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Abstract
In this paper, we prove some results on the uniqueness of meromorphic functions
sharing small functions CM with their linear difference polynomials. Examples are
provided to show the existence of meromorphic functions satisfying the conditions
of our results.
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1 Introduction andmain results
In the following, we use the standard notations of Nevanlinna theory of meromorphic
functions (see [–]). For any given nonconstant meromorphic function f (z), we recall
the hyper order of f (z) defined as follows (see []):

ρ(f ) := lim sup
r→∞

log logT(r, f )
log r

.

Denote by S(r, f ) any quantity satisfying S(r, f ) = o(T(r, f )) as r → ∞, possibly outside of
a set of r with a finite logarithmic measure. A meromorphic function a(z) is said to be a
small function of f (z) if T(r,a) = S(r, f ). In what follows, we use S(f ) to denote the set of
all small functions of f (z).
For twomeromorphic functions f (z) and g(z), and a ∈ S(f )∪S(g)∪{∞}, we say that f (z)

and g(z) share a CMwhen f (z) – a and g(z) – a have the same zeros counting multiplicity.
For a nonzero complex constant c ∈ C, f (z + c) is called a shift of f (z). And a difference

monomial of type
∏m

i= f ni (z+ ci) is called a difference product of f (z), where c, . . . , cm ∈C

and n, . . . ,nm ∈ N.
A difference polynomial of f (z) is a finite sum of difference products of f (z), with all

coefficients being small functions of f (z). In the following, we mainly consider a linear
difference polynomial of f (z) of the form

L(z, f ) =
n∑
i=

ai(z)f (z + ci),

where c, . . . , cn ∈ C, a(z), . . . ,an(z) ∈ S(f ).
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It is well known that the difference operators of f (z) are defined as follows:

�cf (z) = f (z + c) – f (z) and �n
c f (z) = �n–

c
(
�cf (z)

)
, n ∈N,n≥ .

In particular, �n
c f (z) = �nf (z) for the case c = . We point out that a difference operator

is just a special linear difference polynomial of f (z) such that the sum of its coefficients
equals .
The subject on the uniqueness of the entire function f (z) sharing values with its deriva-

tive f ′(z) was initiated by Rubel and Yang []. For a nonconstant entire function f (z), they
proved that f (z) ≡ f ′(z) provided that f (z) and f ′(z) share two distinct finite values CM.
Recently, a number of papers have focused on the Nevanlinna theory with respect to

difference operators; see, e.g., the papers [, ] by Chiang and Feng and [, ] by Halburd
and Korhonen. Then, many authors started to investigate the uniqueness of meromorphic
functions sharing values or small functions with their shifts (see, e.g., [–]) or difference
operators (see, e.g., [, ]). The following TheoremA is indeed a corollary of Theorem .
in [] and Theorem  in [].

Theorem A ([, ]) Let f (z) be a meromorphic function of finite order, let c ∈ C, and let
a,a ∈ S(f ) be two distinct periodic functions with period c. If f (z) and f (z + c) share a,
a, ∞ CM, then f (z) = f (z + c) for all z ∈C.

Theorem B below is Theorem . in [], while Theorem C is Theorem . in [].

Theorem B ([]) Let f (z) be a transcendental meromorphic function such that its order of
growth ρ(f ) is not an integer or infinite, and let c ∈C be a constant such that f (z+ c) 	≡ f (z).
If �cf (z) and f (z) share three distinct values a, b, ∞ CM, then f (z + c) = f (z).

Theorem C ([]) Let f (z) be a nonconstant entire function of finite order, c ∈C, and n be
a positive integer. Suppose that f (z) and�n

c f (z) share two distinct finite values a, b CM and
one of the following cases is satisfied:

(i) ab = ;
(ii) ab 	=  and ρ(f ) /∈N.

Then f (z) ≡ �n
c f (z).

Remark  The methods in [] and [] are quite different. Due to a result of Ozawa []
(he proved that for any given ρ ∈ [,∞), there exists a periodic entire function of order
ρ), Chen and Yi [] and Li and Gao [] gave some examples to show the existence of
functions satisfying the conditions of Theorem B and Theorem C respectively.

Considering Theorems A-C, due to some ideas of [] and [], we obtain the following
result with a quite simple proof.

Theorem . Let f (z) be a meromorphic function of hyper order ρ(f ) < , let L(z, f ) be
a difference polynomial of f (z), and let a,b ∈ S(f ) be two distinct meromorphic functions.
Suppose that f (z) and L(z, f ) share a, b, ∞ CM and one of the following cases holds:

(i) L(z,a) – a = L(z,b) – b≡ ;
(ii) L(z,a) – a ≡  or L(z,b) – b ≡ , and N(r, f ) < λT(r, f ) for some λ ∈ (, );
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(iii) ρ(f ) /∈N∪ {∞}.
Then f (z) ≡ L(z, f ).

Example  We give two examples for Theorem ..
() For the cases (i) and (ii): Let f (z) = ez log and L(z, f ) = �f (z) – f (z) = f (z + ) – f (z).

Then L(z, f ) = f (z), and hence for a =  and any given b ∈ S(f ), f (z) and L(z, f ) share
a, b, ∞ CM.

() For the case (iii): Let f (z) = g(z)ez log and L(z, f ) = �f (z) – f (z) = f (z + ) – f (z),
where g(z) is a periodic entire function with period  such that ρ(g) ∈ (,∞) \N.
Then L(z, f ) = f (z), and hence for any given a,b ∈ S(f ), f (z) and L(z, f ) share a, b, ∞
CM.

For one CM shared value case, Li and Gao [] proved the following results.

Theorem D ([]) Let f (z) be a nonconstant entire function of finite order ρ(f ), η ∈ C. If
f (z) and f (z + η) share one finite value a CM, and for a finite value b 	= a, f (z) – b and
f (z + η) – b have max{, [ρ(f )] – } distinct common zeros of multiplicity ≥, then f (z) ≡
f (z + η).

Theorem E ([]) Let f (z) be a nonconstant entire function of finite order ρ(f ), η ∈ C, and
n be a positive integer. If f (z) and �n

ηf (z) share one finite value a CM, and for a finite value
b 	= a, f (z) – b and �n

ηf (z) – b havemax{, [ρ(f )]} distinct common zeros of multiplicity ≥,
then f (z) ≡ �n

ηf (z).

To generalize Theorems D and E, we prove Theorem . below.

Theorem . Let f (z) be a meromorphic function of finite order ρ(f ), let L(z, f ) be a differ-
ence polynomial of f (z), and let a,b ∈ S(f ) be two distinct meromorphic functions. Suppose
that f (z) and L(z, f ) share a, ∞ CM and f (z) – b and L(z, f ) – b have m = max{, [ρ(f )]}
distinct common zeros of multiplicity ≥, denoted by z, z, . . . , zm, such that a(zi) 	= b(zi).
Then f (z) ≡ L(z, f ).

Example  Let f (z) = g(z)ez log and L(z, f ) = �f (z) – f (z) = f (z+ ) – f (z), where g(z) is a
periodic entire function with period  such that ρ(g) ∈ (,∞) \N. Then L(z, f ) = f (z), and
hence for any given a ∈ S(f ) and b = , f (z) and L(z, f ) share a, ∞ CM.

Remark  Chen and Yi [] (resp. Li and Gao []) conjectured that the condition on the
order of growth of f (z) in Theorem B (resp. Theorem C) could be omitted. The same
conjecture should be made for Theorems . and ..

2 Lemmas
Lemma . ([]) Let f (z) be a meromorphic function of hyper order ρ(f ) = ς < , c ∈ C,
and ε > . Then

m
(
r,
f (z + c)
f (z)

)
= o

(
T(r, f )
r–ς–ε)

)
= S(r, f ),

possibly outside of a set of r with a finite logarithmic measure.
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The following lemma is a Clunie-type lemma [] for the difference-differential polyno-
mials of a meromorphic function f , which is a finite sum of products of f , derivatives of f ,
and of their shifts, with all the coefficients being small functions of f . It can be proved by
applying Lemma . with a similar reasoning as in [] and stated as follows.

Lemma . ([]) Let f (z) be a meromorphic function of hyper order ρ(f ) <  and P(z, f ),
Q(z, f ) be two difference-differential polynomials of f . If

f nP(z, f ) =Q(z, f )

holds and if the total degree of Q(z, f ) in f and its derivatives and their shifts is ≤n, then
m(r,P(z, f )) = S(r, f ).

3 Proof of Theorem 1.1
Since f (z) and L := L(z, f ) share the value a, b, ∞ CM, we have

L – a
f – a

= ep (.)

and

L – b
f – b

= eq, (.)

where p = p(z), q = q(z) are entire functions such that max{ρ(ep),ρ(eq)} ≤ ρ(f ).
It follows from (.) and (.) that

(
eq – ep

)
f = a – b + beq – aep. (.)

If ep ≡ eq, then from (.) we obtain

(a – b)
(
 – ep

)
= .

Since a – b 	≡ , we get ep ≡  and hence finish our proof from (.).
Next, we assume that ep 	≡ eq and complete our proof in three steps.
Step . We prove the case (i): L(z,a) – a = L(z,b) – b ≡ . From (.), we get from

Lemma . that

T
(
r, ep

)
=m

(
r, ep

)
=m

(
r,
L – a
f – a

)
=m

(
r,
L(z, f – a)

f – a

)
= S(r, f ). (.)

Similarly, we have T(r, eq) = S(r, f ). Now, we can deduce a contradiction from (.) that

T(r, f ) = T
(
r,
a – b + beq – aep

eq – ep

)

≤ 
(
T(r,a) + T(r,b) + T

(
r, ep

)
+ T

(
r, ep

))
+ S(r, f ) = S(r, f ).
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Step . We prove the case (iii): ρ(f ) /∈ N ∪ {∞}. In this case, p(z), q(z) are polynomials,
and we have

max
{
degp(z),degq(z)

} ≤ [
ρ(f )

]
< ρ(f ). (.)

From (.), we obtain

T(r, f ) = T
(
r,
a – b + beq – aep

eq – ep

)
≤ T

(
r, ep

)
+ T

(
r, eq

)
+ S(r, f ),

which gives ρ(f ) ≤ max{degp(z),degq(z)}, a contradiction to (.).
Step . We prove the case (ii): L(z,a) – a≡  or L(z,b) – b ≡ , and N(r, f ) < λT(r, f ) for

some λ ∈ (, ). Without loss of generality, we assume that L(z,a) – a ≡  and hence (.)
still holds.
Differentiating (.) and (.), we get

L′f – f ′L – p′fL = a
(
L′ – f ′) + a′(f – L) – ap′(f + L) + p′a

and

L′f – f ′L – q′fL = b
(
L′ – f ′) + b′(f – L) – bq′(f + L) + p′b.

Combining two equations above, we get

AfL = A
(
L′ – f ′) +Af +AL +A, (.)

where A = p′ – q′, A = b – a, A = b′ – a′ + ap′ + bq′, A = a′ – b′
ap′ + bq′, A = q′b – p′a.

Notice that the right-hand side of (.) is a difference-differential polynomial of f with
degree in f , its derivatives and their shifts being≤. Then from Lemma . and its remark,
we havem(r,L) = S(r, f ). Considering this, with (.) and (.), we obtain

m(r, f ) =m
(
r,
L – a
ep

+ a
)

≤ m
(
r, ep

)
+m(r,L) + m(r,a) + S(r, f ) = S(r, f ),

and hence T(r, f ) = N(r, f ) + m(r, f ) = N(r, f ) + S(r, f ), which contradicts the condition
N(r, f ) < λT(r, f ) for some λ ∈ (, ).

4 Proof of Theorem 1.2
Since f (z) and L(z, f ) share a CM, we have

L(z, f ) – a
f (z) – a

= ep, (.)

where p is a polynomial such that degp(z) ≤ max{, [ρ(f )]} =m.
It follows from (.) that

L′(z, f ) – a′ =
(
f ′(z) – a′)ep + p′(f (z) – a

)
ep. (.)
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For each point zi,  ≤ i ≤m, satisfying the assumption in Theorem ., we get

f (zi) = L(zi, f ) = b(zi) 	= a(zi), (.)

and

f ′(zi) – b′(zi) = L′(zi, f ) – b′(zi) = , (.)

from (.) and (.), we see that ep(zi) = . Then we can obtain from (.) and (.) that
p′(zi) = . By assumption, p′(z) has at leastm zeros. This means that p′(z) ≡ . Therefore,

L(z, f ) – a = c
(
f (z) – a

)
(.)

holds for some nonconstant c. For the point z such that L(z, f ) = f (z) = b(z) 	= a(z), we
get from (.) that c =  and hence prove that f (z) ≡ L(z, f ).
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