RESEARCH

Advances in Difference Equations a SpringerOpen Journal

Open Access

On growth of meromorphic solutions for linear difference equations with meromorphic coefficients

Yanxia Liu^{*}

Correspondence: cslyx@scut.edu.cn School of Software Engineering, South China University of Technology, Panyu, Guangzhou, 510006, P.R. China

Abstract

In this paper, we consider the value distribution of meromorphic solutions for linear difference equations with meromorphic coefficients. **MSC:** 30D35; 39A10

Keywords: difference equation; meromorphic coefficient; growth; zero

1 Introduction and preliminaries

Recently, several papers (including [1–7]) have been published regarding value distribution of meromorphic solutions of linear difference equations. We recall the following results. Chiang and Feng proved the following theorem.

Theorem A ([2]) Let $P_0(z), \ldots, P_n(z)$ be polynomials such that there exists an integer l, $0 \le l \le n$, such that

$$\deg(P_l) > \max_{0 \le j \le n, j \ne l} \{ \deg(P_j) \}$$

$$\tag{1.1}$$

holds. Suppose f(z) is a meromorphic solution of the difference equation

$$P_n(z)f(z+n) + \dots + P_1(z)f(z+1) + P_0(z)f(z) = 0.$$
(1.2)

Then we have $\sigma(f) \ge 1$.

In this paper, we use the basic notions of Nevanlinna's theory (see [8, 9]). In addition, we use the notation $\sigma(f)$ to denote the order of growth of the meromorphic function f(z), and $\lambda(f)$ to denote the exponent of convergence of zeros of f(z).

Chen [1] weakened the condition (1.1) of Theorem A and proved the following results.

Theorem B ([1]) Let $P_n(z), \ldots, P_0(z)$ be polynomials such that $P_nP_0 \neq 0$ and

$$\deg(P_n + \dots + P_0) = \max\{\deg P_i : j = 0, \dots, n\} \ge 1.$$
(1.3)

Then every finite order meromorphic solution $f(z) \ (\not\equiv 0)$ of equation (1.2) satisfies $\sigma(f) \ge 1$, and f(z) assumes every nonzero value $a \in \mathbb{C}$ infinitely often and $\lambda(f - a) = \sigma(f)$.

© 2013 Liu; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Theorem C ([1]) Let F(z), $P_n(z)$,..., $P_0(z)$ be polynomials such that $FP_nP_0 \neq 0$ and (1.3). Then every finite order transcendental meromorphic solution f(z) of the equation

$$P_n(z)f(z+n) + \dots + P_1(z)f(z+1) + P_0(z)f(z) = F(z)$$
(1.4)

satisfies $\sigma(f) \ge 1$ and $\lambda(f) = \sigma(f)$.

Theorem D ([1]) Let F(z), $P_n(z)$,..., $P_0(z)$ be polynomials such that $FP_nP_0 \neq 0$. Suppose that f(z) is a meromorphic solution with infinitely many poles of (1.2) (or (1.4)). Then $\sigma(f) \geq 1$.

For the linear difference equation with transcendental coefficients

$$A_n(z)f(z+n) + \dots + A_1(z)f(z+1) + A_0(z)f(z) = 0,$$
(1.5)

Chiang and Feng proved the following result.

Theorem E ([2]) Let $A_0(z), ..., A_n(z)$ be entire functions such that there exists an integer l, $0 \le l \le n$, such that

$$\sigma(A_l) > \max\{\sigma(A_j) : 0 \le j \le n, j \ne l\}.$$
(1.6)

If f(z) is a meromorphic solution of (1.5), then we have $\sigma(f) \ge \sigma(A_l) + 1$.

Laine and Yang proved the following theorem.

Theorem F ([5]) Let $A_0, ..., A_n$ be entire functions of finite order so that among those having the maximal order $\sigma := \max\{\sigma(A_k) : 0 \le k \le n\}$, exactly one has its type strictly greater than the others. Then for any meromorphic solution of

$$A_n(z)f(z+C_n) + \dots + A_1(z)f(z+C_1) + A_0(z)f(z) = 0,$$
(1.7)

we have $\sigma(f) \geq \sigma + 1$.

Remark 1.1 If A_0, \ldots, A_n are meromorphic functions satisfying (1.6), then Theorem E does not hold. For example, the equation

$$y(z+1) - \left(e^{i} + \frac{e^{i} - 1}{e^{iz} - 1}\right)y(z) = 0$$

has a solution $y(z) = e^{iz} - 1$, which $\sigma(y) = 1 < \sigma(A_0) + 1$.

This example shows that for the linear difference equation with meromorphic coefficients, the condition (1.6) cannot guarantee that every transcendental meromorphic solution f(z) of (1.7) satisfies $\sigma(f) \ge \sigma(A_l) + 1$.

Thus, a natural question to ask is what conditions will guarantee every transcendental meromorphic solution f(z) of (1.7) with meromorphic coefficients satisfies $\sigma(f) \ge \sigma(A_l) + 1$.

In this note, we consider this question and prove the following results.

Theorem 1.1 Let c_1 , $c_2 (\neq c_1)$, a be nonzero constants, $h_1(z)$ be a nonzero meromorphic function with $\sigma(h_1) < 1$, B(z) be a nonzero meromorphic function.

If B(z) satisfies any one of the following three conditions:

- (i) $\sigma(B) > 1 \text{ and } \delta(\infty, B) > 0;$
- (ii) $\sigma(B) < 1$;
- (iii) $B(z) = h_0(z)e^{bz}$ where b is a nonzero constant, $h_0(z) \ (\neq 0)$ is a meromorphic function with $\sigma(h_0) < 1$,

then every meromorphic solution $f \ (\neq 0)$ of the difference equation

$$f(z+c_2) + h_1(z)e^{az}f(z+c_1) + B(z)f(z) = 0$$
(1.8)

satisfies $\sigma(f) \ge \max{\{\sigma(B), 1\}} + 1$.

Further, if $\varphi(z)$ ($\neq 0$) *is a meromorphic function with*

$$\sigma(\varphi) < \max\{\sigma(B), 1\} + 1,$$

then

$$\lambda(f - \varphi) = \sigma(f) \ge \max\{\sigma(B), 1\} + 1.$$

Corollary Under conditions of Theorem 1.1, every finite order solution $f(z) \ (\neq 0)$ of (1.8) has infinitely many fixed points, satisfies $\tau(f) = \sigma(f)$, and for any nonzero constant c,

$$\lambda(f(z)-c) = \sigma(f) \ge \max\{\sigma(B), 1\} + 1.$$

Example 1.1 The equation

$$f(z+2) - \frac{1}{2}e^{2z+3}f(z+1) - \frac{1}{2}e^{4z+4}f(z) = 0$$

satisfies conditions of Theorem 1.1 and has a solution $f(z) = e^{z^2}$ satisfying $\lambda(f) = 0$ and $\tau(f) = \sigma(f) = 2$. This example shows that under conditions of Theorem 1.1, a meromorphic solution of (1.8) may have no zero.

Theorem 1.2 Let $h_1(z)$, c_1 , c_2 , a, B(z) satisfy conditions of Theorem 1.1, and let $F(z) \ (\neq 0)$ be a meromorphic function with $\sigma(F) < \max\{\sigma(B), 1\} + 1$. Then all meromorphic solutions with finite order of the equation

$$f(z+c_2) + h_1(z)e^{az}f(z+c_1) + B(z)f(z) = F(z)$$
(1.9)

satisfy

$$\lambda(f) = \sigma(f) \ge \max\{\sigma(B), 1\} + 1$$

with at most one possible exceptional solution with $\sigma(f) < \max{\sigma(B), 1} + 1$.

Remark 1.2 Under conditions of Theorem 1.1, equation (1.8) has no rational solution. But equation (1.9) in Theorem 1.2 may have a rational solution. For example, the equation

$$f(z+2) + e^{z}f(z+1) - e^{z}f(z) = z + 2 - e^{z}$$

satisfies conditions of Theorem 1.2 and has a solution f(z) = z. This shows that in Theorem 1.2, there exists one possible exceptional solution with $\sigma(f) < \max{\sigma(B), 1} + 1$.

2 Proof of Theorem 1.1

We need the following lemmas to prove Theorem 1.1.

Lemma 2.1 ([2, 10]) *Given two distinct complex constants* η_1 , η_2 , *let* f *be a meromorphic function of finite order* σ *. Then, for each* $\varepsilon > 0$, *we have*

$$m\left(r,\frac{f(z+\eta_1)}{f(z+\eta_2)}\right)=O(r^{\sigma-1+\varepsilon}).$$

Lemma 2.2 (see [11]) Suppose that $P(z) = (\alpha + i\beta)z^n + \cdots + (\alpha, \beta \text{ are real numbers, } |\alpha| + |\beta| \neq 0)$ is a polynomial with degree $n \ge 1$, that $A(z) \ (\not\equiv 0)$ is an entire function with $\sigma(A) < n$. Set $g(z) = A(z)e^{P(z)}$, $z = re^{i\theta}$, $\delta(P, \theta) = \alpha \cos n\theta - \beta \sin n\theta$. Then, for any given $\varepsilon > 0$, there exists a set $H_1 \subset [0, 2\pi)$ that has the linear measure zero such that for any $\theta \in [0, 2\pi) \setminus (H_1 \cup H_2)$, there is R > 0 such that for |z| = r > R, we have that

(i) if $\delta(P, \theta) > 0$, then

$$\exp\{(1-\varepsilon)\delta(P,\theta)r^n\} < \left|g(re^{i\theta})\right| < \exp\{(1+\varepsilon)\delta(P,\theta)r^n\};$$
(2.1)

(ii) if $\delta(P, \theta) < 0$, then

$$\exp\left\{(1+\varepsilon)\delta(P,\theta)r^n\right\} < \left|g\left(re^{i\theta}\right)\right| < \exp\left\{(1-\varepsilon)\delta(P,\theta)r^n\right\},\tag{2.2}$$

where $H_2 = \{\theta \in [0, 2\pi); \delta(P, \theta) = 0\}$ is a finite set.

Lemma 2.3 Let c_1 , $c_2 (\neq c_1)$, a be nonzero constants, $A_j(z)$ (j = 0, 1, 2), F(z) be nonzero meromorphic functions. Suppose that f(z) is a finite order meromorphic solution of the equation

$$A_2(z)f(z+c_2) + A_1(z)f(z+c_1) + A_0(z)f(z) = F(z).$$
(2.3)

If
$$\sigma(f) > \max\{\sigma(F), \sigma(A_j) \ (j = 0, 1, 2)\}, then \ \lambda(f) = \sigma(f).$$

Proof Suppose that $\sigma(f) = \sigma$, max{ $\sigma(F), \sigma(A_j) (j = 0, 1, 2)$ } = α . Then $\sigma > \alpha$. Equation (2.3) can be rewritten as the form

$$\frac{1}{f(z)} = \frac{F(z)}{f(z)} \left(A_2(z) \frac{f(z+c_2)}{f(z)} + A_1(z) \frac{f(z+c_1)}{f(z)} + A_0(z) \right).$$
(2.4)

Thus, by (2.4), we deduce that

$$T(r,f) = T\left(r,\frac{1}{f}\right) + O(1)$$
$$= m\left(r,\frac{1}{f}\right) + N\left(r,\frac{1}{f}\right) + O(1)$$

For any given ε $(0 < \varepsilon < \min\{\frac{1}{4}, \frac{\sigma - \alpha}{4}\})$, and for sufficiently large *r*, we have that

$$m\left(r,\frac{1}{F}\right) \le T(r,F) \le r^{\alpha+\varepsilon}, \qquad m(r,A_j) \le r^{\alpha+\varepsilon} \quad (j=0,1,2).$$
 (2.6)

By Lemma 2.1, we obtain

$$m\left(r,\frac{f(z+c_2)}{f(z)}\right) \le Mr^{\sigma-1+\varepsilon} \quad \text{and} \quad m\left(r,\frac{f(z+c_1)}{f(z)}\right) \le Mr^{\sigma-1+\varepsilon},\tag{2.7}$$

where M (> 0) is some constant.

By $\sigma(f) = \sigma$, there exists a sequence $\{r_n\}$ satisfying $r_1 < r_2 < \cdots$, $r_n \to \infty$ such that

$$\lim_{n \to \infty} \frac{\log T(r_n, f)}{\log r_n} = \sigma.$$
(2.8)

Thus, for sufficiently large r_n , we have that

$$T(r_n, f) \ge r_n^{\sigma-\varepsilon}.$$
(2.9)

Substituting (2.6)-(2.9) into (2.5), we obtain for sufficiently large r_n

$$r_n^{\sigma-\varepsilon} \le T(r_n, f) \le N\left(r_n, \frac{1}{f}\right) + 4r_n^{\alpha+\varepsilon} + 2Mr_n^{\sigma-1+\varepsilon}.$$
(2.10)

Since $\varepsilon < \min\{\frac{1}{4}, \frac{\sigma - \alpha}{4}\}$ and ε is arbitrary, by (2.10), we obtain

$$\overline{\lim_{n\to\infty}}\,\frac{\log N(r_n,\frac{1}{f})}{\log r_n}=\sigma\,.$$

Hence, $\lambda(f) = \sigma(f) = \sigma$.

Proof of Theorem 1.1 Suppose that $f(z) \ (\neq 0)$ is a meromorphic solution of equation (1.8) with $\sigma(f) < \infty$.

(1) Suppose that B(z) satisfies the condition (i): $\sigma(B) > 1$ and $\delta(\infty, B) = \delta > 0$. Thus, for sufficiently large r,

$$m(r,B) > \frac{\delta}{2}T(r,B).$$
(2.11)

Clearly, $\sigma(f) \ge \sigma(B)$ by (1.8). By Lemma 2.1, we see that for any given ε ($0 < \varepsilon < \frac{\sigma(B)-1}{3}$),

$$m\left(r, \frac{f(z+c_j)}{f(z)}\right) = O(r^{\sigma(f)-1+\varepsilon}) \quad (j=1,2),$$
(2.12)

and

$$m(r,h_1(z)e^{az}) \le T(r,h_1(z)e^{az}) \le r^{1+\varepsilon}.$$
(2.13)

By (1.8), we have that

$$-B(z) = \frac{f(z+c_2)}{f(z)} + h_1(z)e^{az}\frac{f(z+c_1)}{f(z)}.$$
(2.14)

Substituting (2.11)-(2.13) into (2.14), we deduce that

$$\frac{\delta}{2}T(r,B) \le m(r,B)$$

$$\le m(r,h_1(z)e^{az}) + m\left(r,\frac{f(z+c_2)}{f(z)}\right) + m\left(r,\frac{f(z+c_1)}{f(z)}\right)$$

$$\le r^{1+\varepsilon} + O(r^{\sigma(f)-1+\varepsilon}). \tag{2.15}$$

By $\sigma(B) = \sigma$, there is a sequence r_i ($1 < r_1 < r_2 < \cdots, r_i \rightarrow \infty$) satisfying

$$T(r_j, B) > r_j^{\sigma(B)-\varepsilon}.$$
(2.16)

Thus, by (2.15) and (2.16), we obtain

$$\frac{\delta}{2}r_j^{\sigma(B)-\varepsilon} \le r_j^{1+\varepsilon} + Mr_j^{\sigma(f)-1+\varepsilon},\tag{2.17}$$

where *M* (> 0) is some constant. Combining (2.17) and $\varepsilon < \frac{\sigma(B)-1}{3}$, it follows that

$$\frac{\delta}{2}r_j^{\sigma(B)-arepsilon}ig(1+o(1)ig)\leq Mr_j^{\sigma(f)-1+arepsilon}.$$

,

So that, it follows that $\sigma(f) \ge \sigma(B) + 1 = \max{\{\sigma(B), 1\}} + 1$.

(2) Suppose that B(z) satisfies the condition (ii): $\sigma(B) < 1$. Using the same method as in (1), we can obtain $\sigma(f) \ge \max\{\sigma(B), 1\} + 1$.

(3) Suppose that B(z) satisfies the condition (iii): $B(z) = h_0(z)e^{bz}$, where *b* is a nonzero constant, $h_0(z) \ (\neq 0)$ is a meromorphic function with $\sigma(h_0) < 1$.

Now we need to prove $\sigma(f) \ge 2$. Contrary to the assertion, suppose that $\sigma(f) = \alpha < 2$. We will deduce a contradiction. Set $z = re^{i\theta}$. Then

$$\begin{cases} \mathbf{Re}\{az\} = \delta(az,\theta)|a|r = |a|r\cos(\arg a + \theta), \\ \mathbf{Re}\{bz\} = \delta(bz,\theta)|b|r = |b|r\cos(\arg b + \theta). \end{cases}$$
(2.18)

In what follows, we divide this proof into three subcases: (a) $\arg a \neq \arg b$; (b) $\arg a = \arg b$ and $|a| \neq |b|$; (c) a = b.

Subcase (a). Since $\arg a \neq \arg b$ and (2.18), it is easy to see that there exists a ray $\arg z = \theta_0$ such that

$$\mathbf{Re}\{az\} = \delta(az, \theta_0)|a|r = |a|r\cos(\arg a + \theta_0) < 0,$$

$$\mathbf{Re}\{bz\} = \delta(bz, \theta_0)|b|r = |b|r\cos(\arg b + \theta_0) > 0.$$

(2.19)

By (1.8) and (2.19), we see that f(z) cannot be a rational function. By Lemma 2.1, (2.12) holds. By Lemma 2.2 and (2.19), it is easy to see that for any given ε_1 ($0 < \varepsilon_1 < \min\{\frac{1}{2}, \frac{2-\alpha}{2}\}$) and for sufficiently large r,

$$\left|h_0\left(re^{i\theta_0}\right)e^{bre^{i\theta_0}}\right| \ge \exp\left\{(1-\varepsilon_1)|b|\delta(bz,\theta_0)r\right\},\tag{2.20}$$

and

$$\left|h_1\left(re^{i\theta_0}\right)e^{are^{i\theta_0}}\right| \le \exp\left\{(1-\varepsilon_1)|a|\delta(az,\theta_0)r\right\} < 1.$$
(2.21)

Thus, by (1.8), (2.12), (2.20) and (2.21), we deduce that

$$\begin{split} \exp\{(1-\varepsilon_1)|b|\delta(bz,\theta_0)r\} &\leq \left|h_0\left(re^{i\theta_0}\right)e^{bre^{i\theta_0}}\right| \\ &\leq \left|\frac{f(re^{i\theta_0}+c_2)}{f(re^{i\theta_0})}\right| + \left|h_1\left(re^{i\theta_0}\right)e^{are^{i\theta_0}}\right| \left|\frac{f(re^{i\theta_0}+c_1)}{f(re^{i\theta_0})}\right| \\ &\leq 2\exp\{r^{\sigma(f)-1+\varepsilon_1}\}. \end{split}$$

$$(2.22)$$

By $\delta(bz, \theta_0) = \cos(\arg b + \theta_0) > 0$, $\sigma(f) = \alpha < 2$ and $\varepsilon_1 < \frac{2-\alpha}{2}$, it is easy to see that (2.22) is a contradiction. Hence, $\sigma(f) \ge 2$.

Subcase (b). By arg $a = \arg b$ and $|a| \neq |b|$, we see that f(z) cannot be a rational function. By Lemma 2.1, (2.12) holds. By arg $a = \arg b$ and (2.18), we take $\theta_1 = -\arg a$, then $\delta(az, \theta_1) = \delta(bz, \theta_1) = 1$ and

$$\mathbf{Re}\left\{are^{i\theta_{1}}\right\} = |a|r \quad \text{and} \quad \mathbf{Re}\left\{bre^{i\theta_{1}}\right\} = |b|r. \tag{2.23}$$

Now suppose that |b| > |a|. By Lemma 2.2, for any given ε_2 ($0 < \varepsilon_2 < \min\{2 - \alpha, \frac{|b| - |a|}{2(|b| + |a|)}\}$),

$$\left|h_0(re^{i\theta_1})e^{bre^{i\theta_1}}\right| \ge \exp\left\{(1-\varepsilon_2)|b|r\right\},\tag{2.24}$$

and

$$\left|h_1\left(re^{i\theta_1}\right)e^{are^{i\theta_1}}\right| \le \exp\left\{(1+\varepsilon_2)|a|r\right\}.$$
(2.25)

Thus, by (1.8), (2.12), (2.24) and (2.25), we deduce that

$$\begin{split} \exp\{(1-\varepsilon_{2})|b|r\} &\leq \left|h_{0}\left(re^{i\theta_{1}}\right)e^{bre^{i\theta_{1}}}\right| \\ &\leq \left|\frac{f(re^{i\theta_{1}}+c_{2})}{f(re^{i\theta_{1}})}\right| + \left|h_{1}\left(re^{i\theta_{1}}\right)e^{are^{i\theta_{1}}}\right| \left|\frac{f(re^{i\theta_{1}}+c_{1})}{f(re^{i\theta_{1}})}\right| \\ &\leq \exp\{r^{\sigma(f)-1+\varepsilon_{2}}\} + \exp\{(1+\varepsilon_{2})|a|r\}\exp\{r^{\sigma(f)-1+\varepsilon_{2}}\}. \end{split}$$
(2.26)

Since $\varepsilon_2 < 2 - \alpha$, we have that $\sigma(f) - 1 + \varepsilon_2 = \alpha - 1 + \varepsilon_2 < 1$. Combining this and (2.26), we obtain

$$\exp\{(1-\varepsilon_2)|b|r\} < \exp\{(1+\varepsilon_2)|a|r(1+o(1))\}(1+o(1))\}.$$
(2.27)

By $\varepsilon_2 < \frac{|b|-|a|}{2(|b|+|a|)}$, we see that (2.27) is a contradiction.

 \square

Now suppose that |b| < |a|. Using the same method as above, we can also deduce a contradiction.

Hence, $\sigma(f) \ge 2$ in Subcase (b).

Subcase (c). We first affirm that f(z) cannot be a nonzero rational function. In fact, if f(z) is a rational function, then $e^{az}[h_1(z)f(z+c_1)+h_0(z)f(z)] = -f(z+c_2)$ is a rational function. So that $h_1(z)f(z+c_1)+h_0(z)f(z) \equiv 0$, that is, $f(z+c_2) \equiv 0$, a contradiction.

By Lemma 2.1, (2.12) holds. By a = b, equation (1.8) can be rewritten as

$$e^{-az}f(z+c_2) + h_1(z)f(z+c_1) + h_0(z)f(z) = 0.$$
(2.28)

Using the same method as in the proof of (1), we can obtain $\sigma(f) \ge 2$.

(4) Suppose that $\varphi(z) \ (\neq 0)$ is a meromorphic function with $\sigma(\varphi) < \max\{\sigma(B), 1\} + 1$. Set $g(z) = f(z) - \varphi(z)$. Substituting $f(z) = g(z) + \varphi(z)$ into (1.8), we obtain

$$g(z + c_2) + h_1(z)e^{az}g(z + c_1) + B(z)g(z)$$

= -[\varphi(z + c_2) + h_1(z)e^{az}\varphi(z + c_1) + B(z)\varphi(z)]. (2.29)

If $\varphi(z + c_2) + h_1(z)e^{az}\varphi(z + c_1) + B(z)\varphi(z) \equiv 0$, then $\varphi(z)$ is a nonzero meromorphic solution of (1.8). Thus, by the proof above, we have that $\sigma(\varphi) \ge \max\{\sigma(B), 1\} + 1$. This contradicts our condition that $\sigma(\varphi) < \max\{\sigma(B), 1\} + 1$. Hence, $\varphi(z + 2) + h_1(z)e^{az}\varphi(z + 1) + B(z)\varphi(z) \neq 0$, and

$$\sigma\left(\varphi(z+c_2)+h_1(z)e^{az}\varphi(z+c_1)+B(z)\varphi(z)\right)<\max\left\{\sigma(B),1\right\}+1\leq\sigma(f)=\sigma(g).$$

Applying this and Lemma 2.3 to (2.29), we deduce that

$$\lambda(f - \varphi) = \lambda(g) = \sigma(g) \ge \max\{\sigma(B), 1\} + 1.$$

Thus, Theorem 1.1 is proved.

3 Proof of Theorem 1.2

Suppose that f_0 is a meromorphic solution of (1.9) with

 $\sigma(f_0) < \max\{\sigma(B), 1\} + 1.$

If $f^*(z)$ ($\neq f_0(z)$) is another meromorphic solution of (1.9) satisfying $\sigma(f^*) < \max\{\sigma(B), 1\} + 1$, then

$$\sigma\left(f^*-f_0\right)<\max\left\{\sigma(B),1\right\}+1.$$

But $f^* - f_0$ is a solution of the corresponding homogeneous equation (1.8) of (1.9). By Theorem 1.1, we have $\sigma(f^* - f_0) \ge \max\{\sigma(B), 1\} + 1$, a contradiction. Hence equation (1.9) possesses at most one exceptional solution f_0 with $\sigma(f_0) < \max\{\sigma(B), 1\} + 1$.

Now suppose that f is a meromorphic solution of (1.9) with

 $\max\{\sigma(B), 1\} + 1 \le \sigma(f) < \infty.$

Since $\sigma(f) > \max{\sigma(B), \sigma(F), \sigma(h(z)e^{az})}$, applying Lemma 2.3 to (1.9), we obtain

 $\lambda(f) = \sigma(f).$

Thus, Theorem 1.2 is proved.

Competing interests

The author declares that they have no competing interests.

Acknowledgements

The author is grateful to the referees for a number of helpful suggestions to improve the paper. This research was partly supported by the National Natural Science Foundation of China (grant no. 11171119).

Received: 2 December 2012 Accepted: 26 February 2013 Published: 19 March 2013

References

- 1. Chen, ZX: Growth and zeros of meromorphic solution of some linear difference equations. J. Math. Anal. Appl. 373, 235-241 (2011)
- 2. Chiang, YM, Feng, SJ: On the Nevanlinna characteristic of $f(z + \eta)$ and difference equations in the complex plane. Ramanujan J. **16**, 105-129 (2008)
- 3. Ishizaki, K: On difference Riccati equations and second order linear difference equations. Aequ. Math. 81, 185-198 (2011)
- 4. Ishizaki, K, Yanagihara, N: Wiman-Valiron method for difference equations. Nagoya Math. J. 175, 75-102 (2004)
- 5. Laine, I: Nevanlinna Theory and Complex Differential Equations. de Gruyter, Berlin (1993)
- Li, S, Gao, ZS: Finite order meromorphic solutions of linear difference equations. Proc. Jpn Acad., Ser. A 87(5), 73-76 (2011)
- 7. Zheng, XM, Tu, J: Growth of meromorphic solutions of linear difference equations. J. Math. Anal. Appl. 384, 349-356 (2011)
- 8. Hayman, WK: Meromorphic Functions. Clarendon, Oxford (1964)
- 9. Laine, I, Yang, CC: Clunie theorems for difference and *q*-difference polynomials. J. Lond. Math. Soc. **76**(3), 556-566 (2007)
- 10. Halburd, RG, Korhonen, R: Difference analogue of the lemma on the logarithmic derivative with applications to difference equations. J. Math. Anal. Appl. **314**, 477-487 (2006)
- 11. Chen, ZX: The growth of solutions of $f'' + e^{-z}f' + Q(z)f = 0$ where the order (Q) = 1. Sci. China Math. **45**(3), 290-300 (2002)

doi:10.1186/1687-1847-2013-60

Cite this article as: Liu: On growth of meromorphic solutions for linear difference equations with meromorphic coefficients. Advances in Difference Equations 2013 2013:60.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ▶ Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com