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Abstract
In this paper, the authors investigate the iterated exponent of convergence of zeros of
f (j)(z) – ϕ(z) (j = 0, 1, 2, . . .), where f is a solution of some second-order linear differential
equation, ϕ(z) �≡ 0 is an entire function satisfying σp+1(ϕ) < σp+1(f ) or i(ϕ) < i(f )
(p ∈N). We obtain some results which improve and generalize some previous results
in (Chen in Acta Math. Sci. Ser. A 20(3):425-432, 2000; Chen and Shon in Chin. Ann.
Math. Ser. A 27(4):431-442, 2006; Tu et al. in Electron. J. Qual. Theory Differ. Equ.
23:1-17, 2011) and provide us with a method to investigate the iterated exponent of
convergence of zeros of f (j)(z) – ϕ(z) (j = 0, 1, 2, . . .).
MSC: 34A20; 30D35
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1 Introduction
In this paper, we assume that readers are familiar with the fundamental results and stan-
dard notation of Nevanlinna’s theory of meromorphic functions (see [, ]). First, we in-
troduce some notations. Let us define inductively, for r ∈ [,∞), exp r = er and expj+ r =
exp(expj r), j ∈N . For all sufficiently large r, we define log r = log r and logj+ r = log(logj r),
j ∈N ; we also denote exp r = r = log r and exp– r = log r. Moreover, we denote the linear
measure and the logarithmic measure of a set E ⊂ [, +∞) bymE =

∫
E dt andmlE =

∫
E dt/t

respectively. Let f (z), a(z) be meromorphic functions in the complex plane satisfying
T(r,a) = o{T(r, f )} except possibly for a set of r having finite logarithmic measure, then
we call that a(z) is a small function of f (z). We use p to denote a positive integer through-
out this paper, not necessarily the same at each occurrence. In order to describe the infi-
nite order of fast growing entire functions precisely, we recall some definitions of entire
functions of finite iterated order (e.g., see [–]).

Definition . The p-iterated order of a meromorphic function f (z) is defined by

σp(f ) = lim
r→∞

logp T(r, f )
log r

. (.)

Remark . If f (z) is an entire function, the p-iterated order of f (z) is defined by

σp(f ) = lim
r→∞

logp T(r, f )
log r

= lim
r→∞

logp+M(r, f )
log r

. (.)
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It is easy to see that σp(f ) = ∞ if σp+(f ) > . If p = , the hyper-order of f (z) is defined by
(see [])

σ(f ) = lim
r→∞

logT(r, f )
log r

= lim
r→∞

logM(r, f )
log r

. (.)

Definition . The p-iterated type of an entire function f (z) with  < σp(f ) = σ < ∞ is
defined by

τp(f ) = lim
r→∞

logpM(r, f )
rσ

. (.)

Definition . The finiteness degree of the iterated order of an entire function f (z) is
defined by

i(f ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

 for f polynomial,

min{j ∈ N : σj(f ) < ∞} for f transcendental for which some

j ∈N with σj(f ) < ∞ exists,

∞ for f with σj(f ) = ∞ for all j ∈N.

(.)

Definition . Suppose that ϕ(z) is an entire function satisfying σp(ϕ) < σp(f ) or i(ϕ) <
i(f ), then the p-iterated order exponent of convergence of zero-sequence of f (z) – ϕ(z) is
defined by

λp(f – ϕ) = lim
r→∞

logp N(r, 
f –ϕ

)
log r

. (.)

Especially, if ϕ(z) = z, the p-iterated order exponent of convergence of fixed points of f (z)
is defined to be

λp(f – z) = lim
r→∞

logp N(r, 
f –z )

log r
. (.)

If ϕ(z) = , the p-iterated exponent of convergence of zero-sequence of f (z) is defined to
be

λp(f ) = lim
r→∞

logp N(r, f )
log r

. (.)

Definition . The p-iterated exponent of convergence of distinct zero-sequence of
f (z) – ϕ(z) and the p-iterated exponent of convergence of distinct fixed points of f (z) are
respectively defined to be

λp(f – ϕ) = lim
r→∞

logp N(r, 
f –ϕ

)
log r

,

λp(f – z) = lim
r→∞

logp N(r, 
f –z )

log r
.

(.)
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Definition . If ϕ(z) is an entire function satisfying σp(ϕ) < σp(f ) or i(ϕ) < i(f ), then the
finiteness degree of the iterated exponent of convergence of zero-sequence of f (z) – ϕ(z)
is defined by

iλ(f – ϕ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

 for N(r, 
f –ϕ

) =O(log r),

min{j ∈N : λj(f – ϕ) < ∞} for some j ∈N

with λj(f – ϕ) <∞ exists,

∞ if λj(f – ϕ) = ∞ for all j ∈N.

(.)

Remark . From Definitions . and ., we can similarly give the definitions of λp(f ),
iλ(f – z), iλ(f – ϕ) and iλ(f ).

2 Main result
In [], Chen firstly investigated the fixed points of the solutions of equations (.) and
(.) with a polynomial coefficient and a transcendental entire coefficient of finite order
and obtained the following Theorems A and B. Two years later in [], Chen investigated
the zeros of f (j)(z) – ϕ(z) (j = , , ) and obtained the following Theorems C and D, where
f (z) is a solution of equation (.) or (.), ϕ(z) is an entire function satisfying σ (ϕ) < ∞.
In [], Tu, Xu and Zhang investigated the hyper-exponent of convergence of zeros of
f (j)(z) – ϕ(z) (j ∈ N) and obtained the following Theorem E, where f (z) is a solution of
(.), ϕ(z) is an entire function satisfying σ(ϕ) < σ (B). One year later, Xu, Tu and Zheng
improved Theorem E to Theorem F in [] from (.) to (.). In the following, we list
Theorems A-F which have been mentioned above.

Theorem A [] Let P(z) be a polynomial with degree n (≥ ). Then every non-trivial
solution of

f ′′ + P(z)f =  (.)

has infinitely many fixed points and satisfies λ(f – z) = λ(f – z) = σ (f ) = n+
 .

Theorem B [] Let A(z) be a transcendental entire function with σ (A) = σ < ∞. Then
every non-trivial solution of

f ′′ +A(z)f =  (.)

has infinitely many fixed points and satisfies λ(f – z) = λ(f – z) = σ(f ) = σ .

TheoremC [] Let Aj(z) ( �≡ ) (j = , ) be entire functions with σ (Aj) < . a, b are complex
numbers and satisfy ab �=  and arga �= argb or a = cb ( < c < ). If ϕ(z) �≡  is an entire
function of finite order, then every non-trivial solution f of

f ′′ +A(z)eazf ′ +A(z)ebzf =  (.)

satisfies λ(f – ϕ) = λ(f ′ – ϕ) = λ(f ′′ – ϕ) = ∞.
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Theorem D [] Let A(z) �≡ , ϕ(z) �≡ , Q(z) be entire functions with σ (A) <  and  <
σ (Q) <∞. Then every non-trivial solution f of

f ′′ +A(z)eazf ′ +Q(z)f =  (.)

satisfies λ(f – ϕ) = λ(f ′ – ϕ) = λ(f ′′ – ϕ) = ∞, where a �=  is a complex number.

Theorem E [] Let A(z) and B(z) be entire functions with finite order. If σ (A) < σ (B) < ∞
or  < σ (A) = σ (B) <∞ and  ≤ τ (A) < τ (B) < ∞, then for every solution f �≡  of

f ′′ +A(z)f ′ + B(z)f =  (.)

and for any entire function ϕ(z) �≡  satisfying σ(ϕ) < σ (B), we have
(i) λ(f – ϕ) = λ(f ′ – ϕ) = λ(f ′′ – ϕ) = λ(f ′′′ – ϕ) = σ(f ) = σ (B);
(ii) λ(f (j) – ϕ) = σ(f ) = σ (B) (j > , j ∈N).

Theorem F [] Let Aj(z) (j = , , . . . ,k – ) be entire functions of finite order and satisfy
one of the following conditions:

(i) max{σ (Aj), j = , , . . . ,k – } < σ (A) < ∞;
(ii)  < σ (Ak–) = · · · = σ (A) = σ (A) <∞ andmax{τ (Aj), j = , , . . . ,k – } < τ (A) < ∞.

Then for every solution f �≡  of

f (k) +Ak–f (k–) + · · · +Af =  (.)

and for any entire function ϕ(z) �≡  satisfying σ(ϕ) < σ (A), we have

λ
(
f (j) – ϕ

)
= σ(f ) = σ (A), j ∈N.

Themain purpose of this paper is to improveTheoremE from entire coefficients of finite
order in (.) to entire coefficients of finite iterated order. And we obtain the following
results.

Theorem. Let A(z) and B(z) be entire functions of finite iterated order satisfying σp(A) <
σp(B) < ∞ or  < σp(A) = σp(B) < ∞ and  ≤ τp(A) < τp(B) ≤ ∞. Then for every solution
f �≡  of (.) and for any entire function ϕ(z) �≡  satisfying σp+(ϕ) < σp(B), we have

(i) λp+(f – ϕ) = λp+(f ′ – ϕ) = λp+(f ′′ – ϕ) = λp+(f ′′′ – ϕ) = σp+(f ) = σp(B);
(ii) λp+(f (j) – ϕ) = σp+(f ) = σp(B), j > , j ∈N.

Theorem . Let A(z), B(z) be entire functions satisfying i(A) < i(B) = p. Then for every
solution f �≡  of (.) and for any entire functions ϕ(z) �≡  with i(ϕ) ≤ p, we have

(i) iλ(f (j) – ϕ) = iλ(f (j) – ϕ) = i(f (j) – ϕ) = p +  (j = , , , . . .);
(ii) λp+(f (j) – ϕ) = λp+(f (j) – ϕ) = σp+(f (j) – ϕ) = σp(B) (j = , , , . . .).

Theorem . Under the hypotheses of Theorem ., let L(f ) = akf (k) + ak–f (k–) + · · · +
af , where aj (j = , , . . . ,k) are entire functions which are not all equal to zero and satisfy
σp(aj) < σp(B). Then for any solution f �≡  of (.), we have σp+(L(f )) = σp+(f ) = σp(B).
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Corollary . Under the hypotheses of Theorem ., if ϕ(z) = z, we have
(i) λp+(f – z) = λp+(f ′ – z) = λp+(f ′′ – z) = λp+(f ′′′ – z) = σp+(f ) = σp(B);
(ii) λp+(f (j) – z) = σp+(f ) = σp(B), j > , j ∈ N.

Corollary . Under the hypotheses of Theorem ., if ϕ(z) = z, we have
(i) iλ(f (j) – z) = iλ(f (j) – z) = i(f (j) – z) = p +  (j = , , , . . .);
(ii) λp+(f (j) – z) = λp+(f (j) – z) = σp+(f (j) – z) = σp(B) (j = , , , . . .).

Remark . Theorem . is an extension and improvement of Theorem E. As for Theo-
rem C, if a = cb ( < c < ), it is easy to see that σ (Aeaz) = σ (Aebz) =  and τ (Aeaz) = a <
τ (Aebz) = b. By Theorem E, for every solution f �≡  of (.) and for any entire function
ϕ(z) �≡  with σ(ϕ) < , we have λ(f –ϕ) = λ(f ′–ϕ) = λ(f ′′–ϕ) = , therefore TheoremE
is also a partial extension of Theorem C. Theorem B is a special case of Corollary . for
p = .

Remark . Nevanlinna’s second fundamental theorem is an important tool to investi-
gate the distribution of zeros of meromorphic functions. From Nevanlinna’s second fun-
damental theorem [, p., Theorem .], we have that

(
 + o()

)
T(r, f ) <N

(
r,

f

)
+N(r, f ) +N

(
r,


f – ϕ

)
+ S(r, f ),

where ϕ(z) is a small function of f (z). For example, set f (z) = ea(z), a(z) is a transcenden-
tal entire function with i(a) = p, then we have λp+(f – ϕ) = σp+(f ) = σp(a) if i(ϕ) < p + .
Our Theorem . and Theorem . also provide us with a method to investigate the iter-
ated exponent of zero sequence of f (j)(z) – ϕ(z) (j = , , , . . .), where f (z) and ϕ(z) are
entire functions satisfying σp+(ϕ) < σp+(f ) or i(ϕ) < i(f ). If we can find equation (.)
with entire coefficients A(z), B(z) satisfying σp(A) < σp(B) or  < σp(A) = σp(B) < ∞ and
 ≤ τp(A) < τp(B) ≤ ∞ such that f (z) is a solution of (.), thenwe have λp+(f (j) –ϕ) = σp(B)
(j = , , , . . .). By the above example, set f (z) = ea(z), a(z) is transcendental with i(a) = p,
then f (z) is a solution of f ′′ – (a′′ +a′)f = . Since σp(a′′ +a′) = σp(a) and by Theorem .,
we have λp+(f (j) – ϕ) = σp(a) (j = , , , . . .) for any entire function ϕ(z) �≡  satisfying
σp+(ϕ) < σp(a) or i(ϕ) < p + .

3 Lemmas
Lemma . [, ] Let f (z) be an entire function with σp(f ) = σ , and νf (r) denote the central
index of f (z). Then

lim
r→∞

logp νf (r)
log r

= σ . (.)

Lemma . Let f (z) be an entire function with σp(f ) = σ , then there exists a set E ⊂
[, +∞) with infinite logarithmic measure such that for all r ∈ E, we have

lim
r→∞

logp T(r, f )
log r

= σ , r ∈ E. (.)
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Proof By Definition . limr→∞
logp T(r,f )

log r = σ , there exists a sequence {rn}∞n= tending to ∞
satisfying ( + 

n )rn < rn+ and

lim
rn→∞

logp T(rn, f )
log rn

= σ . (.)

There exists an n such that for n≥ n and for any r ∈ [rn, ( + 
n )rn], we have

logp T(rn, f )
log ( + 

n )rn
≤ logp T(r, f )

log r
. (.)

Set E =
⋃∞

n=n [rn, ( +

n )rn], by (.) and Definition ., then for any r ∈ E, we have

lim
r→∞

logp T(r, f )
log r

= lim
rn→∞

logp T(rn, f )
log rn

= σ ,

and mlE =
∑∞

n=n

∫ (+ 
n )rn

rn
dt
t =

∑∞
n=n log( +


n ) = ∞. Thus, we complete the proof of this

lemma. �

By Lemma . and the same proof in Lemma ., we have the following lemma.

Lemma . Let f (z) be an entire function with σp(f ) = σ and νf (r) denote the central index
of f (z). Then there exists a set E ⊂ [, +∞) with infinite logarithmic measure such that for
all r ∈ E, we have

lim
r→∞

logp νf (r)
log r

= σ , r ∈ E. (.)

Lemma . [, ] Let A,A, . . . ,Ak–,F �≡  be meromorphic functions. If f is a meromor-
phic solution of the equation

f (k) +Ak–f (k–) + · · · +Af = F , (.)

then we have the following two statements:
(i) If max{i(Aj), j = , , . . . ,k – , i(F)} < i(f ), then iλ(f ) = iλ(f ) = i(f );
(ii) If max{σp(Aj), j = , , . . . ,k – ,σp(F)} < σp(f ), then λp(f ) = λp(f ) = σp(f ).

Lemma . [] Let f (z) be an entire function of finite iterated order with i(f ) = p. Then
there exist entire functions β(z) and D(z) such that

f (z) = β(z)eD(z),

σp(f ) =max
{
σp(β),σp

(
eD(z)

)}

and

σp(β) = lim
r→∞

logp N(r, f )
log r

.
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Moreover, for any ε > , we have

log
∣∣β(z)∣∣ ≥ – expp–

{
rσp(β)+ε

}
, r /∈ E, (.)

where E ⊂ [, +∞) is a set of r of finite linear measure.

Lemma . Let f (z) be an entire function of finite iterated order with σp(f ) = σ < +∞.
Then for any given ε > , there is a set E ⊂ [,∞) that has finite linear measure such that
for all z satisfying |z| = r /∈ [, ]∪ E, we have

exp
{
– expp– rσ+ε

} ≤ ∣∣f (z)∣∣ ≤ expp
{
rσ+ε

}
. (.)

Proof Let f (z) be an entire function of finite iterated order with σp(f ) = σ . By Defini-
tion ., it is easy to obtain that |f (z)| < expp{rσ+ε} holds for all sufficiently larger |z| = r. By
Lemma ., there exist entire functions β(z) and D(z) such that

f (z) = β(z)eD(z), σp(f ) =max
{
σp(β),σp

(
eD(z)

)}
.

For any ε > , we have

∣∣β(z)∣∣ ≥ exp
{
– expp–

{
rσp(β)+ε

}} ≥ exp
{
– expp–

{
rσp(f )+

ε

}}
, r /∈ E, (.)

hold outside a set E ⊂ [, +∞) of finite linearmeasure. Since σp–(D(z)) = σp(eD(z)) ≤ σp(f ),
by Definition ., we have that |D(z)| ≤ expp–{rσp(f )+ ε

 } holds for all sufficiently large r.
From |eD(z)| ≥ e–|D(z)| ≥ exp{– expp–{rσp(f )+ ε

 }} and (.), we have

∣∣f (z)∣∣ ≥ ∣∣β(z)∣∣e–|D(z)| ≥ exp
{
– expp–

{
rσp(f )+

ε

}}

≥ exp
{
– expp–

{
rσp(f )+ε

}}
, r /∈ E, (.)

where E is a set of r of finite linear measure. By Definition . and (.), we obtain the
conclusion of Lemma .. �

Remark . Lemma . gives the modulus estimation of an entire function with finite
iterated order and extends the conclusion of [, p., Lemma ].

Lemma . Let f (z) be an entire function of finite iterated order with σp(f ) = σ >  (p≥ ),
and let L(f ) = af ′′ + af ′ + af , where a, a, a are entire functions of finite iterated order
which are not all equal to zero and satisfy b =max{σp–(aj), j = , , } < α, then σp(L(f )) =
σp(f ) = σ .

Proof L(f ) can be written as

L(f ) = f
(
a

f ′′

f
+ a

f ′

f
+ a

)
. (.)

By the Wiman-Valiron lemma (see [, ]), for all z satisfying |z| = r and |f (z)| =M(r, f ),
we have

f (k)(z)
f (z)

=
(

νf (r)
z

)k(
 + o()

)
, k ∈N , r /∈ E, (.)

http://www.advancesindifferenceequations.com/content/2013/1/71
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where E is a set of finite logarithmic measure. From (..) in [, p.], for any given
ε > , we have

νf (r) <
[
logμf (r)

]+ε (.)

holds outside a set E with finite logarithmic measure, where μf (r) is the maximum term
of f . By the Cauchy inequality, we have μf (r)≤ M(r, f ). Substituting it into (.), we have

νf (r) <
[
logM(r, f )

]+ε , r /∈ E. (.)

By Lemma ., there exists a set E having infinite logarithmic measure such that for all
|z| = r ∈ E, we have

lim
r→∞

logp νf (r)
log r

= σ , r ∈ E. (.)

By (.) and Lemma ., for all r ∈ E – E and for any ε ( < ε < σ – b), we have

exp
{
– expp– rb+ε

}
<

∣∣aj(z)∣∣ < expp–
{
rb+ε

}
< expp–

{
rσ–ε

}
< νf (r) < expp–

{
rσ+ε

}
(j = , , ). (.)

Substituting (.) into (.), we have

expp
{
rσ–ε

}
<M(r, f )

(
r ∈ E – (E ∪ E)

)
. (.)

By (.), we have

∣∣L(f )∣∣ = |f |
∣∣∣∣a f

′′

f
+ a

f ′

f
+ a

∣∣∣∣ ≥ |f |
[∣∣∣∣a f

′′

f
+ a

f ′

f

∣∣∣∣ – |a|
]
. (.)

Substituting (.), (.), (.) into (.), for all z satisfying |f (z)| =M(r, f ) and |z| = r ∈
E – (E ∪ E ∪ E), we have

∣∣L(f )∣∣ ≥ |f |
[∣∣∣∣νf (r)z

(
a

νf (r)
z

+ a
)∣∣∣∣ – |a|

]

≥ |f |
[∣∣∣∣νf (r)z

∣∣∣∣
∣∣∣∣
∣∣∣∣a νf (r)

z

∣∣∣∣ – |a|
∣∣∣∣ – |a|

]

≥ expp
{
rσ–ε

}[
expp–

{
rσ–ε

}
– expp–

{
rb+ε

}]
. (.)

By (.), we can obtain that σp(L(f )) ≥ σp(f ). On the other hand, it is easy to get σp(L(f )) ≤
σp(f ). Hence σp(L(f )) = σp(f ). �

Remark . The assumption σp–(aj) < σp(f ) in Lemma . is necessary. For example, if
a(z) is an entire function satisfying σp–(a) >  (p≥ ), set f (z) = ea(z), L(f ) = f ′′ – a′f – a′′f ,
then we have σp(f ) = σp–(a) >  and L(f ) ≡ , i.e., σp(L(f )) =  < σp(f ).

By a similar proof to that in Lemma ., we can easily get the following lemma.

http://www.advancesindifferenceequations.com/content/2013/1/71
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Lemma . Let f (z) be an entire function with σp(f ) = σ >  (p ≥ ) and L(f ) = akf (k) +
ak–f (k–) + · · ·+ af , where a,a, . . . ,ak are entire functions which are not all equal to zero
satisfying b =max{σp–(aj), j = , , . . . ,k} < σ . Then σp(L(f )) = σp(f ) = σ .

Remark . By a similar proof to that of Lemma . in [] or Lemma  in [], we can
easily get the following lemma which is a better result than that in [] or [] by allowing
τp(f ) = ∞.

Lemma . Let f (z) be an entire function satisfying  < σp(f ) = σ < ∞,  < τp(f ) = τ ≤ ∞,
then for any given β < τ , there exists a set E ⊂ [, +∞) that has infinite logarithmicmeasure
such that for all r ∈ E, we have

logpM(r, f ) > βrσ . (.)

Lemma . [] Let f (z) be a transcendental meromorphic function and α >  be a given
constant, for any given ε > , there exists a set E ⊂ [,∞) that has finite logarithmic mea-
sure and a constant B >  that depends only on α and (m,n) (m,n ∈ {, . . . ,k}) with m < n
such that for all z satisfying |z| = r /∈ [, ]∪ E, we have

∣∣∣∣ f
(n)(z)

f (m)(z)

∣∣∣∣ ≤ B
(
T(αr, f )

r
(
logα r

)
logT(αr, f )

)n–m

. (.)

Lemma . [] Let Aj(z) (j = , , . . . ,k – ) be entire functions with finite iterated order
satisfying max{σp(Aj), j �= } < σp(A), then every solution f �≡  of (.) satisfies σp+(f ) =
σp(A).

Lemma . [, ] Let Aj(z) (j = , , . . . ,k – ) be entire functions with finite iterated order
satisfyingmax{σp(Aj), j �= } ≤ σp(A) ( < σp(A) < ∞) andmax{τp(Aj),σp(Aj) = σp(A), j �=
} < τp(A) < ∞. Then every solution f �≡  of (.) satisfies σp+(f ) = σp(A).

Remark . The conclusion of Lemma . also holds if τp(A) = ∞.

Lemma . Let A(z), B(z) be entire functions of finite iterated order satisfying σp(A) <
σp(B). Let G(z), H(z) be meromorphic functions with σp(H) ≤ σp(A), σp(G) ≤ σp(B), if f (z)
is an entire solution of equation

f ′′ +
(
A +

G′

G

)
f ′ +

(
B +H ′ +

HG′

G

)
f = , (.)

then σp+(f ) ≥ σp(B).

Proof From (.), we have

m
(
r,B +H ′ +

HG′

G

)
≤ m

(
r,
f ′′

f

)
+m

(
r,
f ′

f

)
+m

(
r,A +

G′

G

)
. (.)

By the lemma of logarithmic derivative and (.), we have

m(r,B)≤ O
{
log rT(r, f )

}
+m(r,A) + T(r,H) +O

{
log rT(r,G)

}
, r /∈ E, (.)
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where E is a set having finite linear measure. By Lemma ., there exists a set E having
infinite logarithmic measure such that for all |z| = r ∈ E – E, we have

expp–
{
rσp(B)–ε

} ≤ O
{
log rT(r, f )

}
+  expp–

{
rσp(A)+ε

}
, (.)

where  < ε < σ (B) – σ (A). By (.), we have σp+(f ) ≥ σp(B). �

Lemma . Let A(z), B(z) be entire functions satisfying  < σp(A) = σp(B) = σ < ∞ and
τp(A) < τp(B) ≤ ∞ and let G(z), H(z) be meromorphic functions satisfying σp(H) ≤ σ,
σp(G) ≤ σ and |H (j)(z)| ≤ expp{(τ (A) + ε)rσ} (j = , ) outside of a set E of finite loga-
rithmic measure, where  < ε < τp(B) – τp(A). If f (z) is an entire solution of (.), then
σp+(f ) ≥ σ.

Proof Without loss of generality, we suppose that τp(A) < τp(B) <∞. From (.), we have

∣∣B(z)∣∣ ≤
∣∣∣∣ f

′′

f

∣∣∣∣ +
[
|A| +

∣∣∣∣G
′

G

∣∣∣∣
]∣∣∣∣ f

′

f

∣∣∣∣ +
∣∣H ′∣∣ + |H|

∣∣∣∣G
′

G

∣∣∣∣. (.)

By Lemma ., for any given β (τp(A) + ε < β < τp(B)), there exists a set E having infinite
logarithmic measure such that for all |z| = r ∈ E, we have

M(r,B) > expp
{
βrσ

}
. (.)

By Lemma ., there exists a set E having finite logarithmic measure such that for all
|z| = r /∈ E, we have

∣∣∣∣ f
′′

f

∣∣∣∣ ≤ B
[
T(r, f )

],
∣∣∣∣ f

′

f

∣∣∣∣ ≤ B
[
T(r, f )

]
,

∣∣∣∣G
′

G

∣∣∣∣ ≤ B
[
T(r,G)

]
< expp–

{
rσ+ε

}
,

(.)

whereM >  is a constant. By the hypotheses, for all |z| = r /∈ E, we have

∣∣H ′∣∣ < expp
{(

τ (A) + ε
)
rσ

}
, |H| < expp

{(
τ (A) + ε

)
rσ

}
. (.)

By (.)-(.), for all z satisfying |B(z)| =M(r,B) and |z| = r ∈ E – (E ∪ E), we have

expp
{
βrσ

} ≤  expp
{(

τp(A) + ε
)
rσ

}[
T(r, f )

]. (.)

By (.), we have σp+(f ) ≥ σ. �

By the above proof, we can easily obtain that Lemma . also holds if τp(B) = ∞.

4 Proof of Theorem 2.1
Now we divide the proof of Theorem . into two cases: case (i) σp(A) < σp(B) and case (ii)
τp(A) < τp(B) and σp(A) = σp(B) > .
Case (i): () We prove that λp+(f – ϕ) = σp+(f ). Assume that f �≡  is a solution of (.),

then σp+(f ) = σp(B) by Lemma .. Set g = f – ϕ, since σp+(ϕ) < σp(B), then σp+(g) =

http://www.advancesindifferenceequations.com/content/2013/1/71
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σp+(f ) = σp(B), λp+(g) = λp+(f – ϕ). Substituting f = g + ϕ, f ′ = g ′ + ϕ′, f ′′ = g ′′ + ϕ′′ into
(.), we have

g ′′ +Ag ′ + Bg = –
(
ϕ′′ +Aϕ′ + Bϕ

)
. (.)

If ϕ′′ + Aϕ′ + Bϕ ≡ , by Lemma ., we have σp+(ϕ) = σp(B), which is a contradiction.
Since ϕ′′+Aϕ′+Bϕ �≡  and σp+(ϕ′′+Aϕ′+Bϕ) < σp+(f ) = σp+(g), by Lemma . and (.),
we have λp+(g) = λp+(g) = σp+(g) = σp(B), therefore λp+(f – ϕ) = λp+(f – ϕ) = σp+(f ) =
σp(B).
()We prove that λp+(f ′ –ϕ) = σp+(f ). Set g = f ′ –ϕ, then σp+(g) = σp+(f ) = σp(B) and

f ′ = g + ϕ, f ′′ = g ′
 + ϕ′, f ′′′ = g ′′

 + ϕ′′. (.)

By (.), we get

f = –

B

(
f ′′ +Af ′). (.)

The derivation of (.) is

f ′′′ +Af ′′ + (A + B)f ′ + B′f = . (.)

Substituting (.), (.) into (.), we obtain

g ′′
 +

(
A –

B′

B

)
g ′
 +

(
A′ + B –

AB′

B

)
g

= –
(

ϕ′′ +
(
A –

B′

B

)
ϕ′ +

(
A′ + B –

AB′

B

)
ϕ

)
. (.)

Let F = ϕ′′+(A– B′
B )ϕ

′+(A′+B– AB′
B )ϕ.We affirm that F �≡ . If F ≡ , by Lemma ., we

have σp+(ϕ) ≥ σp(B), which is a contradiction; therefore F �≡ . Since σp+(F) < σp(B) =
σp+(g), by Lemma . and (.), we get λp+(f ′ – ϕ) = λp+(f ′ – ϕ) = σp+(f ).
() We prove that λp+(f ′′ – ϕ) = σp+(f ). Set g = f ′′ – ϕ, then σp+(g) = σp+(f ) = σp(B)

and

f ′′ = g + ϕ, f ′′′ = g ′
 + ϕ′, f () = g ′′

 + ϕ′′. (.)

Substituting (.) into (.), we have

f ′′′ +
(
A –

B′

B

)
f ′′ +

(
A′ + B –

AB′

B

)
f ′ = . (.)

The derivation of (.) is

f () +
(
A –

B′

B

)
f ′′′ +

[(
A –

B′

B

)′
+

(
A′ + B –

AB′

B

)]
f ′′

–
(A′ + B – AB′

B )′

A′ + B – AB′
B

[
f ′′′ +

(
A –

B′

B

)
f ′′

]
= . (.)
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Set Q(z) = A′ + B – AB′
B , S(z) = A – B′

B , it is easy to see that

lim
r→∞

logp m(r,Q)
log r

= σp(B) and lim
r→∞

logp m(r,S)
log r

= σp(A),

then by (.), we get

f () +
(
S –

Q′

Q

)
f ′′′ +

(
S′ +Q –

SQ′

Q

)
f ′′ = . (.)

Substituting (.) into (.), we have

g ′′
 +

(
S –

Q′

Q

)
g ′
 +

(
S′ +Q –

SQ′

Q

)
g

= –
(

ϕ′′ +
(
S –

Q′

Q

)
ϕ′ +

(
S′ +Q –

SQ′

Q

)
ϕ

)
. (.)

If F(z) = ϕ′′ + (S – Q′
Q )ϕ′ + (S′ + Q – SQ′

Q )ϕ ≡ , by Lemma ., we have σp+(ϕ) ≥ σp(B),
which is a contradiction; therefore F �≡ . Since σp+(F) < σp(B) = σp+(g), by Lemma .
and (.), we have λp+(f ′′ – ϕ) = λp+(f ′′ – ϕ) = σp+(f ).
() We prove that λp+(f ′′′ – ϕ) = σp+(f ). Set g = f ′′′ – ϕ, then σp+(g) = σp+(f ) = σp(B)

and

g ′
 = f () – ϕ′, g ′′

 = f () – ϕ′′. (.)

The derivation of (.) is

f () +
(
S –

Q′

Q

)
f () +

(
S –

Q′

Q

)′
f ′′′ +

(
S′ +Q –

SQ′

Q

)
f ′′′

+
(
S′ +Q –

SQ′

Q

)′
f ′′ = . (.)

By (.), we have

f ′′ = –


S′ +Q – SQ′
Q

[
f () +

(
S –

Q′

Q

)
f ′′′

]
. (.)

Substituting (.) into (.), we have

f () +
(
S –

Q′

Q

)
f () +

[(
S –

Q′

Q

)′
+

(
S′ +Q –

SQ′

Q

)]
f ′′′

–
(S′ +Q – SQ′

Q )′

S′ +Q – SQ′
Q

[
f () +

(
S –

Q′

Q

)
f ′′′

]
= . (.)

Let U(z) = S′ +Q – SQ′
Q , V (z) = S – Q′

Q , it is easy to obtain that

lim
r→∞

logp m(r,U)
log r

= σp(B) and lim
r→∞

logp m(r,V )
log r

= σp(A),
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by (.), we have

f () +
(
V –

U ′

U

)
f () +

(
V ′ +U –

VU ′

U

)
f ′′′ = . (.)

Substituting (.) into (.), we have

g ′′
 +

(
V –

U ′

U

)
g ′
 +

(
V ′ +U –

VU ′

U

)
g

= –
(

ϕ′′ +
(
V –

U ′

U

)
ϕ′ +

(
V ′ +U –

VU ′

U

)
ϕ

)
. (.)

Let F(z) = ϕ′′ + (V – U ′
U )ϕ′ + (V ′ + U – VU ′

U )ϕ. By Lemma ., we have F(z) �≡ . Since
σp+(F) < σp(B) = σp+(g), by Lemma . and (.), we have λp+(f ′′′ –ϕ) = λp+(f ′′′ –ϕ) =
σp+(f ).
() We prove that λp+(f (j) –ϕ) = σp+(f ) (j > ). Set f (j) = gj +ϕ (j > ), then f (j+) = g ′

k +ϕ′,
f (j+) = g ′′

j +ϕ′′ (j > ) and σp+(gj) = σp+(f (j)) = σp(B). By successive derivation on (.), we
can also get the following equation which has a similar form to (.):

g ′′
j +

(
A +

G′

G

)
g ′
j +

(
B +H ′ +

HG′

G

)
gj

= –
(

ϕ′′ +
(
A +

G′

G

)
ϕ′ +

(
B +H ′ +

HG′

G

)
ϕ

)
, (.)

whereG,H aremeromorphic functionswhich have the same formasU(z),V (z) and satisfy
σp(G) ≤ σp(B) and σp(H) ≤ σp(A). By Lemma ., we have Fj = ϕ′′ + (A + G′

G )ϕ′ + (B +
H ′ + HG′

G )ϕ �≡ . Since σp+(Fj) < σp+(gj) = σp(B), by Lemma ., we have λp+(f (j) – ϕ) =
λp+(f (j) – ϕ) = σp+(f ) = σp(B) (j > ).
Case (ii): () We prove that λp+(f – ϕ) = σp+(f ). Assume that f �≡  is a solution of

(.), by Lemma ., we know that σp+(f ) = σp(B) > . Set g = f – ϕ, ϕ �≡  is an entire
function with σp+(ϕ) < σp(B), then we have σp+(g) = σp+(f ) = σp(B), λp+(g) = λp+(f – ϕ).
Substituting f = g + ϕ, f ′ = g ′ + ϕ′, f ′′ = g ′′ + ϕ′′ into (.), we have (.). We affirm that
ϕ′′ + Aϕ′ + Bϕ �≡ . If ϕ′′ + Aϕ′ + Bϕ ≡ , by Lemma ., we have σp+(ϕ) = σp(B), which
is a contradiction. Since ϕ′′ +Aϕ′ + Bϕ �≡  and σp+(ϕ′′ +Aϕ′ + Bϕ) < σp+(f ) = σp+(g), by
Lemma . and (.), we have λp+(g) = λp+(g) = σp+(g) = σp(B); therefore λp+(f – ϕ) =
λp+(f – ϕ) = σp+(f ) = σp(B).
() We prove that λp+(f ′ – ϕ) = σp+(f ). Set g = f ′ – ϕ, then σp+(g) = σp+(f ) = σp(B).

By the same proof as that of () in case (i), we have (.). Set F = ϕ′′ + (A – B′
B )ϕ

′ + (A′ +
B– AB′

B )ϕ, we affirm F �≡ , if F ≡ , then by Lemma ., we have σp+(ϕ) ≥ σp(B), which
is a contradiction to σp+(ϕ) < σp(B); therefore F �≡ . Since σp+(F) < σp(B) = σp+(g), by
Lemma . and (.), we have λp+(f ′ – ϕ) = λp+(f ′ – ϕ) = σp+(f ) = σp(B).
() We prove that λp+(f ′′ – ϕ) = σp+(f ). Set g = f ′′ – ϕ, then σp+(g) = σp+(f ) = σp(B)

and f ′′ = g + ϕ, f ′′′ = g ′
 + ϕ′, f () = g ′′

 + ϕ′′ By the same proof as that of () in case (i), we
can obtain (.). Set F = ϕ′′ + (S – Q′

Q )ϕ′ + (S′ + Q – SQ′
Q )ϕ, where Q(z) = A′ + B – AB′

B ,
S(z) = A– B′

B . In the following we prove that F �≡ . By Definition . and Lemma ., for
all sufficiently large |z| = r /∈ E and for any ε > , we have

∣∣S(z)∣∣ ≤ expp
{(

τp(A) + ε
)
rσp(A)

}
,

∣∣S′(z)
∣∣ ≤ expp

{(
τp(A) + ε

)
rσp(A)

}
. (.)
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By Lemma . and Lemma ., for all sufficiently large |z| = r ∈ E – E and for any ε

( < ε < τp(B) – τp(A)), we have

M(r,Q) ≥ expp
{(

τp(B) – ε
)
rσp(B)

}
. (.)

By (.)-(.) and Lemma ., it is easy to obtain

∣∣∣∣S – Q′

Q

∣∣∣∣ ≤  expp
{(

τp(A) + ε
)
rσp(A)

}
,

∣∣∣∣S′ +Q –
SQ′

Q

∣∣∣∣ ≥ 

expp

{(
τp(B) – ε

)
rσp(B)

}
, r ∈ E – E.

(.)

If F ≡ , by (.) and by a similar proof to that in Lemma ., we have σp+(ϕ)≥ σp(B),
which is a contradiction. Therefore F �≡ , then by Lemma . and σp+(F) < σp+(g) =
σp(B), we have λp+(f ′′ – ϕ) = λp+(f ′′ – ϕ) = σp+(f ) = σp(B).
By following the proof of ()-() in case (i) and the proof of () in case (ii), we can obtain

λp+(f (j) – ϕ) = λp+(f (j) – ϕ) = σp+(f ) = σp(B) (j ≥ ).

5 Proof of Theorems 2.2-2.3
Using a similar proof to that in case (i) of Theorem . and by Lemma ., we can easily
obtain Theorem .. Theorem . is a direct result of Theorem . and Lemma ..
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