j + )
x(i + , j)

x(i – d(i), j + )
x(i + , j – d(j))
x(i – d, j + )
x(i + , j – d)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

� +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

AkT


AkT


AkT
d

AkT
d



⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(
Pk
h + Pk

v
)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

AkT


AkT


AkT
d

AkT
d



⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T
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+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

AkT
 – I AkT



AkT
 AkT

 – I
AkT
d AkT

d
AkT
d AkT

d
 
 

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
dRk

h 
 dRk

v

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

AkT
 – I AkT



AkT
 AkT

 – I
AkT
d AkT

d
AkT
d AkT

d
 
 

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(i, j + )
x(i + , j)

x(i – d(i), j + )
x(i + , j – d(j))
x(i – d, j + )
x(i + , j – d)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

–
i–∑

r=i–d(i)

⎡
⎢⎣

x(i, j + )
(i – d(i), j + )

η(r, j + )

⎤
⎥⎦

T [
Xk Nk



∗ Rk
h

]⎡⎢⎣
x(i, j + )

(i – d(i), j + )
η(r, j + )

⎤
⎥⎦αd

–
i–d(i)–∑
r=i–d

⎡
⎢⎣

x(i, j + )
x(i – d(i), j + )

η(r, j + )

⎤
⎥⎦

T [
Xk Nk



∗ Rk
h

]⎡⎢⎣
x(i, j + )

x(i – d(i), j + )
η(r, j + )

⎤
⎥⎦αd

–
j–∑

t=j–d(j)

⎡
⎢⎣

x(i + , j)
x(i + , j – d(j))

δ(i + , t)

⎤
⎥⎦

T [
Yk Mk



∗ Rk
v

]⎡⎢⎣
x(i + , j)

x(i + , j – d(j))
δ(i + , t)

⎤
⎥⎦αd

–
j–d(j)–∑
t=j–d

⎡
⎢⎣

x(i + , j)
x(i + , j – d(j))

δ(i + , t)

⎤
⎥⎦

T [
Yk Mk



∗ Rk
v

]⎡⎢⎣
x(i + , j)

x(i + , j – d(j))
δ(i + , t)

⎤
⎥⎦αd . ()

Thus it follows from ()-() that

Vh
k (i + , j + ) +Vv

k (i + , j + ) < α
(
Vh
k (i, j + ) +Vv

k (i + , j)
)
. ()

When D ≥ mπ > z =max(z, z), we have Vh
k (,D) = Vv

k (D, ) = . Then summing up both
sides of () from D –  to  with respect to j and  to D –  with respect to i, one gets

∑
i+j=D

Vk(i, j) = Vh
k (,D) +Vh

k (,D – ) +Vh
k (,D – ) + · · · +Vh

k (D – , ) +Vh
k (D, )

+Vv
k (,D) +Vv

k (,D – ) +Vv
k (,D – )

+ · · · +Vv
k (D – , ) +Vv

k (D, )

< α
(
Vh
k (,D – ) +Vv

k (,D – ) +Vh
k (,D – ) +Vv

k (,D – )

+ · · · +Vh
k (D – , ) +Vv

k (D – , )
)

= α
∑

i+j=D–

Vk(i, j). ()
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Thus () can be directly obtained. Moreover, by (), we can find two positive scalars λ

and λ such that () holds, where

λ =min
k∈N
(
λmin

(
Pk
h
)
+ λmin

(
Pk
v
))
,

λ =max
k∈N
(
λmax

(
Pk
h
)
+ λmax

(
Pk
v
)
+ dλmax

(
Qk

h
)
+ dλmax

(
Qk

v
)
+ dλmax

(
Wk

h
)

+ dλmax
(
Wk

v
)
+ (d – d)

λmax
(
Qk

h
)

+ (d – d)
λmax

(
Qk

v
)
+ d

λmax
(
Rk
h
)
+ d

λmax
(
Rk
v
))
.

In addition, () can be deduced from (), thus by Lemma , we can conclude that D
discrete switched system () is exponentially stable. �
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