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Abstract
In this paper, the differential transformation method is applied by providing new
theorems to develop exact and approximate solutions of nonlinear differential and
integro-differential equations with proportional delays represented by nonlinear
multi-pantograph equations. Some examples are given to demonstrate the validity
and applicability of the present method and a comparison is made with existing
results.

1 Introduction
In this paper, we consider the following nonlinear differential and integro-differential
equations with proportional delays:

F
(
t,u(pt),u′(pt), . . . ,u(n)(pnt)

)
= , t ≥ ,

G
(
t,u(pt),u′(pt), . . . ,u(n)(pnt),

∫ rt


K

(
t, s,u(qs),u′(qs), . . . ,u(m)(qms)

)
ds

)

= , t ≥ ,

where F , G , K are given functions with appropriate domains of definition, pi,qj, r ∈ (, ),
i = , , . . . ,n, j = , , . . . ,m,m < n.
Functional differential and integro-differential equations with proportional delays are

usually referred to as pantograph equations or generalized equations, and, as well, they
are often used to model some problems with aftereffect in mechanics and the related sci-
entific fields [–].Many typical examples such as stress-strain states ofmaterials,motion
of rigid bodies and models of polymer crystallization can be found in Kolmanovskii and
Myshkis’s monograph [] and the references therein.

2 Differential transformationmethod
The method that is developed in this work depends on the differential transformation
method (DTM) introduced by Zhou [] in a study of electric circuits. This method con-
structs a semi-analytical numerical technique that uses Taylor series for the solution of
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differential equations in the form of polynomials. It is different from the high-order Taylor
series method which requires symbolic computation of the necessary derivatives of the
data functions.
There is no need for linearization or perturbations, large computational work and

round-off errors are avoided. It has been used to solve effectively, easily and accurately
a large class of linear and nonlinear problems with approximations [–].
The differential transformation of the kth derivative of function u(t) is defined as follows:

U(k) =

k!

[
dku(t)
dtk

]
t=t

, ()

where u(t) is the original function and U(k) is the transformed function. Differential in-
verse transformation of U(k) is defined as follows:

u(t) =
∞∑
k=

U(k)(t – t)k . ()

In fact, inverse transformation () implies that the concept of differential transformation
is derived from the Taylor series expansion. Although DTM is not able to evaluate the
derivatives symbolically, relative derivatives can be calculated in an iterative way which is
described by the transformed equations of the original function.
From definitions (), () we can derive the following.

Theorem  Assume that F(k), G(k), H(k) and Ui(k), i = , . . . ,n, are the differential trans-
formations of the functions f (t), g(t), h(t) and ui(t), i = , . . . ,n, respectively, then:

If f (t) =
dng(t)
dtn

, then F(k) =
(k + n)!

k!
G(k + n).

If f (t) = g(t)h(t), then F(k) =
k∑
l=

G(l)H(k – l).

If f (t) = tn, then F(k) = δ(k – n), δ is the Kronecker delta symbol.

If f (t) = eλt , then F(k) =
λk

k!
.

If f (t) = g(t)
∫ t


h(s)ds, then F(k) =

G(k – )
k

, where k ≥ .

If f (t) =
n∏
i=

ui(t), then

F(k) =
k∑

r=

k–r∑
r=

· · ·
k–r–···–rn–∑

rn=

U(r) · · ·Un–(rn–)Un(k – r – · · · – rn).

The proof of Theorem  is given in [].

3 Main results
In this section, we state the fundamental theorems of this paper.
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Theorem  Assume that W (k), U(k) and Ui(k) are the differential transformations of the
functions w(t), u(t) and ui(t), respectively, and q,qi ∈ (, ), i = , . Then:

(i) If w(t) = u(qt), then W (k) = qkU(k).

(ii) If w(t) = u(qt)u(qt), then W (k) =
k∑
l=

qlq
k–l
 U(l)U(k – l).

(iii) If w(t) =
dm

dtm
u(qt), then W (k) =

(k +m)!
k!

qk+mU(k +m).

(iv) If w(t) =
dn

dtn
u(qt)

dm

dtm
u(qt), then

W (k) =
k∑
l=

ql+n qk–l+m
(l + n)!(k – l +m)!

l!(k – l)!
U(l + n)U(k – l +m).

Proof (i) From equation (), we get

dk

dtk
w(t) =

dk

dtk
[
u(qt)

]
= qk

dk

dt̃k
u(t̃),

where t̃ = qt, thus

[
dk

dtk
w(t)

]
t=t

= qk
[
dk

dt̃k
u(t̃)

]
t=t

= qkk!U(k)

and using () we have

W (k) =

k!

[
dkw(t)
dtk

]
t=t

=

k!
qkk!U(k) = qkU(k),

where k ∈N∪ {}.
(ii) Using the Leibnitz formula, we obtain

dk

dtk
w(t) =

dk

dtk
[
u(qt)u(qt)

]
=

k∑
l=

(
k
l

)
dl

dtl
[
u(qt)

] dk–l

dtk–l
[
u(qt)

]

=
k∑
l=

(
k
l

)
dl

dt̃l
[
u(t̃)

] dk–l

dt̂k–l
[
u(t̂)

]
,

where t̃ = qt, t̂ = qt, and hence

[
dk

dtk
w(t)

]
t=t

=
k∑
l=

(
k
l

)[
qll!U(l)

][
qk–l (k – l)!U(k – l)

]
=

k∑
l=

k!qlq
k–l
 U(l)U(k – l).

From equation (), we have

W (k) =

k!

[
dk

dtk
w(t)

]
t=t

=
k∑
l=

k!qlq
k–l
 U(l)U(k – l), k ∈N∪ {}.
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(iii) From the proof of formula (i), we get

[
dk+m

dtk+m
w(t)

]
t=t

= qk+m
[
dk+m

dt̃k+m
u(t̃)

]
t=t

= (k +m)!qk+mU(k +m).

Then

W (k) =

k!

[
dk

dtk
w(t)

]
t=t

=
(k +m)!

k!
qk+mU(k +m).

(iv) Analogously, from to previous part of the proof, we get

dk

dtk
w(t) =

dk

dtk

[
dn

dtn
u(qt)

dm

dtm
u(qt)

]

=
k∑
l=

(
k
l

)
dl

dtl

[
dn

dtn
u(qt)

]
dk–l

dtk–l

[
dm

dtm
u(qt)

]

=
k∑
l=

(
k
l

)
ql+n

dl+n

dt̃l+n
u(t̃)qk–l+m

dk–l+m

dt̂k–l+m
u(t̂),

where t̃ = qt, t̂ = qt; therefore

dk

dtk
w(t) =

k∑
l=

(
k
l

)[
ql+n (l + n)!U(l + n)

][
qk–l+m (k – l +m)!U(k – l +m)

]

=
k∑
l=

k!(l + n)!(k – l +m)!
l!(k – l)!

ql+n qk–l+m U(l + n)U(k – l +m).

Then from (), we have

W (k) =
k∑
l=

ql+n qk–l+m
(l + n)!(k – l +m)!

l!(k – l)!
U(l + n)U(k – l +m).

The proof is complete. �

Theorem  Assume that W (k), U(k) and Ui(k) are the differential transformations of the
functions w(t), u(t) and ui(t), respectively, and r,q,qi ∈ (, ), i = , . Then:

(I) If w(t) =
∫ rt


u(qs)ds, then W (k) =


k
rkqk–U(k – ).

(II) If w(t) =
∫ rt


u(qs)u(qs)ds, then W (k) =


k

k–∑
l=

rkqlq
k–l–
 U(l)U(k – l – ).

(III) If w(t) = u(qt)
∫ rt


u(qs)u(qs)ds, then

W (k) =
k–∑
l=

k–l–∑
s=


k – l

rk–lqlqsq
k–l–s–
 U(l)U(s)U(k – l – s – ),

where k ∈N.
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Proof (I) It is obvious that

dk

dtk
w(t) = r

dk–

dtk–
u(rqt),

then

[
dk

dtk
w(t)

]
t=t

= r(k – )!(rq)k–U(k – ) = (k – )!rkqk–U(k – ).

From here and equation (), we get

W (k) =

k!

[
dk

dtk
w(t)

]
t=t

=

k
rkqk–U(k – ), k ∈N.

(II) Similarly as in previous part (I), we have

dk

dtk
w(t) = r

dk–

dtk–
[
u(rqt)u(rqt)

]

= r
k–∑
l=

(
k – 
l

)
(rq)l

dl

dt̃l
u(t̃)(rq)k–l–

dk–l–

dt̂k–l–
u(t̂),

where t̃ = qt, t̂ = qt. Then

[
dk

dtk
w(t)

]
t=t

= r
k–∑
l=

(
k – 
l

)
(rq)ll!U(l)(rq)k–l–(k – l – )!U(k – l – ).

Using equation (), we obtain

W (k) =

k!

[
dk

dtk
w(t)

]
t=t

=

k

k–∑
l=

rkqlq
k–l–
 U(l)U(k – l – ), k ∈N.

(III) Put h(t) =
∫ rt
 u(qs)u(qs)ds, then from the previous part we get

dk

dtk
w(t) =

dk

dtk
[
u(qt)h(t)

]
=

k∑
l=

(
k
l

)
pl

dl

dt̃l
u(t̃)

dk–l

dtk–l
h(t), ()

where t̃ = qt, and

dk–l

dtk–l
h(t) = r

dk–l–

dtk–l–
[
u(rqt)u(rqt)

]

= r
k–l–∑
s=

(
k – l – 

s

)
(rq)s

ds

dt̃s
u(t̃)(rq)k–l–s–

dk–l–s–

dt̂k–l–s–
u(t̂), ()
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where t̃ = qt, t̂ = qt. From () and (), we obtain

[
dk

dtk
w(t)

]
t=t

=
k∑
l=

k–l–∑
s=

(
k
l

)(
k – l – 

s

)
rk–lqlqsq

k–l–s–


× l!s!(k – l – s – )!U(l)U(s)U(k – l – s – ),

but for l = k we get [ dk–l
dtk–l y(t)]t=t = . Then, using equation (), we get

W (k) =
k–∑
l=

k–l–∑
s=


k – l

rk–lqlqsq
k–l–s–
 U(l)U(s)U(k – l – s – ), k ∈N.

The proof is complete. �

Some above mentioned formulae were proved by Abazari and Kilicman [] orMirzaee
and Lafiti [] but with many mistakes and in incorrect way, respectively.

4 Numerical examples
Example  As a practical example, we consider the following pantograph delay equation:

u′(t) =


exp

t

u
(
t


)
+


u(t), u() = . ()

Using the differential transformation method, the differential transform version of equa-
tion () is

(k + )U(k + ) =



k∑
l=


ll!


k–l

U(k – l) +


U(k), k ≥  ()

and the differential transform version of the initial condition u() =  has the form
U() = . From equation (), we obtain the recurrence system of equations

U(k + ) =


k + 

[ k∑
l=


kl!

U(k – l) +U(k)

]
, k ≥ . ()

From system (), we have

U() =


[
U() +U()

]
= ,

U() =



[


U() +



U() +U()

]
=


,

U() =



[


U() +



U() +



U() +U()

]
=


,

U() =



[


U() +



U() +




U() +



U() +U()
]
=




,

...
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Using the inverse transformation rule (), we obtain the following series solution:

u(t) =  + t +
t

!
+
t

!
+
t

!
+ · · · + tk

k!
+ · · · .

The closed form of the above series solution is u(t) = et , which is the exact solution of
equation ().
The same equation was solved by Evans and Raslan [] using the Adomian decompo-

sition method with complicated calculations of Adomian’s polynomials. Ghomanjani and
Farahi [] solved equation () using the Bezier control points method and obtained only
approximation solution in the form

u(t) =  + .t + .t.

Example  Consider the following delay differential equation of the third order:

u′′′(t) = – + u
(
t


)
, u() = , u′() = , u′′() = . ()

Using the differential transformation method, the differential transform version of equa-
tion (), we get

(k + )(k + )(k + )U(k + ) = –δ(k) + 
k∑
l=


l
U(l)


k–l

U(k – l) ()

and the differential transform version of the initial conditions u() = , u′() = , u′′() = 
gives

U() = , U() = , U() = .

From () we have

U(k + ) =


(k + )(k + )(k + )

[
–δ(k) + 

k∑
l=


k

U(l)U(k – l)

]
, k ≥ . ()

Solving recurrence equations (), we get

U() =



[
– + U()

]
= –



=


!
,

U() =




[


U()U() +



U()U()

]
= ,

U() =




[


U()U() +



U() +



U()U()

]
=




=

!
,

U() =




[


U()U() +



U()U() +



U()U() +



U()U()

]
= ,

...
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Thus

U(k) =

⎧⎨
⎩, k = n,

(–)n
(n+)! , k = n + ,

where n ∈ N ∪ {}. From here and using the inverse transformation rule (), we obtain
series solution in the form

u(t) =
∞∑
n=

(–)n

(n + )!
tn = sin t,

which is the exact solution of equation (). Evans and Raslan [] solved equation () using
the Adomian decomposition method and obtained a sequence of approximate solutions
in the form of triple integrals with Adomian’s polynomials that required many symbolic
calculations to obtain approximate solutions of (). Saeed and Rahman [] also solved
equation () using the differential transformation method, but they transformed equation
() into a system of three differential equations, which is a uselessly complicated approach
to solving equation ().

Example  Consider the following delay differential equation of the second order:

u′′(t) = u′(t) + u
(
t


)
– u

(
t


)
u
(
t


)
– t + , u() = u′() = . ()

Applying the differential transformation method to equation (), we get

(k + )(k + )U(k + ) = (k + )U(k + ) + 
k∑
l=


l
U(l)


k–l

U(k – l)

– 
k∑
l=


l
U(l)


k–l

U(k – l) – δ(k – ) + δ(k) ()

and for initial conditions u() = u′() = , we have U() = U() = . From (), we obtain
recurrence equations

U(k + )

=


k + 
U(k + ) +


(k + )(k + )

×
[


k∑
l=


k

U(l)U(k – l) – 
k∑
l=


l


k–l

U(l)U(k – l) – δ(k – ) + δ(k)

]
. ()

Solving recurrence equations (), we have

U() =


U() +



[
U() – U() + 

]
= ,

U() =


U() +




[

(


U()U() +



U()U()

)

http://www.advancesindifferenceequations.com/content/2013/1/69
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– 
(


U()U() +



U()U()

)
– 

]
= ,

U() =


U() +




[
U()U() +



U()

– 
(


U()U() +



U() +



U()U()

)]
= ,

...

Thus U(k) = , k ≥ . Using the inverse transformation rule (), we obtain the exact solu-
tion u(t) = t.

Example  Consider the nonlinear pantograph-type integro-differential equation of the
first order

u′(t) +
(


t – 

)
u(t) – 

∫ t


u

(
s


)
ds = , ()

subject to the initial condition u() = . Substituting t =  in integro-differential equation
(), we get u′() = . Then the differential transformed version of equation () has the
form

(k + )U(k + ) +
k∑
l=

(


δ(l – ) – δ(l)

)
U(k – l)

–

k

k–∑
l=


k–

U(l)U(k – l – ) = δ(k). ()

Solving recurrence equations (), we get

U() – U() +


U() – U() =  ⇒ U() = ,

U() +
[
–U() +



U()

]
–U()U() =  ⇒ U() =


!
,

U() +
[
–U() +



U()

]
–



[
U()U() +U()

]
=  ⇒ U() =



=


!
,

U() +
[
–U() +



U()

]
–


[
U()U() +U()U()

]
=  ⇒ U() =




=

!
,

...

From here and using the inverse transformation rule (), we obtain a series solution in the
form

u(t) = t + t +

!
t +


!
t +


!
t + · · · + 

k!
tk+ + · · · .

The closed form of the above series solution is u(t) = tet , which is the exact solution of
equation ().
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Abazari and Abazari [] solved equation () but as the pantograph differential equa-
tion of the second order without using an integral transformation formula.

Example  Consider the following nonhomogeneous first-order integro-differential
equation with proportional delay:

u′(t) – u
(
t


)
–


u
(
t


)∫ t



u(s)u

(
s


)
ds =  – t –




t, ()

subject to initial condition u() = . Substituting t =  in equation (), we obtain the sec-
ond condition u′() = . Now, applying the differential transformationmethod to equation
(), we get

(k + )U(k + ) –

k

U(k) –



k–∑
l=

k–l–∑
s=


k – l


k–l


k–s–

U(l)U(s)U(k – l – s – )

= δ(k) – δ(k – ) –



t

and for initial conditions u() = , u′() = , we have U() = , U() = . Following the
same procedure as in the above mentioned examples, we get

U() –


U() –



U() = – ⇒ U() = ,

U() –


U() –




[



U()U() +


U()U()U() +



U()U()

]
= 

⇒ U() = ,

...

Similarly, we obtain U(k) = , k ≥ . Using the inverse transformation rule (), we get the
exact solution u(t) = t. A homogeneous form of equation () subject to initial conditions
u() = u′() =  was solved by Abazari and Kilicman []. They obtained the closed form
of a series solution in the form u(t) = et .

5 Conclusion
In the present paper, we have shown that the differential transformation method can be
successfully used for solving nonlinear differential and integro-differential equations with
proportional delays. New theorems are introduced with their proofs, and as application
some examples are carried out. The main advantage of this method is that it can be ap-
plied directly to functional differential and integro-differential equations without requir-
ing linearization, discretization or perturbation. Another important advantage is that this
method is capable of greatly reducing the size of computational work and, moreover, the
proposed method reduces the solution of a problem to the solution of a system of recur-
rence algebraic equations.
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