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1 Introduction
In recent years, more and more attention has been paid to the discrete-time epidemic
models. There are several reasons for that. Firstly, since the statistic data about a disease
is collected by day, week, month or year, it is more direct, more convenient and more
accurate to describe the disease by using the discrete-time models than the continuous-
time models; secondly, the discrete-time models have more wealthy dynamical behaviors;
for example, the single-species discrete-time models have bifurcations, chaos and other
more complex dynamical behaviors.
For a discrete-time epidemic model, we see that at the present time, the main research

subjects are the computation of the basic reproduction number, the local and global sta-
bility of the disease-free equilibrium and endemic equilibrium, the extinction, persistence
and permanence of the disease, and the bifurcations, chaos and more complex dynami-
cal behaviors of the model, etc. Many important and interesting results can be found in
articles [–] and the references cited therein.
In [], the next generation matrix approach for calculating the basic reproduction num-

ber is summarized for discrete-time epidemic models. As applications, six disease models
have been developed for the study of two emerging wildlife diseases: hantavirus in rodents
and chytridiomycosis in amphibians. The comparison of deterministic and stochastic SIS
and SIR type epidemic models in discrete time is discussed in []. In [, ], the discrete-
time SIS type epidemicmodels with periodic environment andwith disease-inducedmor-
tality in density-dependence, respectively, are investigated. In [], Izzo and Vecchio pro-
posed an implicit nonlinear system of difference equations which represents the discrete
counterpart of a large class of continuous models concerning the dynamics of an infec-
tion in an organism or in a host population. They also studied the limiting behavior of the
discrete model and derived the basic reproduction number. Izzo, Muroya and Vecchio in
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[] proved the globally asymptotic stability of the disease-free equilibrium for a general
discrete-time model of population dynamics in the presence of an infection. For the dis-
crete epidemic model with immigration of infectives, by adopting the means of the non-
standard discretization method from continuous epidemic, Jang and Eiaydi in [] stud-
ied the globally asymptotic stability of the disease-free equilibrium, the locally asymptotic
stability of the endemic equilibrium and the strong persistence of the susceptible class. Li
andWang in [] discussed a SIS type discrete epidemicmodel with stage structure, where
Beverton-Holt type and Richer type recruitment rates were considered, the global stability
of the disease-free equilibrium and the dynamical complexity were investigated. In [],
the sufficient and necessary conditions for the global stability of the endemic equilibrium
were established for a discrete epidemic model for the disease with immunity and latency
in a heterogeneous host population. In [], the bifurcations and chaos were proved in a
discrete epidemic model with nonlinear incidence rates. The permanence and extinction
are investigated in [–] for a class of discrete SIRS and SEIRS type epidemic models
with time delays. In [], a discrete mathematical model is formulated to investigate the
transmission and control of SARS in China, where the basic reproductive number is ob-
tained as a threshold to determine the asymptotic behavior of the model. Particularly, in
[] the authors studied the following class of disease epidemic models with the spread of
an infection in a host population:

y(n + ) = α + ( – β)y(n) –
n∑
i=

ψi
(
y(n + )

)
xi(n), n≥ ,

x(n + ) = ( – a)x(n) + φ
(
y(n + )

)
xL(n),  ≤ L ≤ m,

xi(n + ) = ( – ai)xi(n) + φi
(
y(n + )

)
xi–(n), i = , , . . . ,m.

The global stability of disease-free equilibrium and endemic equilibrium and the perma-
nence of the disease were obtained.
However, we know that many diseases have different disease courses, for example, tu-

berculosis, syphilis, AIDS, etc. Therefore, taking into account the epidemic models with
disease courses is very important since disease pathogen bacteria with different course
may have different reproduction and survival capacities, which indirectly influences the
population growth. Under a different disease course, the transmission rate, the mortality
and other vital parameters will be different [–].
Motivated by the above results, in this paper, we consider a class of discrete-time epi-

demic models with disease courses. We divide the total population into m +  subgroups
according to m disease courses. Let x(n) be the number of susceptible individuals at the
nth generation, yj(n) (j = , , . . . ,m) denote the number of infectious individuals who are
in the jth course of a disease at nth generation, and let z(t) denote the number of recovered
individuals at the nth generation. We introduce the following assumptions.
() The susceptible x has a constant input rate � and a natural death rate d.
() The susceptible individuals of the (n + )th generation are only infected by the

infectious individuals of the nth generation, and βj is the constant transmission
coefficient of which the susceptible is infected by compartment yj.

() After a susceptible individual contacts infectives and is infected, he/she will firstly
enter compartment y, and then turn into compartments y, y, . . . , finally into
compartment ym.
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() The infectious yj in the jth disease course admits the constant natural death rate d,
the constant death rate induced by disease αj, the constant recovery rate γj and the
constant transmit rate εj from compartment yi to yi+.

() The recovered z admits the constant natural death rate d, does not have permanent
immunity, hence there is a constant transfer rate δ from the recovered class back to
the susceptible class.

Base on the above assumptions, a class of discrete-time epidemic dynamicalmodelswith
m disease courses can be established as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x(n + ) = � + ( – d)x(n) + δz(n) –
∑m

i= βiyi(n)x(n + ),

y(n + ) = ( – p)y(n) +
∑m

i= βiyi(n)x(n + ),

yj(n + ) = ( – pj)yj(n) + εj–yj–(n), j = , , . . . ,m,

z(n + ) = ( – δ – d)z(n) +
∑m

i= γiyi(n),

()

where pi = d + εi + αi + γi, i = , , . . . ,m – , pm = d + αm + γm. For model (), we always
assume that the following basic hypotheses hold.

(H) For each i = , , . . . ,m, d > , εi > , αi ≥ , βi ≥ , βm > , γi > , δ ≥ ,  < pi <  and
 < δ + d < .

(H) Any solution of model () satisfies the following initial conditions:

x() > , y() > , z() > , yj() > , j = , , . . . ,m.

Remark  Formodel (), we can easily see that when β >  thenmodel () describes a dis-
crete SIRS type epidemic model with disease courses, where yi(n) (i = , , . . . ,m) denotes
the number of infectious individuals in the ith course of the disease; and when β =  then
model () describes a discrete SEIRS type epidemic model with disease courses, where
y(n) is exposed and yi(n) (i = , , . . . ,m) denotes the number of infectious individuals in
the ith course of the disease.

Remark  In model (), based on the above assumption (), we know that the disease in-
cidence term is denoted by

∑m
i= βiyi(n)x(n + ). This makes x(n + ), i.e., the susceptible

number of the (n + )th generation, appear on both sides of the first equation. The reason
for the above arguments is based on two considerations. On the one hand, it is influenced
by the works given in [, ]; on the other hand, for the sake of convenience for mathe-
matical analysis, especially, the positivity of solutions in model ().

In this paper, by developing the methods given in [, , ], we will give the explicit
expression of the basic reproduction number R. The criteria on the permanence and ex-
tinction of the disease will be established. That is, the disease-free equilibrium is globally
attractive if R < , and there exists a unique endemic equilibrium and the disease is also
permanent if R > .
This paper is organized as follows. In Section , as preliminaries we will give several

lemmas which will be used in the proofs of the main results. In Section , the basic repro-
duction number is calculated, the existence on the disease-free equilibrium and endemic
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equilibrium is given and the theorem on the globally asymptotic stability of the disease-
free equilibrium is stated and proved. In Section , we will obtain the permanence of the
disease. Conclusions are presented in the last section.

2 Preliminaries
Let k be any positive integer, we denote Rk

+ = {(x,x, . . . ,xk) : xi ≥ , i = , , . . . ,k}. For any
sequence {f (n)}, we define

f = lim sup
n→∞

f (n), f = lim inf
n→∞ f (n).

Firstly, on the positivity of solutions of model (), we have the following result.

Lemma  For any solution (x(n), y(n), y(n), . . . , ym(n), z(n)) of model (), it holds that
x(n) > , yj(n) > , z(n) >  (j = , , . . . ,m) for all n > .

Proof From model (), we can easily obtain

x() =
� + ( – d)x() + δz()

 +
∑m

i= βiyi()
> ,

y() = ( – p)y() +
m∑
i=

βiyi()x() > ,

yj() = ( – pj)yj() + εj–yj–() > , j = , , . . . ,m

and

z() = ( – δ – d)z() +
m∑
i=

γiyi() > .

Assume that x(n) > , yi(n) >  (i = , , . . . ,m) and z(n) > , then we further have

x(n + ) =
� + ( – d)x(n) + δz(n)

 +
∑m

i= βiyi(n)
> ,

y(n + ) = ( – p)y(n) +
m∑
i=

βiyi(n)x(n + ) > ,

yj(n + ) = ( – pj)yj(n) + εj–yj–(n) > , j = , , . . . ,m

and

z(n + ) = ( – δ – d)z(n) +
m∑
i=

γiyi(n) > .

Therefore, by using the induction, we get x(n) > , yj(n) > , z(n) >  for all n >  and
j = , , . . . ,m. This completes the proof. �

Lemma  For any solution (x(n), y(n), y(n), . . . , ym(n), z(n)) of model (), it follows that

x ≤ �

d
, yj ≤

�

d
, z ≤ �

d
, j = , , . . . ,m. ()

http://www.advancesindifferenceequations.com/content/2013/1/57


Wang et al. Advances in Difference Equations 2013, 2013:57 Page 5 of 21
http://www.advancesindifferenceequations.com/content/2013/1/57

Proof Let

N(n) = x(n) +
m∑
j=

yj(n) + z(n), ()

then we have

N(n + ) = � + ( – d)x(n) +
m∑
i=

( – d – αi)yi(n) + ( – d)z(n)

< � + ( – d)x(n) +
m∑
i=

( – d)yi(n) + ( – d)z(n)

= � + ( – d)N(n).

By using the induction, we can obtain the following inequality:

N(n) <
�

d
[
 – ( – d)n

]
+ ( – d)nN(),

from which we have

N = lim sup
n→∞

N(n)≤ �

d
.

From this, we finally have

x ≤ �

d
, yj ≤

�

d
, z ≤ �

d
, j = , , . . . ,m.

This completes the proof. �

On the weak permanence and permanence of the disease of model (), we have the fol-
lowing definitions.
The disease in model () is said to be weak permanent (permanent) if there exists a

constant h >  such that, for any solution sequence (x(n), y(n), y(n), . . . , ym(n), z(n)) of
model (), one has

lim sup
n→∞

yi(n) ≥ h
(
lim inf
n→∞ yi(n) ≥ h

)
, i = , , . . . ,m.

From Lemma , Theorem .. and Theorem . given in [], we can immediately
obtain the following result.

Lemma  If the disease in model () is weak permanent, then it also is permanent.

Similar to Lemma . in [] and Lemma  in [], we have the following result.

Lemma  For any solution (x(n), y(n), y(n), . . . , ym(n), z(n)) of model (), the following in-
equalities hold:

d�

d +
∑m

i= βi�
≤ x ≤ x≤ �

d
,

yj ≥ εj–yj–, j = , , . . . ,m, ()
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j∏
i=

εi–

pi

( m∑
i=

βiyix

)
≤ y

j
≤ yj ≤

j∏
i=

εi–

pi

( m∑
i=

βiyix

)
, j = , , . . . ,m, ()


δ + d

m∑
i=

γiyi ≤ z ≤ z ≤ 
δ + d

m∑
i=

γiyi.

Meanwhile, we also have

Dx
m∑
i=

βiyi ≤
m∑
i=

βiyi ≤
m∑
i=

βiyi ≤ Dx
m∑
i=

βiyi, ()

where

D =
m∑
j=

εε · · · εj–βj

pp · · ·pj , ε = .

Proof From model () and Lemmas  and , we easily have that

x ≥ � + ( – d)x –
m∑
i=

βiyix ≥ � + ( – d)x –
m∑
i=

�

d
βix

and then

x ≥ d�

d +
∑m

i= βi�
> .

From the third equation of model (), we directly have

yj(n + ) ≥ εj–yj–(n), j = , , . . . ,m,n = , , . . . .

Hence, we immediately obtain that yj ≥ εj–yj– for j = , , . . . ,m.
Considering the second equation of model (), we can obtain the following inequality:

y = lim sup
n→∞

{
( – p)y(n) +

m∑
i=

βiyi(n)x(n + )

}
≤ ( – p)y +

m∑
i=

βiyix

and

y

= lim inf

n→∞

{
( – p)y(n) +

m∑
i=

βiyi(n)x(n + )

}
≥ ( – p)y +

m∑
i=

βiyix.

Then we have


p

m∑
i=

βiyix≤ y

≤ y ≤ 

p

m∑
i=

βiyix. ()

Similarly, from model (), we easily obtain

εj–

pj
y
j–

≤ y
j
≤ yj ≤

εj–

pj
yj–, j = , , . . . ,m ()
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and


δ + d

m∑
i=

γiyi ≤ z ≤ z ≤ 
δ + d

m∑
i=

γiyi.

Hence, from () and (), it can be easily proved that

j∏
i=

εi–

pi

( m∑
i=

βiyix

)
≤ y

j
≤ yj ≤

j∏
i=

εi–

pi

( m∑
i=

βiyix

)
. ()

Hence, inequality () holds.
From inequalities (), () and (), it follows that

m∑
i=

βiyi ≤
( m∑

j=

εε · · · εj–βj

pp · · ·pj

)( m∑
i=

βiyix

)

and

m∑
i=

βiyi ≥
( m∑

j=

εε · · · εj–βj

pp · · ·pj

)( m∑
i=

βiyix

)
.

Hence, inequality () holds. This completes the proof. �

3 Global attractivity of disease-free equilibrium
Let the constant

R =D
�

d
. ()

Firstly, on the existence of disease-free equilibrium and endemic equilibrium, we have the
following result.

Theorem  ()Model () always has a disease-free equilibrium E(�
d , , . . . , ).

()When R > ,model () also has a unique endemic equilibrium E*(x*, y*, y*, . . . , y*m, z*),
where

x* =

D
, y* =

R – 
Ddp( – δ

δ+d (
∑m

i=
εε···εl–γl
pp···pl ))

,

yj =
εε · · · εj–
pp · · ·pj y

*
, j = , , . . . ,m, z* =


δ + d

m∑
i=

γiy*i .

Proof The equilibrium of model () satisfies the following equations:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x = � + ( – d)x + δz –
∑m

i= βiyix,

y = ( – p)y +
∑m

i= βiyix,

yj = ( – pj)yj + εj–yj–, j = , , . . . ,m,

z = ( – δ – d)z +
∑m

i= γiyi.

()

http://www.advancesindifferenceequations.com/content/2013/1/57
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From the third equation to (m + )-equation of (), we easily obtain

yj =
εε · · · εj–
pp · · ·pj y, j = , , . . . ,m. ()

Substituting () into the second equation of (), we further have

y =
(

β

p
+

εβ

pp
+ · · · + εε · · · εm–βm

pp · · ·pm
)
xy =Dxy.

Having solved this equality, we obtain that y =  and x = 
D .

When y = , then from () we have yi =  for i = , , . . . ,m. Further, from the first
and the last equations of (), we have z =  and x = �

d . This shows that model () has a
disease-free equilibrium E(�

d , , . . . , ).
When x = 

D , then from the last equation of (), we have

z =


δ + d

m∑
i=

γiyi. ()

From the first equation of (), we further obtain

D

(
� +

δ

δ + d

m∑
i=

γiyi

)
= d +

m∑
i=

βiyi.

Substituting () into this equality, we further have

D

(
� +

δ

δ + d

(
γy +

m∑
i�=

γi
ε · · · εi–
p · · ·pi y

))

= d + βy +
m∑
i�=

βi
ε · · · εi–
p · · ·pi y.

Hence,

D� – d =

[
β +

m∑
i�=

βi
ε · · · εi–
p · · ·pi –D

δ

δ + d

(
γ +

m∑
i�=

γi
ε · · · εi–
p · · ·pi

)]
y.

Then, we further have

d(R – ) = py

[ m∑
i=

βi
εε · · · εi–
pp · · ·pi –D

δ

δ + d

m∑
i=

γi
εε · · · εi–
pp · · ·pi

]

= py

[
D –D

δ

δ + d

m∑
i=

γi
εε · · · εi–
pp · · ·pi

]
.

Thus, we finally obtain

y =
d(R – )

Dp( – δ
δ+d (

∑m
j=

εε···εj–γj
pp···pj ))

. ()

http://www.advancesindifferenceequations.com/content/2013/1/57
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Since εi < pi – γi for each i = , , . . . ,m –  and γm < pm, we have

γp · · ·pm + εγp · · ·pm + · · · + ε · · · εm–γm–pm + εε · · · εm–γm

< γp · · ·pm + εγp · · ·pm + · · · + ε · · · εm–γm–pm

+ (p – γ) · · · (pm– – γm–)pm

=
[
γp · · ·pm– + εγp · · ·pm– + · · · + ε · · · εm–γm–

+ (p – γ) · · · (pm– – γm–)
]
pm

=
[
γp · · ·pm– + εγp · · ·pm– + · · · + ε · · · εm–γm–pm–

+ ε · · · εm–γm– + (p – γ) · · · (pm– – γm–)pm–

– (p – γ) · · · (pm– – γm–)γm–
]
pm

<
[
γp · · ·pm– + εγp · · ·pm– + · · · + ε · · · εm–γm–pm–

+ (p – γ) · · · (pm– – γm–)pm–
]
pm

=
[
γp · · ·pm– + εγp · · ·pm– + · · · + ε · · · εm–γm–

+ (p – γ) · · · (pm– – γm–)
]
pm–pm

< · · ·
<

[
γp + εγ + (p – γ)(p – γ)

]
p · · ·pm–pm

=
[
pp – (p – γ – ε)γ

]
p · · ·pm–pm

< pp · · ·pm.

Then we further obtain

m∑
j=

εε · · · εj–γj
pp · · ·pj

=
γ

p
+

εγ

pp
+ · · · + εε · · · εm–γm

pp · · ·pm
=

γp · · ·pm + εγp · · ·pm + · · · + ε · · · εm–γm–pm + εε · · · εm–γm

pp · · ·pm
<
pp · · ·pm
pp · · ·pm = .

Hence, we can infer that

δ

δ + d

( m∑
j=

εε · · · εj–γj
pp · · ·pj

)
< .

Thus, from () we obtain that y >  if and only if R > . Further, from () we obtain
yi >  for i = , , . . . ,m. Finally, from (), we also have z > . Therefore, we prove that
model () has a unique endemic equilibrium E*. This completes the proof. �

http://www.advancesindifferenceequations.com/content/2013/1/57


Wang et al. Advances in Difference Equations 2013, 2013:57 Page 10 of 21
http://www.advancesindifferenceequations.com/content/2013/1/57

Remark  Obviously, we have

R =
β�

pd
+

εβ�

ppd
+ · · · + ε · · · εm–βm�

p · · ·pmd .

The first term β�
pd

denotes the ultimate number of the susceptible at the end of the first
disease course which is infected by an infectious individual of the first disease course. The
second term εβ�

ppd
denotes the ultimate number of the susceptible at the end of the second

disease course which is infected by an infectious individual of the second disease course.
And lastly, the final term ε···εm–βm�

p···pmd denotes the ultimate number of the susceptible at
the end of themth disease course which is infected by an infectious individual of themth
disease course. We see that R is the sum of these ultimate numbers. This shows that R

certainly is the basic reproduction number of model ().

Theorem If R < , then the disease-free equilibriumE ofmodel () is globally attractive.
That is, for any solution (x(n), y(n), y(n), . . . , ym(n), z(n)) of model (), we have

lim
n→∞x(n) =

�

d
, lim

n→∞ yj(n) = , lim
n→∞ z(n) = , j = , , . . . ,m. ()

Proof Since R = D�
d < , then by inequality () in Lemma , we can obtain y

j
= yj = 

(j = , , . . . ,m). In fact, if for some j ∈ {, , . . . ,m} such that yj > , then by inequality ()
in Lemma , we can obtain ym > . Hence,

∑m
j= βjyj > . From inequality () in Lemma 

and R < , we have

m∑
j=

βjyj ≤ Dx
m∑
j=

βjyj ≤ D
�

d

m∑
j=

βjyj <
m∑
j=

βjyj,

which leads to a contradiction. Hence, limn→∞ yj(n) =  (j = , , . . . ,m). Finally, from the
expression of x(n) and z(n) of model (), we can infer that () holds. This completes the
proof. �

4 Permanence of disease
In this section, we mainly prove the permanence of model () when R > . Firstly, we in-
troduce several lemmaswhichwill be used to study the permanence ofmodel (). Consider
the following auxiliary system:

⎧⎪⎪⎨
⎪⎪⎩
u(n + ) = ( – p)u(n) +

∑m
i= βig(n + )ui(n),

uj(n + ) = ( – pj)uj(n) + εj–uj–(n), j = , , . . . ,m,

um+(n + ) = ( – δ – d)ym+(n) +
∑m

i= γiui(n),

()

where {g(n)}∞n= is a given non-negative bounded real sequence, and parameters pi, βi, γi, εj,
δ and d (i = , , . . . ,m, j = , , . . . ,m– ) are defined as in model (). We have the following
result.

Lemma  For any constants η >  and M > , there exist a constant ξ = ξ (η) >  and
an integer T = T(M,η) >  such that for any initial time n ∈ N+ and initial value

http://www.advancesindifferenceequations.com/content/2013/1/57
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(u,u, . . . ,um+,) ∈ Rm+
+ with  < ui ≤ M (i = , , . . . ,m + ), if u(n) ≤ ξ for all n ≥ n,

then we have

ui(n) ≤ η for all n ≥ n + T , i = , , . . . ,m + ,

where (u(n),u(n), . . . ,um+(n)) is the solution of system () with the initial condition
(u(n),u(n), . . . ,um+(n)) = (u,u, . . . ,um+,).

Proof Firstly, we consider the last equation of system ()

um+(n + ) = ( – δ – d)um+(n) +
m∑
i=

γiui(n).

We can obtain that for any constants η >  and M > , there exist ηm+ >  and Tm+ > ,
with

ηm+ =
(δ + d)η

m
< η, Tm+ >

lnη – lnM
ln( – δ – d)

,

such that for any initial time nm+ >  and initial value  < um+ ≤ M, if ui(n) ≤ ηm+ for all
n≥ nm+ and i = , , . . . ,m, then we have

um+(n) ≤ ( – δ – d)n–nm+um+(nm+)

+

( m∑
i=

γiui(n)

)( ∞∑
j=

( – δ – d)i
)

≤ ( – δ – d)n–nm+M +
γmηm+

δ + d
≤ η for all n≥ nm+ + Tm+. ()

Consider themth equation of system ()

um(n + ) = ( – pm)um(n) + εm–um–(n).

For the above constants ηm+ >  and M > , there exist a constant ηm >  and an integer
Tm > , with

ηm = pmηm+ < ηm+, Tm >
ln( – εm–ηm+) – lnM

ln( – pm)
,

such that for any initial time nm >  and initial value  < um(nm) ≤ M, if um–(n) ≤ ηm for
all n≥ nm, then we have

um(n) ≤ ( – pm)n–nmum(nm) + εm–ηm

∞∑
i=

( – pm)i

≤ ( – pm)n–nmM +
εm–ηm

pm
≤ ηm+ for all n≥ nm + Tm.

http://www.advancesindifferenceequations.com/content/2013/1/57
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Further consider the (m – )th equation

um–(n + ) = ( – pm–)um–(n) + εm–um–(n).

For the above constants ηm and M > , there exist a constant ηm– >  and an integer
Tm– > , with

ηm– = pm–ηm < ηm, Tm– =
ln( – εm–ηm) – lnM

ln( – pm–)
,

such that for any initial time nm– >  and initial value  < um–(nm–) ≤ M, if um–(n) ≤
ηm– for all n≥ nm–, then we have

um–(n) ≤ ( – pm–)n–nm–um–(nm–) + εm–ηm–

∞∑
i=

( – pm–)i

≤ ( – pm–)n–nm–M +
εm–ηm–

pm–

≤ ηm for all n≥ nm– + Tm–.

Repeating the above process for um–(n), . . . ,u(n), respectively, finally we can obtain
that for each ui(n) (i = , , . . . ,m – ) and for the above obtained constants ηi+ >  and
M > , there exist a constant ηi >  and an integer Ti > , with

ηi = piηi+ < ηi+, Ti >
ln( – εηi+) – lnM

ln( – pi)
,

such that for any initial time ni >  and  < ui(ni) ≤ M, if ui–(n) ≤ ηi for all n ≥ ni, then
we have

ui(n) ≤ ( – pi)n–niui(ni) + εi–ηi

∞∑
j=

( – pi)j

≤ ( – pi)n–niM +
εi–ηi

pi
≤ ηi+ for all n≥ ni + Ti. ()

Let T =
∑m+

i= Ti. Then, from the above discussions, we obtain that for any initial time
n >  and initial value  < ui(n) ≤ M (i = , , . . . ,m + ), if u(n) < η for all n ≥ n, then
from () we have

u(n) < η < η for all n≥ n + T.

We further have

u(n) < η < η for all n≥ n + T + T.

Lastly, from () we have

um+(n) < η for all n≥ n + T .

http://www.advancesindifferenceequations.com/content/2013/1/57
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This shows

ui(n) < η for all n≥ n + T , i = , , . . . ,m + .

This completes the proof. �

We further consider the following equation:

v(n + ) = � + ( – d)v(n) – δη –
m∑
i=

βiη

(
�

d
+ 

)
, ()

where the parameters are assumed to be as in system () and  < η < . By calculating, we
obtain that equation () has a positive equilibrium v*(η) with

v*(η) =
� – δη –

∑m
i= βiη(�

d + )
d

.

Obviously, we have

lim
η→

v*(η) =
�

d
. ()

Hence, there exists an η >  such that when  < η ≤ η, we have

v*(η) ≤ �

d
+ . ()

Therefore, we have the following result.

Lemma  For any constants ε >  and M > , there exists an integer N = N(ε,M) > 
such that for any initial n >  and initial value v with  < v ≤ M, we have

∣∣v(n;n,η) – v*(η)
∣∣ < ε for all n ≥ n +N and  ≤ η ≤ η,

where v(n;n,η) is the solution of equation () with the initial condition v(n,η) = v.

Proof For any solution v(n;n,η) of equation () with the initial condition v(n,η) = v >
, we define a function

V (n) =
∣∣v(n;n,η) – v*(η)

∣∣,
then

V (n + ) =
∣∣v(n + ;n,η) – v*(η)

∣∣
= ( – d)

∣∣v(n;n,η) – v*(η)
∣∣

= ( – d)V (n).

http://www.advancesindifferenceequations.com/content/2013/1/57
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From this, we easily see that for any constant ε, there exists an integer N = N(ε,M) > 
such that for any initial time n >  and initial value v with  < v ≤ M, when  < η ≤ η,
then for all n≥ n +N, we have

V (n) ≤ ( – d)n–n
(
M +

�

d
+ 

)
≤ ( – d)N

(
M +

�

d
+ 

)
< ε.

This shows that the conclusion of Lemma  holds. This completes the proof. �

For any x, y ∈ Rm with x = (x,x, . . . ,xm) and y = (y, y, . . . , ym), if xi ≤ yi (i = , , . . . ,m),
then we denote x≤ y.
LetD⊂ Rm and f (n,u) = (f(n,u), f(n,u), . . . , fm(n,u)) be a function defined on n≥  and

u ∈ D. If for any u,u ∈D with u ≤ u we have

f (n,u) ≤ f (n,u) for all n≥ ,

then the function f (n,u) is said to be non-decreasing for u ∈D.

Lemma  (See []) Let the domain D ⊂ Rm
+ and the function f (n,x) defined on n ≥ 

and x ∈ D be non-decreasing for x ∈D. If the sequence {x(n)}∞n= ⊂D for all n≥ n satisfies
x(n + )≥ f (n, y(n)) (x(n + ) ≤ f (n, y(n))), then we have

x(n)≥ y(n)
(
x(n)≤ y(n)

)
for all n ≥ n,

where y(n) is the solution of the difference equation y(n + ) = f (n, y(n)) with initial value
x(n) ≥ y(n) (x(n) ≤ y(n)).

Now, we consider the following linear autonomous difference system:

x(n + ) = Ax(n), ()

where A is an m × m non-negative matrix and x(n) ∈ Rm. Then we have the following
result.

Lemma  Let r = r(A) be the spectral radius of matrix A, then the following conclusions
hold.
() There exists an m-dimensional column vector e = (e, e, . . . , em)T with ei > 

(i = , , . . . ,m) such that x(n) = λne is a solution of system ().
() For any x = (x,x, . . . ,xm) with xi >  (i = , , . . . ,m), there exist constants ai > 

(i = , ) such that

λn–nae ≤ x(n)≤ λn–nae for all n ≥ n,

where x(n) is the solution of system () satisfying the initial condition x(n) = x.

Proof () Since λ is an eigenvalue of matrix A and matrix A is a non-negative matrix, we
can obtain that there is a vector e >  corresponding to the eigenvalue λ such that

Ae = λe.

http://www.advancesindifferenceequations.com/content/2013/1/57
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From An = AAn–, we have

x(n) = Ax(n – ) = Ax(n – ) = · · · = Anx().

Suppose that x() = e, then

x(n) = Ane = An–Ae = λAn–e · · · = λn–Ae = λne.

Therefore, x(n) = λne is a solution of system ().
() Let b =min≤i≤m{xi}, B =max≤i≤m{xi}, c =min≤i≤m{ei} andC =max≤i≤m{ei}. Fur-

ther let a = b/C and a = B/c. Then we have ae ≤ x ≤ ae. Let x(n) = aeλn–n and
x(n) = aeλn–n . Then x(n) and x(n) are the solutions of system () with initial value
x(n) = ae and x(n) = ae, respectively. Then from Lemma  it follows that

λn–nae≤ x(n) ≤ x(n)≤ x(n) ≤ λn–nae

for all n ≥ n. �

Lemma  If R > , then there exists a constant h >  such that for any solution
(x(n), y(n), y(n), . . . , ym(n), z(n)) of model (), we have

lim sup
n→∞

y(n)≥ h. ()

Proof Since

R =
D�

d
=

m∑
i=

εε · · · εi–βi

pp · · ·pi
�

d
> ,

then we can choose a constant δ ( < δ < ) such that

m∑
i=

εε · · · εi–βi

pp · · ·pi
(

�

d
– δ

)
> .

Hence, we have

pp · · ·pm – (βpp · · ·pm + εβp · · ·pm + · · · + ε · · · εm–βm)
(

�

d
– δ

)
< . ()

Then, from () and (), there exists an η with  < η ≤ δ such that

�

d
–

δ


≤ v*(η)≤ �

d
+ . ()

Now, from Lemma , for above δ > , there exists an integer N >  such that for any
initial time n >  and initial value v with  < v ≤ M, whereM = �

d + , we have

v(n;n,η) – v*(η) ≥ –
δ


for all n≥ n +N, ()

http://www.advancesindifferenceequations.com/content/2013/1/57
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where v(n;n,η) is the solution of equation () with η = η and the initial condition
v(n,η) = v. Hence, from () and (), we have

v(n;n,η) ≥ �

d
– δ for all n≥ n +N. ()

Assume that (x(n), y(n), . . . , ym(n), z(n)) is any positive solution of model () with the ini-
tial condition (x(n), y(n), . . . , ym(n), z(n)) = (x, y, . . . , ym, z). Then, from Lemma ,
for ε =  there exists an integer N >  such that when n >N, we have

x(n)≤ �

d
+ , yj(n) ≤ �

d
+ , z(n) ≤ �

d
+ , j = , , . . . ,m. ()

Consider the following difference system:

⎧⎪⎪⎨
⎪⎪⎩
u(n + ) = ( – p)u(n) +

∑m
i= βix(n + )ui(n),

uj(n + ) = ( – pj)uj(n) + εj–uj–(n), j = , , . . . ,m,

um+(n + ) = ( – δ – d)um+(n) +
∑m

i= γiui(n),

()

where parameters pi, βi, εi, γi, δ and d in system () are given as in model (). Since
(x(n), y(n), . . . , ym(n), z(n)) is the solution of model (), then (y(n), . . . , ym(n), z(n)) is the
solution of system (). From () and Lemma , for above η >  and M = �

d + , there
exist a constant δ* >  and an integer N >  with δ* ≤ η such that for any initial time
n ≥ N and initial value (u,u, . . . ,um+,) ∈ Rm

+, if u(n) ≤ δ* for all n ≥ n, then we
have uj(n) ≤ η for all n≥ n +N and j = , , . . . ,m + . Hence, if y(n) ≤ δ* for all n≥ n,
then we have

yj(n) ≤ η, z(n) ≤ η for all n≥ n +N, j = , , . . . ,m. ()

Now, we prove that if R >  then

lim sup
n→∞

y(n)≥ δ*

for any positive solution (x(n), y(n), . . . , ym(n), z(n)) of model (). Suppose that the conclu-
sion is not true, then there exists a positive solution (x(n), y(n), . . . , ym(n), z(n)) ofmodel ()
such that lim supn→∞ y(n) < δ*. Hence, there exists an integer N >  such that y(n) < δ*

for all n ≥ N. From () we know that for any n ≥ N > , there exists an integer N > 
such that

yj(n) ≤ η and z(n) ≤ η for all n≥ n +N, j = , , . . . ,m. ()

Then, from () and the first equation of model (), we obtain

x(n + ) ≥ � + ( – d)x(n) – δη –
m∑
i=

βiη

(
�

d
+ 

)
.

http://www.advancesindifferenceequations.com/content/2013/1/57
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Since from Lemma  and (), for any n ≥ n + N, there exists an integer N >  such
that

x(n)≥ �

d
– δ for all n ≥ n +N +N, ()

then replacing () into the second and the third equations of model (), we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y(n + )≥ ( – p)y(n) +
∑m

i= βi(�
d – δ)yi(n),

y(n + ) = ( – p)y(n) + εy(n),

· · · · · · · · ·
ym(n + ) = ( – pm)ym(n) + εm–ym–(n).

()

Next, consider the following auxiliary system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w(n + ) = ( – p)w(n) +
∑m

i= βi(�
d – δ)wi(n),

w(n + ) = ( – p)w(n) + εw(n),

· · · · · · · · ·
wm(n + ) = ( – pm)wm(n) + εm–wm–(n).

()

Obviously, system () is a linear autonomous difference system and we can rewrite it as
follows:

w(n + ) = Aw(n),

where w(n) = (w(n),w(n), . . . ,wm(n))T and

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

 – p + β(�
d – δ) β(�

d – δ) · · · βm(�
d – δ)

ε  – p · · · 
 ε · · · 
...

... · · · ...
  · · · 
  · · ·  – pm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We have

f (μ) = |μE –A|

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

μ –  + p – β(�
d – δ) –β(�

d – δ) · · · –βm(�
d – δ)

–ε μ –  + p · · · 
 –ε · · · 
...

... · · · ...
  · · · 
  · · · μ –  + pm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

(
μ –  + p – β

(
�

d
– δ

))
(μ –  + p) · · · (μ –  + pm–)
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× (μ –  + pm) – εβ

(
�

d
– δ

)
(μ –  + p) · · · (μ –  + pm–)

× (μ –  + pm) – εεβ

(
�

d
– δ

)
(μ –  + p) · · · (μ –  + pm–)

× (μ –  + pm) – · · · – εε · · · εm–βm

(
�

d
– δ

)
.

From (), we have

f () =
(
p – β

(
�

d
– δ

))
pp · · ·pm – εβ

(
�

d
– δ

)
p · · ·pm

– εεβ

(
�

d
– δ

)
p · · ·pm – · · · – ε · · · εm–βm–

(
�

d
– δ

)
pm

– εε · · · εm–βm

(
�

d
– δ

)

= pp · · ·pm – (βpp · · ·pm + εβp · · ·pm + · · ·

+ ε · · · εm–βm)
(

�

d
– δ

)
< 

and, for a constant β >max{β,β, . . . ,βm}(�
d – δ), we further have

f (β + ) =
(

β + p – β

(
�

d
– δ

))
(β + p)(β + p) · · · (β + pm)

– εβ

(
�

d
– δ

)
(β + p) · · · (β + pm) – · · ·

– ε · · · εm–βm–

(
�

d
– δ

)
(β + pm)

– εε · · · εm–βm

(
�

d
– δ

)

=
(

β – β

(
�

d
– δ

))
(β + p) · · · (β + pm)

+ pβ(β + p) · · · (β + pm) + ppβ(β + p) · · · (β + pm)

+ · · · + pp · · ·pm–β(β + pm) + pp · · ·pm–(β + pm)

– εβ

(
�

d
– δ

)
(β + p) · · · (β + pm) – · · ·

– ε · · · εm–βm–

(
�

d
– δ

)
(β + pm)

– εε · · · εm–βm

(
�

d
– δ

)

>
(

β – β

(
�

d
– δ

))
(β + p) · · · (β + pm)

+ p
(

β – β

(
�

d
– δ

))
(β + p) · · · (β + pm)
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+ pp
(

β – β

(
�

d
– δ

))
(β + p) · · · (β + pm)

+ · · · + p · · ·pm–

(
β – βm–

(
�

d
– δ

))
(β + pm)

+ pp · · ·pm–

(
β – βm

(
�

d
– δ

))
> .

Then, from the intermediate value theorem, there exists a constantμ* ∈ (,β +) such that
f (μ*) = . Therefore, we can obtain μ = r(A) > . Let w(n) be the solution of system ()
with the initial condition w(N *) = (y(N *), y(N *), . . . , ym(N *)), where N * = n + N + N.
Then from (), () and Lemma , we have

y(n) ≥ w(n) for all n≥ N *.

Further, from the second part of Lemma , there exists a constant a >  such that

w(n) ≥ μn–n–N–Nae.

Hence, we have

y(n) ≥ μn–n–N–Nae ≥ μn–n–N–Nac.

From this, we obtain

lim
n→∞ y(n) = ∞,

which leads to a contradiction. This completes the proof. �

Lastly, directly from Lemma , Lemma  and Lemma , we can obtain the following
result on the permanence of model ().

Theorem  If R > , then the disease in model () is permanent.

Proof In fact, fromLemma,we obtain that for any positive solution (x(n), y(n), . . . , ym(n),
z(n)) of model (),

lim sup
n→∞

y(n)≥ h > .

Then, from inequality () in Lemma , we further have

lim sup
n→∞

yj(n) ≥ εε · · · εj– lim sup
n→∞

y(n) ≥ εε · · · εj–h, j = , , . . . ,m.

Finally, from the last equation of model (), we have

lim sup
n→∞

z(n) ≥
m∑
i=

γi lim sup
n→∞

yi(n) ≥
m∑
i=

γiεε · · · εi–h.

This completes the proof. �
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5 Conclusions
In this paper, we study a class of discrete epidemic models with disease courses, that is,
model (). The basic reproduction number R is calculated. It is shown that the global
dynamics of model () is determined by the basic reproduction number R. If R < , then
we obtain that the disease-free equilibrium of model () is globally asymptotically stable.
This shows that when R <  the disease in model () is extinct. If R > , then we obtain
that the endemic equilibrium of model () exists and the disease is permanent. Clearly,
our condition given in this paper is the threshold condition between the extinction and
the permanence of the disease. Hence, our results obtained in this paper extend the results
given in [, , ] for the discrete epidemic models.
However, it is a pity that the case of the basic reproduction number R =  is not dis-

cussed in this paper. From the results on the case R =  obtained in [, ], we can guess
that when R =  then the disease-free equilibrium of model () is also globally asymptoti-
cally stable. This shows that when R =  the disease in model () is also extinct. The other
one which is not obtained in our this paper is the global stability of the endemic equi-
librium of model (). From the results on the global stability of the endemic equilibrium
obtained in [, , ], we can guess that when R >  the endemic equilibrium ofmodel ()
is globally stable. We will discuss these problems in our future work.
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