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difference equations with meromorphic coefficients.
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1 Introduction and preliminaries
Recently, several papers (including [–]) have been published regarding value distribu-
tion of meromorphic solutions of linear difference equations. We recall the following re-
sults. Chiang and Feng proved the following theorem.

Theorem A ([]) Let P(z), . . . ,Pn(z) be polynomials such that there exists an integer l,
 ≤ l ≤ n, such that

deg(Pl) > max
≤j≤n,j �=l

{
deg(Pj)

}
(.)

holds. Suppose f (z) is a meromorphic solution of the difference equation

Pn(z)f (z + n) + · · · + P(z)f (z + ) + P(z)f (z) = . (.)

Then we have σ (f ) ≥ .

In this paper, we use the basic notions of Nevanlinna’s theory (see [, ]). In addition,
we use the notation σ (f ) to denote the order of growth of the meromorphic function f (z),
and λ(f ) to denote the exponent of convergence of zeros of f (z).
Chen [] weakened the condition (.) of Theorem A and proved the following results.

Theorem B ([]) Let Pn(z), . . . ,P(z) be polynomials such that PnP �≡  and

deg(Pn + · · · + P) =max{degPj : j = , . . . ,n} ≥ . (.)

Then every finite order meromorphic solution f (z) ( �≡ ) of equation (.) satisfies σ (f ) ≥ ,
and f (z) assumes every nonzero value a ∈C infinitely often and λ(f – a) = σ (f ).
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Theorem C ([]) Let F(z), Pn(z), . . . ,P(z) be polynomials such that FPnP �≡  and (.).
Then every finite order transcendental meromorphic solution f (z) of the equation

Pn(z)f (z + n) + · · · + P(z)f (z + ) + P(z)f (z) = F(z) (.)

satisfies σ (f ) ≥  and λ(f ) = σ (f ).

Theorem D ([]) Let F(z), Pn(z), . . . ,P(z) be polynomials such that FPnP �≡ . Suppose
that f (z) is a meromorphic solution with infinitely many poles of (.) (or (.)). Then
σ (f ) ≥ .

For the linear difference equation with transcendental coefficients

An(z)f (z + n) + · · · +A(z)f (z + ) +A(z)f (z) = , (.)

Chiang and Feng proved the following result.

Theorem E ([]) Let A(z), . . . ,An(z) be entire functions such that there exists an integer l,
 ≤ l ≤ n, such that

σ (Al) >max
{
σ (Aj) :  ≤ j ≤ n, j �= l

}
. (.)

If f (z) is a meromorphic solution of (.), then we have σ (f ) ≥ σ (Al) + .

Laine and Yang proved the following theorem.

Theorem F ([]) Let A, . . . ,An be entire functions of finite order so that among those hav-
ing the maximal order σ :=max{σ (Ak) :  ≤ k ≤ n}, exactly one has its type strictly greater
than the others. Then for any meromorphic solution of

An(z)f (z +Cn) + · · · +A(z)f (z +C) +A(z)f (z) = , (.)

we have σ (f ) ≥ σ + .

Remark . If A, . . . ,An are meromorphic functions satisfying (.), then Theorem E
does not hold. For example, the equation

y(z + ) –
(
ei +

ei – 
eiz – 

)
y(z) = 

has a solution y(z) = eiz – , which σ (y) =  < σ (A) + .

This example shows that for the linear difference equation with meromorphic coeffi-
cients, the condition (.) cannot guarantee that every transcendental meromorphic so-
lution f (z) of (.) satisfies σ (f ) ≥ σ (Al) + .
Thus, a natural question to ask is what conditions will guarantee every transcenden-

tal meromorphic solution f (z) of (.) with meromorphic coefficients satisfies σ (f ) ≥
σ (Al) + .
In this note, we consider this question and prove the following results.
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Theorem . Let c, c ( �= c), a be nonzero constants, h(z) be a nonzero meromorphic
function with σ (h) < , B(z) be a nonzero meromorphic function.
If B(z) satisfies any one of the following three conditions:
(i) σ (B) >  and δ(∞,B) > ;
(ii) σ (B) < ;
(iii) B(z) = h(z)ebz where b is a nonzero constant, h(z) ( �≡ ) is a meromorphic function

with σ (h) < ,
then every meromorphic solution f ( �≡ ) of the difference equation

f (z + c) + h(z)eazf (z + c) + B(z)f (z) =  (.)

satisfies σ (f ) ≥ max{σ (B), } + .
Further, if ϕ(z) ( �≡ ) is a meromorphic function with

σ (ϕ) <max
{
σ (B), 

}
+ ,

then

λ(f – ϕ) = σ (f ) ≥ max
{
σ (B), 

}
+ .

Corollary Under conditions of Theorem ., every finite order solution f (z) ( �≡ ) of (.)
has infinitely many fixed points, satisfies τ (f ) = σ (f ), and for any nonzero constant c,

λ
(
f (z) – c

)
= σ (f ) ≥ max

{
σ (B), 

}
+ .

Example . The equation

f (z + ) –


ez+f (z + ) –



ez+f (z) = 

satisfies conditions of Theorem . and has a solution f (z) = ez satisfying λ(f ) =  and
τ (f ) = σ (f ) = . This example shows that under conditions of Theorem ., ameromorphic
solution of (.) may have no zero.

Theorem . Let h(z), c, c, a, B(z) satisfy conditions of Theorem ., and let F(z) ( �≡ )
be a meromorphic function with σ (F) <max{σ (B), } + . Then all meromorphic solutions
with finite order of the equation

f (z + c) + h(z)eazf (z + c) + B(z)f (z) = F(z) (.)

satisfy

λ(f ) = σ (f ) ≥ max
{
σ (B), 

}
+ 

with at most one possible exceptional solution with σ (f ) <max{σ (B), } + .

Remark . Under conditions of Theorem ., equation (.) has no rational solution. But
equation (.) in Theorem . may have a rational solution. For example, the equation

f (z + ) + ezf (z + ) – ezf (z) = z +  – ez
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satisfies conditions of Theorem . and has a solution f (z) = z. This shows that in Theo-
rem ., there exists one possible exceptional solution with σ (f ) <max{σ (B), } + .

2 Proof of Theorem 1.1
We need the following lemmas to prove Theorem ..

Lemma . ([, ]) Given two distinct complex constants η, η, let f be a meromorphic
function of finite order σ . Then, for each ε > , we have

m
(
r,
f (z + η)
f (z + η)

)
=O

(
rσ–+ε

)
.

Lemma. (see []) Suppose that P(z) = (α+ iβ)zn+ · · · (α, β are real numbers, |α|+ |β| �=
) is a polynomial with degree n ≥ , that A(z) ( �≡ ) is an entire function with σ (A) < n. Set
g(z) = A(z)eP(z), z = reiθ , δ(P, θ ) = α cosnθ – β sinnθ . Then, for any given ε > , there exists
a set H ⊂ [, π ) that has the linear measure zero such that for any θ ∈ [, π )\(H ∪H),
there is R >  such that for |z| = r > R, we have that

(i) if δ(P, θ ) > , then

exp
{
( – ε)δ(P, θ )rn

}
<

∣∣g(reiθ )∣∣ < exp
{
( + ε)δ(P, θ )rn

}
; (.)

(ii) if δ(P, θ ) < , then

exp
{
( + ε)δ(P, θ )rn

}
<

∣∣g(reiθ )∣∣ < exp
{
( – ε)δ(P, θ )rn

}
, (.)

where H = {θ ∈ [, π ); δ(P, θ ) = } is a finite set.

Lemma . Let c, c ( �= c), a be nonzero constants, Aj(z) (j = , , ), F(z) be nonzero
meromorphic functions. Suppose that f (z) is a finite order meromorphic solution of the
equation

A(z)f (z + c) +A(z)f (z + c) +A(z)f (z) = F(z). (.)

If σ (f ) >max{σ (F),σ (Aj) (j = , , )}, then λ(f ) = σ (f ).

Proof Suppose that σ (f ) = σ , max{σ (F),σ (Aj) (j = , , )} = α. Then σ > α. Equation (.)
can be rewritten as the form


f (z)

=
F(z)
f (z)

(
A(z)

f (z + c)
f (z)

+A(z)
f (z + c)
f (z)

+A(z)
)
. (.)

Thus, by (.), we deduce that

T(r, f ) = T
(
r,

f

)
+O()

= m
(
r,

f

)
+N

(
r,

f

)
+O()
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≤ N
(
r,

f

)
+m

(
r,

F

)
+

∑
j=

m(r,Aj)

+m
(
r,
f (z + c)
f (z)

)
+m

(
r,
f (z + c)
f (z)

)
+O(). (.)

For any given ε ( < ε <min{ 
 ,

σ–α
 }), and for sufficiently large r, we have that

m
(
r,

F

)
≤ T(r,F)≤ rα+ε , m(r,Aj)≤ rα+ε (j = , , ). (.)

By Lemma ., we obtain

m
(
r,
f (z + c)
f (z)

)
≤ Mrσ–+ε and m

(
r,
f (z + c)
f (z)

)
≤ Mrσ–+ε , (.)

whereM (> ) is some constant.
By σ (f ) = σ , there exists a sequence {rn} satisfying r < r < · · · , rn → ∞ such that

lim
n→∞

logT(rn, f )
log rn

= σ . (.)

Thus, for sufficiently large rn, we have that

T(rn, f ) ≥ rσ–ε
n . (.)

Substituting (.)-(.) into (.), we obtain for sufficiently large rn

rσ–ε
n ≤ T(rn, f ) ≤ N

(
rn,


f

)
+ rα+ε

n + Mrσ–+ε
n . (.)

Since ε <min{ 
 ,

σ–α
 } and ε is arbitrary, by (.), we obtain

lim
n→∞

logN(rn, f )
log rn

= σ .

Hence, λ(f ) = σ (f ) = σ . �

Proof of Theorem . Suppose that f (z) ( �≡ ) is a meromorphic solution of equation (.)
with σ (f ) < ∞.
() Suppose that B(z) satisfies the condition (i): σ (B) >  and δ(∞,B) = δ > . Thus, for

sufficiently large r,

m(r,B) >
δ


T(r,B). (.)

Clearly, σ (f ) ≥ σ (B) by (.). By Lemma ., we see that for any given ε ( < ε < σ (B)–
 ),

m
(
r,
f (z + cj)
f (z)

)
=O

(
rσ (f )–+ε

)
(j = , ), (.)
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and

m
(
r,h(z)eaz

) ≤ T
(
r,h(z)eaz

) ≤ r+ε . (.)

By (.), we have that

–B(z) =
f (z + c)
f (z)

+ h(z)eaz
f (z + c)
f (z)

. (.)

Substituting (.)-(.) into (.), we deduce that

δ


T(r,B) ≤ m(r,B)

≤ m
(
r,h(z)eaz

)
+m

(
r,
f (z + c)
f (z)

)
+m

(
r,
f (z + c)
f (z)

)

≤ r+ε +O
(
rσ (f )–+ε

)
. (.)

By σ (B) = σ , there is a sequence rj ( < r < r < · · · , rj → ∞) satisfying

T(rj,B) > rσ (B)–ε
j . (.)

Thus, by (.) and (.), we obtain

δ


rσ (B)–ε
j ≤ r+ε

j +Mrσ (f )–+ε

j , (.)

whereM (> ) is some constant. Combining (.) and ε < σ (B)–
 , it follows that

δ


rσ (B)–ε
j

(
 + o()

) ≤ Mrσ (f )–+ε

j .

So that, it follows that σ (f ) ≥ σ (B) +  =max{σ (B), } + .
() Suppose that B(z) satisfies the condition (ii): σ (B) < . Using the same method as in

(), we can obtain σ (f ) ≥ max{σ (B), } + .
() Suppose that B(z) satisfies the condition (iii): B(z) = h(z)ebz , where b is a nonzero

constant, h(z) ( �≡ ) is a meromorphic function with σ (h) < .
Now we need to prove σ (f ) ≥ . Contrary to the assertion, suppose that σ (f ) = α < .

We will deduce a contradiction. Set z = reiθ . Then
⎧⎨
⎩
Re{az} = δ(az, θ )|a|r = |a|r cos(arga + θ ),

Re{bz} = δ(bz, θ )|b|r = |b|r cos(argb + θ ).
(.)

In what follows, we divide this proof into three subcases: (a) arga �= argb; (b) arga = argb
and |a| �= |b|; (c) a = b.
Subcase (a). Since arga �= argb and (.), it is easy to see that there exists a ray arg z = θ

such that
⎧⎨
⎩
Re{az} = δ(az, θ)|a|r = |a|r cos(arga + θ) < ,

Re{bz} = δ(bz, θ)|b|r = |b|r cos(argb + θ) > .
(.)

http://www.advancesindifferenceequations.com/content/2013/1/60
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By (.) and (.), we see that f (z) cannot be a rational function. By Lemma ., (.)
holds. By Lemma . and (.), it is easy to see that for any given ε ( < ε <min{ 

 ,
–α
 })

and for sufficiently large r,

∣∣h(reiθ)ebreiθ ∣∣ ≥ exp
{
( – ε)|b|δ(bz, θ)r

}
, (.)

and

∣∣h(reiθ)eareiθ ∣∣ ≤ exp
{
( – ε)|a|δ(az, θ)r

}
< . (.)

Thus, by (.), (.), (.) and (.), we deduce that

exp
{
( – ε)|b|δ(bz, θ)r

} ≤ ∣∣h(reiθ)ebreiθ ∣∣
≤

∣∣∣∣ f (re
iθ + c)

f (reiθ )

∣∣∣∣ + ∣∣h(reiθ)eareiθ ∣∣
∣∣∣∣ f (re

iθ + c)
f (reiθ )

∣∣∣∣
≤  exp

{
rσ (f )–+ε

}
. (.)

By δ(bz, θ) = cos(argb + θ) > , σ (f ) = α <  and ε < –α
 , it is easy to see that (.) is a

contradiction. Hence, σ (f )≥ .
Subcase (b). By arga = argb and |a| �= |b|, we see that f (z) cannot be a rational function.

By Lemma ., (.) holds. By arga = argb and (.), we take θ = – arga, then δ(az, θ) =
δ(bz, θ) =  and

Re
{
areiθ

}
= |a|r and Re

{
breiθ

}
= |b|r. (.)

Now suppose that |b| > |a|. By Lemma ., for any given ε ( < ε <min{ – α, |b|–|a|
(|b|+|a|) }),

∣∣h(reiθ)ebreiθ ∣∣ ≥ exp
{
( – ε)|b|r

}
, (.)

and

∣∣h(reiθ)eareiθ ∣∣ ≤ exp
{
( + ε)|a|r

}
. (.)

Thus, by (.), (.), (.) and (.), we deduce that

exp
{
( – ε)|b|r

} ≤ ∣∣h(reiθ)ebreiθ ∣∣
≤

∣∣∣∣ f (re
iθ + c)

f (reiθ )

∣∣∣∣ +
∣∣h(reiθ)eareiθ ∣∣

∣∣∣∣ f (re
iθ + c)

f (reiθ )

∣∣∣∣
≤ exp

{
rσ (f )–+ε

}
+ exp

{
( + ε)|a|r

}
exp

{
rσ (f )–+ε

}
. (.)

Since ε <  – α, we have that σ (f ) –  + ε = α –  + ε < . Combining this and (.), we
obtain

exp
{
( – ε)|b|r

}
< exp

{
( + ε)|a|r

(
 + o()

)}(
 + o()

)
. (.)

By ε < |b|–|a|
(|b|+|a|) , we see that (.) is a contradiction.
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Now suppose that |b| < |a|. Using the same method as above, we can also deduce a con-
tradiction.
Hence, σ (f ) ≥  in Subcase (b).
Subcase (c).We first affirm that f (z) cannot be a nonzero rational function. In fact, if f (z)

is a rational function, then eaz[h(z)f (z + c) + h(z)f (z)] = –f (z + c) is a rational function.
So that h(z)f (z + c) + h(z)f (z) ≡ , that is, f (z + c) ≡ , a contradiction.
By Lemma ., (.) holds. By a = b, equation (.) can be rewritten as

e–azf (z + c) + h(z)f (z + c) + h(z)f (z) = . (.)

Using the same method as in the proof of (), we can obtain σ (f ) ≥ .
() Suppose that ϕ(z) ( �≡ ) is a meromorphic function with σ (ϕ) <max{σ (B), }+ . Set

g(z) = f (z) – ϕ(z). Substituting f (z) = g(z) + ϕ(z) into (.), we obtain

g(z + c) + h(z)eazg(z + c) + B(z)g(z)

= –
[
ϕ(z + c) + h(z)eazϕ(z + c) + B(z)ϕ(z)

]
. (.)

If ϕ(z+ c) + h(z)eazϕ(z+ c) +B(z)ϕ(z)≡ , then ϕ(z) is a nonzero meromorphic solution
of (.). Thus, by the proof above, we have that σ (ϕ) ≥ max{σ (B), } + . This contradicts
our condition that σ (ϕ) <max{σ (B), }+. Hence, ϕ(z+)+h(z)eazϕ(z+)+B(z)ϕ(z) �≡ ,
and

σ
(
ϕ(z + c) + h(z)eazϕ(z + c) + B(z)ϕ(z)

)
<max

{
σ (B), 

}
+  ≤ σ (f ) = σ (g).

Applying this and Lemma . to (.), we deduce that

λ(f – ϕ) = λ(g) = σ (g)≥ max
{
σ (B), 

}
+ .

Thus, Theorem . is proved. �

3 Proof of Theorem 1.2
Suppose that f is a meromorphic solution of (.) with

σ (f) <max
{
σ (B), 

}
+ .

If f *(z) ( �≡ f(z)) is another meromorphic solution of (.) satisfying σ (f *) <max{σ (B), }+
, then

σ
(
f * – f

)
<max

{
σ (B), 

}
+ .

But f * – f is a solution of the corresponding homogeneous equation (.) of (.). By The-
orem ., we have σ (f * – f) ≥ max{σ (B), }+ , a contradiction. Hence equation (.) pos-
sesses at most one exceptional solution f with σ (f) <max{σ (B), } + .
Now suppose that f is a meromorphic solution of (.) with

max
{
σ (B), 

}
+  ≤ σ (f ) < ∞.

http://www.advancesindifferenceequations.com/content/2013/1/60
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Since σ (f ) >max{σ (B),σ (F),σ (h(z)eaz)}, applying Lemma . to (.), we obtain

λ(f ) = σ (f ).

Thus, Theorem . is proved.
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