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Abstract
This paper deals with positive solutions of a third-order differential equation in
ordered Banach spaces,

(ϕ(–x′′(t)))′ = f (t, x(t)), t ∈ J,

subject to the following integral boundary conditions:

x(0) = θ , x′′(0) = θ , x(1) =
∫ 1

0
g(t)x(t)dt,

where θ is the zero element of E, g ∈ L[0, 1] is nonnegative, ϕ : R → R is an increasing
and positive homomorphism, and ϕ(0) = θ1. The arguments are based upon the
fixed-point principle in cone for strict set contraction operators. Meanwhile, as an
application, we also give an example to illustrate our results.

Keywords: positive solutions; boundary-value problem; fixed-point principle; cone;
measure of noncompactness

1 Introduction
The theory of boundary value problems is experiencing a rapid development.Manymeth-
ods are used to study this kind of problems such as fixed point theorems, shootingmethod,
iterative method with upper and lower solutions, etc. We refer the readers to the papers
[–]. Among them, the fixed-point principle in cone has become an important tool used
in the study of existence and multiplicity of positive solutions. Many papers that use this
method have been published in recent years (see [–]).
Recently, scientists have noticed that the boundary conditions in many areas of applied

mathematics and physics come down to integral boundary conditions. For instance, the
models on chemical engineering, heat conduction, thermo-elasticity, plasma physics, and
underground water flow can be reduced to the nonlocal problems with integral boundary
conditions. For more information about this subject, we refer the readers to the excellent
survey by Gallardo [–], Corduneanu [], and Agarwal and O’Regan [].
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In [], Lomtatidze and Malaguti considered the second-order nonlinear singular dif-
ferential equations

⎧⎨
⎩
u′′ = f (t,u,u′), t ∈ [a,b],

u(a+) = , u(b–) =
∫ b
a u(s)dμ(s),

where f : [a,b]× R → R satisfies the local Carathéodory conditions and μ : [a,b] → R is
the function of bounded variation. These criteria apply to the case where the function f
has nonintegrable singularities in the first argument at the points a and b.
In [], Karakostas and Tsamatos considered multiple positive solutions of some Fred-

holm integral equations arising from the nonlocal boundary-value problems

⎧⎨
⎩
(p(t)x′(t))′ +μ(t)f (x(t)) = , t ∈ [, ],

x′() =
∫ 
 x

′(s)dg(s), x() = –
∫ 
 x

′(s)dh(s),

where the kernelK(t, s) satisfies a continuity assumption in the L-sense and it ismonotone
and concave. Themainmethod is theKrasnosel’skii fixed point theoremon a suitable cone,
then the above equation has at least one positive solution.
Motivated by the above works, this paper studies the following system:

⎧⎨
⎩
(ϕ(–x′′(t)))′ = f (t,x(t)), t ∈ J ,

x() = θ , x′′() = θ , x() =
∫ 
 g(t)x(t)dt,

()

where J = [, ], f ∈ C([, ] × P,P), θ is the zero element of E, E is a real Banach space
with the norm ‖x‖, and g ∈ L[, ] is nonnegative; ϕ : R → R is an increasing and positive
homomorphism (see Definition .) and ϕ() = θ.
According to Definition ., we know that many problems, such as the problems with

p-Laplacian operator, three-order boundary-value problems and so on, are special cases
of (). To the best of our knowledge, there have been few results on the positive solutions
for odd-order boundary-value problems (or p-Laplacian problems) with integral bound-
ary conditions in Banach spaces (see [–]).
The plan of this paper is as follows. We introduce some notations and lemmas in the

rest of this section. In Section , we provide some necessary backgrounds. In particular,
we state some properties of the Green’s function associated with BVP (). In Section , we
establish the main results of the paper. Finally, one example is also included to illustrate
the main results.

Definition . Let (E,‖ · ‖) be a real Banach space. A nonempty, closed, and convex set
P ⊂ E is said to be a cone provided that the following conditions are satisfied:
(a) If y ∈ P and λ ≥ , then λy ∈ P;
(b) If y ∈ P and –y ∈ P, then y = .
If P ⊂ E is a cone, we denote the order induced by P on E by ≤, that is, x ≤ y if and only

if y – x ∈ P. P is said to be normal if there exists a positive constant N such that θ ≤ x ≤ y
implies ‖x‖ ≤ N‖y‖. N is called the normal constant of P.
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Definition . A projection ϕ : R → R is called an increasing and positive homomor-
phism if the following conditions are satisfied:
() If x≤ y, then ϕ(x)≤ ϕ(y) for all x, y ∈ R;
() ϕ is a continuous bijection and its inverse is also continuous;
() ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ R+ = [,+∞).
In the above definition, condition () can be replaced by the following stronger condi-

tion:
() ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ R, where R = (–∞, +∞).

Definition . Let E be a real Banach space and P ⊂ E be a cone in E. If P* = {ψ ∈
E*|ψ(x)≥ ,∀x ∈ P}, then P* is a dual cone of the cone P.

Definition . Let S be a bounded set in a real Banach space E. Let α(S) = inf{δ >  : S
be expressed as the union of a finite number of sets such that the diameter of each set
does not exceed δ, i.e., S =

⋃m
i= Si with diam(Si) ≤ δ, i = , , . . . ,m}. Clearly,  ≤ α(S) < ∞.

α(S) is called Kuratowski’s measure of noncompactness.

Definition . Let E be an ordered Banach space, D be a bounded set of E. The opera-
tor A : D → E is said to be a k-set contraction if A : D → E is continuous and bounded,
and there is a constant k ≥  such that α(A(S)) ≤ kα(S) for any bounded S ⊂ D; a k-set
contraction with k <  is called a strict set contraction.

More facts about the properties on the Banach space E can be found in [–]. For a
bounded set C in the Banach space E, we denote by α(C) the Kuratowski’s measure of
noncompactness. In the following, we denote by α(·), αC(·) the Kuratowski’s measure of
noncompactness of a bounded subset in E and in C(J ,E), respectively. And we set

hβ = lim sup
‖x‖→β

max
t∈J

‖h(t,x)‖
‖x‖ , hβ = lim inf‖x‖→β

min
t∈J

‖h(t,x)‖
‖x‖ ,

(ψh)β = lim inf‖x‖→β
min
t∈J

‖ψh(t,x)‖
‖x‖ ,

where x ∈ P, β denotes  or ∞, ψ ∈ P*, ‖ψ‖ = , and h(t,x) = ϕ–(
∫ t
 f (s,x(s))ds).

Lemma . [] If H ∈ C(J ,E) is bounded and equicontinuous, then αC(H) = α(H(J)) =
maxt∈J α(H(t)), where H(J) = {x(t) : t ∈ J ,x ∈H}, H(t) = {x(t) : x ∈H}.

Lemma . [] Let D be a bounded set of E; if f is uniformly continuous and bounded from
J × S into E, then

α
(
f (J ,S)

)
=max

t∈J
α
(
f (t,S)

) ≤ ηlα(S) for S ⊂D, ()

where ηl is a nonnegative constant.

Lemma . Let K be a cone of the Banach space E and Kr = {x ∈ K : ‖x‖ ≤ r}, Kr,r′ = {x ∈
K , r ≤ ‖x‖ ≤ r′}with r′ > r > . Suppose that A : Kr′ → K is a strict set contraction such that
one of the following two conditions is satisfied:

http://www.advancesindifferenceequations.com/content/2013/1/65


Fu and Ding Advances in Difference Equations 2013, 2013:65 Page 4 of 12
http://www.advancesindifferenceequations.com/content/2013/1/65

(a) ‖Ax‖ ≥ ‖x‖, ∀x ∈ K , ‖x‖ = r; ‖Ax‖ ≤ ‖x‖, ∀x ∈ K , ‖x‖ = r′.
(b) ‖Ax‖ ≤ ‖x‖, ∀x ∈ K , ‖x‖ = r; ‖Ax‖ ≥ ‖x‖, ∀x ∈ K , ‖x‖ = r′.

Then A has a fixed point x ∈ Kr,r′ .

2 Preliminaries
To establish the existence of positive solutions in C(J ,P) of (), let us list the following
assumptions:

(H) f ∈ C(J × P,P), and for any l > , f is uniformly continuous on J × Pl . Further sup-
pose that g ∈ L[, ] is nonnegative, σ =

∫ 
 sg(s)ds, and σ ∈ [, ), γ = +

∫ 
 (–s)g(s)ds

–σ
,

h(s,x(s)) = ϕ–(
∫ s
 f (t,x(t))dt), where Pl = {x ∈ P,‖x‖ ≤ l}.

(H) There exists a nonnegative constant ηl with γ ηl <  such that

α
(
h(t,S)

) ≤ ηlα(S), t ∈ J ,S ∈ Pl. ()

Evidently, (C(J ,E),‖·‖c) is a Banach space, and the norm is defined as ‖x‖C =maxt∈J ‖x(t)‖.
In the following, we construct a cone K = {x ∈ Q : x(t) ≥ δx(v), t ∈ Jδ , v ∈ [, ]}, where

Q = {x ∈ C(J ,P) : x(t) ≥ θ , t ∈ J}, and let Bl = {x ∈ C(J ,P) : ‖x‖c ≤ l}, l > . It is easy to see
that K is a cone of C(J ,E) and Kr,r′ = {x ∈ K : r ≤ ‖x‖ ≤ r′} ⊂ K , K ⊂Q.
In our main results, we will make use of the following lemmas.

Lemma . Assume that (H) is satisfied. Then x(t) is a solution of problem () if and only
if x ∈ K is a solution of the integral equation

x(t) =
∫ 


H(t, s)ϕ–

(∫ s


f
(
τ ,x(τ )

)
dτ

)
ds. ()

Here, we define an operator A by

(Ax)(t) =
∫ 


H(t, s)ϕ–

(∫ s


f
(
τ ,x(τ )

)
dτ

)
ds, ()

where

H(t, s) =G(t, s) +
t

 – σ

∫ 


g(τ )G(τ , s)dτ , ()

G(t, s) =

⎧⎨
⎩
s( – t),  ≤ s ≤ t ≤ ;

t( – s),  ≤ t ≤ s ≤ .
()

That is, x is a fixed point of the operator A in K .

Lemma . If condition (H) is satisfied, then the operator A defined by () is a continuous
operator.

Proof It can be verified easily by the definition of (Ax)(t), we omit it here. �

Lemma . For t, s ∈ [, ],  ≤ G(t, s)≤ 
 .
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Proof It is obvious that G(t, s) ≥  for any s, t ∈ [, ]. When  ≤ s ≤ t ≤ , G(t, s) = s( –
t) ≤ t( – t) = –(t – 

 )
 + 

 , thus when t = 
 , max≤t,s≤G(t, s) = 

 , therefore G(t, s) ≤ 
 ,

which implies the proof is complete. �

Lemma . Assume that (H) holds, choose δ ∈ (,  ) and let Jδ = [δ,  – δ], then for all
v, s ∈ [, ],

H(t, s)≤ γ for t ∈ [, ];

H(t, s)≥ δH(v, s) for t ∈ Jδ , v, s ∈ [, ],

where γ is as defined in (H).

Proof First, we prove that G(t, s) ≥ δG(v, s). Obviously, for t ∈ Jδ , v, s ∈ {, }, G(t, s) ≥
δG(v, s) hold. And for v, s ∈ (, ), we have the following four cases.
Case I: max{v, t} ≤ s, then

G(t, s)
G(v, s)

=
t( – s)
v( – s)

=
t
v

≥ δ.

Case II: s ≤ min{v, t}, then

G(t, s)
G(v, s)

=
s( – t)
s( – v)

=
 – t
 – v

≥ δ


= δ.

Case III: t ≤ s≤ v, then

G(t, s)
G(v, s)

=
t( – s)
s( – v)

≥ δ( – s)
 – s

= δ.

Case IV: v ≤ s ≤ t, then

G(t, s)
G(v, s)

=
s( – t)
v( – s)

≥  – t
 – s

≥  – t ≥ δ.

To sum up, we get that G(t, s)≥ δG(v, s).
For t ∈ [, ],

H(t, s) = G(t, s) +
t

 – σ

∫ 


g(τ )G(τ , s)dτ ≤ s( – s) +

t
 – σ

∫ 


g(τ )G(τ , s)dτ

≤ ( – s) +


 – σ

∫ 


g(τ )G(τ , s)dτ ≤ ( – s) +


 – σ

∫ 


( – s)g(τ )dτ

= ( – s)
(
 +


 – σ

∫ 


g(s)ds

)
= ( – s)

 – σ +
∫ 
 g(s)ds

 – σ

= ( – s)
 –

∫ 
 sg(s)ds +

∫ 
 g(s)ds

 – σ
= ( – s)

 +
∫ 
 ( – s)g(s)ds
 – σ

≤  +
∫ 
 ( – s)g(s)ds
 – σ

= γ , t ∈ [, ].
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For t ∈ Jδ , we have

H(t, s) = G(t, s) +
t

 – σ

∫ 


g(τ )G(τ , s)dτ

≥ δG(v, s) +
δ

 – σ

∫ 


g(τ )G(τ , s)dτ

≥ δG(v, s) +
δv

 – σ

∫ 


g(τ )G(τ , s)dτ

= δH(v, s).

So, we complete the proof. �

Proof of Lemma . Necessity. First, we suppose that x is a solution of equation (). By
taking the integral of () on [, t], we have

ϕ
(
–x′′(t)

)
– ϕ

(
–x′′()

)
=

∫ t


f
(
τ ,x(τ )

)
dτ .

By the boundary value condition and together with ϕ() = , we have

x′′(t) = –ϕ–
(∫ t


f
(
τ ,x(τ )

)
dτ

)
. ()

By taking the integral of () on [, t], we can get

x′(t) = x′() –
∫ t


ϕ–

(∫ s


f
(
τ ,x(τ )

)
dτ

)
ds. ()

Integrating () from  to t, we have

x(t) = x() + x′()t –
∫ t


(t – s)ϕ–

(∫ s


f
(
τ ,x(τ )

)
dτ

)
ds.

By the boundary value condition x() = θ , we can get

x(t) = x′()t –
∫ t


(t – s)ϕ–

(∫ s


f
(
τ ,x(τ )

)
dτ

)
ds. ()

Letting t = , we find that

x() = x′() –
∫ 


( – s)ϕ–

(∫ s


f
(
τ ,x(τ )

)
dτ

)
ds,

thus

x′() = x() +
∫ 


( – s)ϕ–

(∫ s


f
(
τ ,x(τ )

)
dτ

)
ds. ()

Substituting x() =
∫ 
 g(t)x(t)dt into (), we obtain

x′() =
∫ 


g(s)x(s)ds +

∫ 


( – s)ϕ–

(∫ s


f
(
τ ,x(τ )

)
dτ

)
ds. ()
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Substituting () into (), we can get

x(t) = t
(∫ 


g(s)x(s)ds +

∫ 


( – s)ϕ–

(∫ s


f
(
τ ,x(τ )

)
dτ

)
ds

)

–
∫ t


(t – s)ϕ–

(∫ s


f
(
τ ,x(τ )

)
dτ

)
ds

=
∫ 


G(t, s)ϕ–

(∫ s


f
(
τ ,x(τ )

)
dτ

)
ds + t

∫ 


g(s)x(s)ds.

Thus,

∫ 


g(s)x(s)ds

=
∫ 


sg(s)ds

∫ 


g(s)x(s)ds +

∫ 


g(s)

∫ 


G(s, τ )ϕ–

(∫ τ


f
(
η,x(η)

)
dη

)
dτ ds.

Then we obtain that

∫ 


g(s)x(s)ds

=


 –
∫ 
 sg(s)ds

∫ 


g(s)

∫ 


G(s, τ )ϕ–

(∫ τ


f
(
η,x(η)

)
dη

)
dτ ds.

Therefore,

x(t) =
∫ 


G(t, s)ϕ–

(∫ s


f
(
τ ,x(τ )

)
dτ

)
ds

+
t

 – σ

∫ 


g(s)

∫ 


G(s, τ )ϕ–

(∫ τ


f
(
η,x(η)

)
dη

)
dτ ds

=
∫ 


G(t, s)ϕ–

(∫ s


f
(
τ ,x(τ )

)
dτ

)
ds

+
t

 – σ

∫ 



(∫ 


g(τ )G(τ , s)dτ

)
ϕ–

(∫ τ


f
(
η,x(η)

)
dη

)
ds

=
∫ 


H(t, s)ϕ–

(∫ s


f
(
τ ,x(τ )

)
dτ

)
ds.

By Lemma ., x(t)≥ θ holds, that is, x ∈ Q. Together with Lemma ., we have

x(t) =
∫ 


H(t, s)ϕ–

(∫ s


f
(
τ ,x(τ )

)
dτ

)
ds

≥ δ

∫ 


H(v, s)ϕ–

(∫ s


f
(
τ ,x(τ )

)
dτ

)
ds = δx(v),

which implies x ∈ K . To sum up, we know that x is a solution of the integral equation ()
in K .
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Fu and Ding Advances in Difference Equations 2013, 2013:65 Page 8 of 12
http://www.advancesindifferenceequations.com/content/2013/1/65

Sufficiency. Let x be as in (). Taking the derivative of (), it implies that

x′(t) =
∫ 



∂G(t, s)
∂t

ϕ–
(∫ s


f
(
τ ,x(τ )

)
dτ

)
ds

+


 – σ

∫ 



∫ 


g(τ )G(s, τ )ϕ–

(∫ τ


f
(
η,x(η)

)
dη

)
dτ ds

= –
∫ t


sϕ–

(∫ s


f
(
τ ,x(τ )

)
dτ

)
ds +

∫ 

t
( – s)ϕ–

(∫ s


f
(
τ ,x(τ )

)
dτ

)
ds

+


 – σ

∫ 



∫ 


g(τ )G(s, τ )ϕ–

(∫ τ


f
(
η,x(η)

)
dη

)
dτ ds.

Moreover,

x′′(t) = –ϕ–
(∫ t


f
(
τ ,x(τ )

)
dτ

)
,

ϕ
(
–x′′(t)

)′ = f
(
t,x(t)

)
,

x() = θ , x′′() = θ , x() =
∫ 


g(t)x(t)dt

hold, which implies x(t) is a solution of (). The proof is complete. �

Lemma . Suppose that (H) and (H) hold. Then, for each l > , A is a strict set contrac-
tion on Q ∩ Bl , i.e., there exists a constant  ≤ kl <  such that αC(A(S)) ≤ klαC(S) for any
S ⊂ Q∩ Bl .

Proof By Lemmas . and ., we know that A :Q →Q is continuous and bounded. Now,
let S be a bounded set in Q. Then by (H), we get that

α
(
A(S)

) ≤ α
(
c̄oH(t, s)h

(
s,x(s)

)
: s ∈ [, t], t ∈ J ,x ∈ S

) ≤ γ ηlα
(
S(J)

)
.

Thus,

αC
(
A(S)

) ≤ γ ηlα
(
S(J)

)
.

For α(S(J))≤ αC(s), we can get that

αC
(
A(S)

) ≤ γ ηlα
(
S(J)

) ≤ γ ηlαC(s) = klαC(s), S ⊂Q∩ Bl,

where kl = γ ηl ,  ≤ kl < . The proof is complete. �

3 Main results
In this section, we impose growth conditions on f which allow us to apply Lemma .
to establish the existence of positive solutions of (). At the beginning, we introduce the
notation

� = δ

∫ –δ

δ

H
(


, s

)
ds. ()

http://www.advancesindifferenceequations.com/content/2013/1/65
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Theorem . Suppose (H) and (H) hold and P is normal. If γh <  < �(ψh)∞, then
problem () has at least one positive solution.

Proof A is defined as (). Considering γh < , there exists r̄ such that ‖h(t,x)‖ ≤ (h +
ε)‖x‖ for t ∈ J , x ∈ K , ‖x‖ ≤ r̄, where ε >  satisfies γ (h + ε)≤ .
Let r ∈ (, r̄). Then, for t ∈ J , x ∈ K , ‖x‖C = r, by Lemma ., we can get

∥∥(Ax)(t)∥∥ ≤ γ

∫ 



∥∥h(s,x(s))∥∥ds

≤ γ

∫ 



(
h + ε

)‖x‖ds

≤ γ
(
h + ε

)∫ 


‖x‖C ds≤ ‖x‖C ,

i.e., for x ∈ K , ‖x‖C = r, ‖Ax‖C ≤ ‖x‖C holds.
Next, turning to  <�(ψh)∞, there exists r̄ >  such thatψ(h(t,x(t))) > ((ψh)∞–ε)‖x‖,

t ∈ J , x ∈ P, ‖x‖ ≥ r̄, where ε >  satisfies ((ψh)∞ – ε)‖x‖� ≥ .
Let r = max{r, r̄δ }. Then for t ∈ Jδ , x ∈ K , ‖x‖C = r, we have ‖x‖ ≥ δ‖x‖C ≥ r̄ and

ψ((Ax)(  )) ≤ ‖ψ((Ax)(  ))‖ ≤ ‖ψ‖‖(Ax)(  )‖ = ‖(Ax)(  )‖, thus
∥∥∥∥(Ax)

(



)∥∥∥∥ ≥
∥∥∥∥ψ

(
(Ax)

(



))∥∥∥∥
= ψ

(∫ 


H

(


, s

)
h
(
s,x(s)

)
ds

)

=
∫ 


H

(


, s

)
ψ

(
h
(
s,x(s)

))
ds

≥
∫ –δ

δ

H
(


, s

)
ψ

(
h
(
s,x(s)

))
ds

≥ (
(ψh)∞ – ε

)∫ –δ

δ

H
(


, s

)
‖x‖ds

≥ (
(ψh)∞ – ε

)
δ‖x‖C

∫ –δ

δ

H
(


, s

)
ds

= �
(
(ψh)∞ – ε

)‖x‖C ≥ ‖x‖C ,

i.e., for x ∈ K , ‖x‖C = r, ‖Ax‖C ≥ ‖x‖C holds.
Lemma . yields that A has at least one fixed point x* ∈ K̄r,r , r ≤ ‖x*‖ ≤ r and

x*(t) ≥ δ‖x*‖ > , t ∈ Jδ . Thus, BVP () has at least one positive solution x*. The proof
is complete. �

Remark . If ϕ = I , where I denotes a unit operator, then the differential equation can
change into the general differential equation

⎧⎨
⎩
–x′′′(t) = f (t,x(t)), t ∈ J ,

x() = θ , x′′() = θ , x() =
∫ 
 g(t)x(t)dt.

()
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This system has been studied in Ref. []. By Theorem ., we can easily obtain the main
result (Theorem . in Ref. []).

Corollary . Assume that (H) holds and P is normal. If 
γ f

 <  <�(ψ f )∞, then prob-
lem () has at least one positive solution.

Remark . If ϕ(x) = �p(x) = |x|p–x for some p > , where �–
P = �q, then () can be

written as a BVP with a p-Laplace operator,

⎧⎨
⎩
(�p(x′))′ = f (t,x(t)), t ∈ J ,

x() = θ , x′′() = θ , x() =
∫ 
 g(t)x(t)dt.

()

First, we reduce (H) as (H)*.

(H)* f ∈ C(J × P,P), and for any l > , f is uniformly continuous on J × Pl . Further sup-
pose that g ∈ L[, ] is nonnegative, σ =

∫ 
 sg(s)ds, and σ ∈ [, ), γ = +

∫ 
 (–s)g(s)ds

–σ
,

h(s,x(s)) = �q(
∫ s
 f (t,x(t))dt), where Pl = {x ∈ P,‖x‖ ≤ l}.

Then we can get the following similar conclusion.

Corollary . Suppose (H)* and (H) hold and P is normal. If γh <  < �(ψh)∞, then
problem () has at least one positive solution.

4 Example
Next, we will give an example to illustrate our results.

Example . Consider the finite system of scalar third-order differential equations,

⎧⎨
⎩
(ϕ(–x′′(t)))′ = tx, t ∈ J ,

x() = θ , x′′() = θ , x() =
∫ 
 x(t)dt,

()

where x(t) = t, and

ϕ(s) =

⎧⎨
⎩
s, s < ;

s, s > .
()

Let E = Rn = {x = (x,x, . . . ,xn) : xi ∈ R, i = , , . . . ,n} with the norm ‖x‖ =max≤i≤n |xi|,
and P = {x = (x,x, . . . ,xn) : xi ≥ , i = , , . . . ,n}. Then we have the following result.

Theorem . For any t ∈ J , system () has at least one positive solution x(t).

Proof First, according to (), (), we have g =  and fi(t,xi) = txi . Then, when xi = t, we
have f (t,x) = t. Moreover, we can get that P* = P. Choose ψ = (, , . . . , ), then it is clear
that (H) and (H) are satisfied.

http://www.advancesindifferenceequations.com/content/2013/1/65
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Next, we try to prove that all the conditions in Theorem . are satisfied. It is easy to
prove that σ =

∫ 
 sg(s)ds =


 , γ = +

∫ 
 (–s)g(s)ds

–σ
= . And

G
(


, s

)
=

⎧⎨
⎩


 s,  ≤ s≤ 

 ≤ ;

 ( – s),  ≤ 

 ≤ s ≤ ,

H
(


, s

)
=G

(


, s

)
+




 – σ

∫ 


G(τ , s)dτ =G

(


, s

)
+

∫ 


G(τ , s)dτ .

Choose δ = 
 ∈ (,  ), then � = δ

∫ –δ

δ
H(  , s)ds =



∫ 




H(  , s)ds =


 .

From (), we can get that

ϕ–(s) =

⎧⎨
⎩

√s, s < ;
√
s, s > .

Then h(s,x(s)) = ϕ–(
∫ s
 f (t,x(t))dt) =

√∫ s
 f (t,x(t))dt = t = x.

Since

h = lim sup
‖x‖→

max
t∈J

‖h(t,x)‖
‖x‖ = lim‖x‖→

x

x
= ,

thus we have γh =  < .
On the other hand, because ψ(x)≥ ‖x‖, ∀x ∈ P, we have

(ψh)∞ = lim inf‖x‖→∞min
t∈J

‖ψh(t,x)‖
‖x‖ ≥ lim inf‖x‖→∞min

t∈J
‖h(t,x)‖

‖x‖ = lim‖x‖→∞
‖x‖
‖x‖ → ∞,

which implies that �(ψh)∞ → ∞ > . So, all the conditions in Theorem . are satisfied,
then the conclusion follows, and the proof is complete. �
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