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Abstract
In this paper, we consider the following generalized quadratic functional equation
with n-independent variables in the spaces of generalized functions:

∑
1≤i<j≤n

(f (xi + xj) + f (xi – xj)) = 2(n – 1)
n∑
i=1

f (xi).

Making use of the fundamental solution of the heat equation, we solve the general
solutions and the stability problems of the above equation in the spaces of tempered
distributions and Fourier hyperfunctions. Moreover, using the Dirac sequence of
regularizing functions, we extend these results to the space of distributions.
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1 Introduction
In , Ulam [] raised a question concerning the stability of group homomorphisms as
follows:

Let G be a group and let G be a metric group with the metric d(·, ·). Given ε > ,
does there exist a δ >  such that if a function h : G → G satisfies the inequality
d(h(xy),h(x)h(y)) < δ for all x, y ∈G, then there exists a homomorphismH :G →G

with d(h(x),H(x)) < ε for all x ∈ G?

The case of approximately additive mappings was solved by Hyers [] under the assump-
tion that G is a Banach space. In , Rassias [] generalized Hyers’ result to the un-
bounded Cauchy difference. During the last decades, stability problems of various func-
tional equations have been extensively studied and generalized by a number of authors
(see [–]).
Quadratic functional equations are used to characterize the inner product spaces. Note

that a square norm on an inner product space satisfies the parallelogram equality

‖x + y‖ + ‖x – y‖ = ‖x‖ + ‖y‖
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for all vectors x, y. By virtue of this equality, the following functional equation is induced:

f (x + y) + f (x – y) = f (x) + f (y). (.)

It is easy to see that the quadratic function f (x) = ax on a real field, where a is an arbitrary
constant, is a solution of (.). Thus, it is natural that (.) is called a quadratic functional
equation. It is well known that a function f between real vector spaces satisfies (.) if and
only if there exists a unique symmetric biadditive function B such that f (x) = B(x,x) (see
[–]). The biadditive function B is given by

B(x, y) =



(
f (x + y) – f (x – y)

)
.

The Hyers-Ulam stability for quadratic functional equation (.) was proved by Skof [].
Thereafter, many authors studied the stability problems of (.) in various settings (see [–
]). In particular, the Hyers-Ulam-Rassias stability of (.) was proved by Czerwik [].
Recently, Eungrasamee et al. [] considered the following functional equation:

∑
≤i<j≤n

(
f (xi + xj) + f (xi – xj)

)
= (n – )

n∑
i=

f (xi), (.)

where n is a positive integer with n > . They proved that (.) is equivalent to (.). Also,
they proved the Hyers-Ulam-Rassias stability of this equation.
In this paper, we solve the general solutions and the stability problems of (.) in the

spaces of generalized functions such as S ′ of tempered distributions, F ′ of Fourier hyper-
functions and D′ of distributions. Using the notions as in [–], we reformulate (.)
and the related inequality in the spaces of generalized functions as follows:

∑
≤i<j≤n

(u ◦Aij + u ◦ Bij) = (n – )
n∑
i=

u ◦ Pi, (.)

∥∥∥∥∥
∑

≤i<j≤n

(u ◦Aij + u ◦ Bij) – (n – )
n∑
i=

u ◦ Pi

∥∥∥∥∥ ≤ ε, (.)

where Aij, Bij and Pi are the functions defined by

Aij(x, . . . ,xn) = xi + xj,  ≤ i < j ≤ n,

Bij(x, . . . ,xn) = xi – xj,  ≤ i < j ≤ n,

Pi(x, . . . ,xn) = xi,  ≤ i ≤ n.

Here, ◦ denotes the pullback of generalized functions and the inequality ‖v‖ ≤ ε in (.)
means that |〈v,ϕ〉| ≤ ε‖ϕ‖L for all test functions ϕ. We refer to [] for pullbacks and to
[–] formore details on the spaces of generalized functions. Recently, Chung [, , ]
solved the general solutions and the stability problems of (.) in the spaces of generalized
functions. As a matter of fact, our approaches are based on the methods as in [–].
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This paper is organized as follows. In Section , we solve the general solutions and the
stability problems of (.) in the spaces of S ′ and F ′. We prove that every solution u in F ′

(or S ′) of equation (.) has the form

u = ax,

where a ∈ C. Also, we prove that every solution u in S ′ (or F ′) of inequality (.) can be
written uniquely in the form

u = ax +μ(x),

where a ∈ C and μ is a bounded measurable function such that ‖μ‖L∞ ≤ n–n–
n–n ε. Sub-

sequently, in Section , making use of the Dirac sequence of regularizing functions, we
extend these results to the space D′.

2 Stability inF ′

Wefirst introduce the spaces of tempered distributions and Fourier hyperfunctions. Here,
N denotes the set of nonnegative integers.

Definition . [, ] We denote by S(R) the set of all infinitely differentiable functions
ϕ in R satisfying

‖ϕ‖α,β = sup
x

∣∣xα∂βϕ(x)
∣∣ <∞ (.)

for all α,β ∈ N. A linear functional u on S(R) is said to be a tempered distribution if there
exists a constant C ≥  and a nonnegative integer N such that

∣∣〈u,ϕ〉∣∣ ≤ C
∑

α,β≤N

sup
x

∣∣xα∂βϕ
∣∣

for all ϕ ∈ S(R). The set of all tempered distributions is denoted by S ′(R).

If ϕ ∈ S(R), then each derivative of ϕ decreases faster than x–N for all N >  as x → ∞.
It is easy to see that the function ϕ(x) = exp(–ax), where a >  belongs to S(R) but ψ(x) =
( + x)–, is not a member of S(R). For example, every polynomial p(x) =

∑
α≤m aαxα ,

where aα ∈C, defines a tempered distribution by

〈
p(x),ϕ

〉
=

∫
R

p(x)ϕ(x)dx, ϕ ∈ S(R).

Note that tempered distributions are generalizations of Lp-functions. These are very
useful for the study of Fourier transforms in generality, since all tempered distributions
have a Fourier transform, but not all distributions have one. Imposing the growth condi-
tion on ‖ · ‖α,β in (.), we get a new space of test functions as follows.

Definition . [] We denote by F (R) the set of all infinitely differentiable functions ϕ

in R such that

‖ϕ‖A,B = sup
x,α,β

|xα∂βϕ(x)|
A|α|B|β|α!β !

<∞ (.)

http://www.advancesindifferenceequations.com/content/2013/1/72
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for some positive constants A, B depending only on ϕ. The strong dual of F (R), denoted
by F ′(R), is called the Fourier hyperfunction.

It is easy to see the following topological inclusions:

F (R) ↪→ S(R), S ′(R) ↪→F ′(R). (.)

To solve the general solution and the stability problem of (.) in the space F ′(R), we
employ the heat kernel which is the fundamental solution to the heat equation,

Et(x) = E(x, t) =

⎧⎨
⎩
(π t)–/ exp(–|x|/t), x ∈R, t > ,

, x ∈R, t ≤ .

Since for each t > , E(·, t) belongs to the space F (R), the convolution

ũ(x, t) = (u ∗ E)(x, t) =
〈
uy,Et(x – y)

〉
, x ∈R, t > 

is well defined for all u ∈F ′(R), which is called the Gauss transform of u. It is well known
that the semigroup property of the heat kernel

(Et ∗ Es)(x) = Et+s(x)

holds for convolution. The semigroup property will be very useful for converting equation
(.) into the classical functional equation defined on an upper-half plane.We also use the
following famous result, the so-called heat kernel method, which is stated as follows.

Theorem . [] Let u ∈ S ′(R). Then its Gauss transform ũ is a C∞-solution of the heat
equation

(∂/∂t –�)ũ(x, t) = 

satisfying the following:
(i) There exist positive constants C,M and N such that

∣∣ũ(x, t)∣∣ ≤ Ct–M
(
 + |x|)N in R× (, δ). (.)

(ii) ũ(x, t)→ u as t → + in the sense that for every ϕ ∈ S(R),

〈u,ϕ〉 = lim
t→+

∫
ũ(x, t)ϕ(x)dx.

Conversely, every C∞-solution U(x, t) of the heat equation satisfying the growth condition
(.) can be uniquely expressed as U(x, t) = ũ(x, t) for some u ∈ S ′(R).

Similarly, we can represent Fourier hyperfunctions as initial values of solutions of the
heat equation as a special case of the results as in []. In this case, the estimate (.) is
replaced by the following:

http://www.advancesindifferenceequations.com/content/2013/1/72
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For every ε > , there exists a positive constant Cε such that

∣∣ũ(x, t)∣∣ ≤ Cε exp
(
ε
(|x| + /t

))
in R× (, δ).

We are now going to solve the general solutions and the stability problems of (.) in the
spaces of S ′ and F ′. Here, we need the following lemma which will be crucial in the proof
of the main theorem.

Lemma . Suppose that f :R× (,∞)→C is a continuous function satisfying

∑
≤i<j≤n

(
f (xi + xj, ti + tj) + f (xi – xj, ti + tj)

)
= (n – )

n∑
i=

f (xi, ti) (.)

for all x, . . . ,xn ∈R, t, . . . , tn > . Then the solution f has the form

f (x, t) = ax + bt

for some constants a,b ∈C.

Proof Define a function h(x, t) := f (x, t)– f (, t) for all x ∈R, t > . Then h satisfies h(, t) =
 for all t >  and

∑
≤i<j≤n

(
h(xi + xj, ti + tj) + h(xi – xj, ti + tj)

)
= (n – )

n∑
i=

h(xi, ti) (.)

for all x, . . . ,xn ∈R, t, . . . , tn > . Putting x = · · · = xn =  in (.) gives

n∑
j=

h(x, t + tj) = (n – )h(x, t) (.)

for all x ∈R, t, . . . , tn > . Letting t = · · · = tn → + in (.) yields

h(x, t + t) = h(x, t)

for all x ∈ R, t, t > . This means that h(x, t) is independent of t. Thus we can write
q(x) := h(x, ) = h(x, t). It follows from (.) that q(x) satisfies

∑
≤i<j≤n

(
q(xi + xj) + q(xi – xj)

)
= (n – )

n∑
i=

q(xi) (.)

for all x, . . . ,xn. Putting x = · · · = xn =  in (.), we see that q(x) satisfies the quadratic
functional equation

q(x + x) + q(x – x) = q(x) + q(x)

for all x,x ∈R. Given the continuity, the function q has the form

q(x, t) = ax

for some constant a ∈C.

http://www.advancesindifferenceequations.com/content/2013/1/72
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On the other hand, putting x = · · · = xn =  in (.) gives

∑
≤i<j≤n

f (, ti + tj) = (n – )
n∑
i=

f (, ti) (.)

for all t, . . . , tn > . In view of (.), we see that

c := lim sup
t→+

f (, t)

exists. In (.), let t = tk → + so that f (, t) → c as k → ∞. Then we have

∑
≤i<j≤n

f (, ti + tj) = (n – )c + (n – )
n∑
i=

f (, ti) (.)

for all t, . . . , tn > . In the same way, in (.), let t = tk → + so that f (, t) → c as
k → ∞. Then we have

∑
≤i<j≤n

f (, ti + tj) = (n – )c + (n – )
n∑
i=

f (, ti) (.)

for all t, . . . , tn > . Applying the same way in (.) repeatedly, we obtain c = . Setting
t = · · · = tn = tk → + in (.) yields

f (, t + t) = f (, t) + f (, t)

for all t, t > . Given the continuity, we must have f (, t) = bt for some b ∈ C. Therefore,
the solution f of (.) is of the form

f (x, t) = h(x, t) + f (, t) = ax + bt

for some constants a,b ∈C. �

According to the above lemma, we solve the general solution of (.) in the spaces of S ′

and F ′. From the inclusions (.), it suffices to consider the space F ′ instead of S ′.

Theorem . Every solution u in F ′(R) (or S ′(R) resp.) of the equation

∑
≤i<j≤n

(u ◦Aij + u ◦ Bij) = (n – )
n∑
i=

u ◦ Pi (.)

has the form

u = ax,

where a ∈C.

http://www.advancesindifferenceequations.com/content/2013/1/72
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Proof Convolving the tensor product Et (x) · · ·Etn (xn) of the heat kernels on both sides
of (.), we have

[
(u ◦Aij) ∗

(
Et (x) · · ·Etn (xn)

)]
(ξ, . . . , ξn)

=
〈
u ◦Aij,Et (ξ – x) · · ·Etn (ξn – xn)

〉

=
〈
u,

∫
Eti (ξi – xi + xj)Etj (ξj – xj)dxj

〉

=
〈
u,

∫
Eti (ξi + ξj – xi – xj)Etj (xj)dxj

〉

=
〈
u, (Eti ∗ Etj )(ξi + ξj – xi)

〉
=

〈
u,Eti+tj (ξi + ξj – xi)

〉
= ũ(ξi + ξj, ti + tj),[

(u ◦ Bij) ∗
(
Et (x) · · ·Etn (xn)

)]
(ξ, . . . , ξn) = ũ(ξi – ξj, ti + tj),[

(u ◦ Pi) ∗
(
Et (x) · · ·Etn (xn)

)]
(ξ, . . . , ξn) = ũ(ξi, ti),

where ũ is the Gauss transform of u. Thus, (.) is converted into the following classical
functional equation:

∑
≤i<j≤n

(
ũ(xi + xj, ti + tj) + ũ(xi – xj, ti + tj)

)
= (n – )

n∑
i=

ũ(xi, ti) (.)

for all x, . . . ,xn ∈ R, t, . . . , tn > . It follows from Lemma . that the solution ũ of (.)
has the form

ũ(x, t) = ax + bt, (.)

where a,b ∈C. Letting t → + in (.), we obtain

u = ax.

This completes the proof. �

From the above theorem, we have the following corollary immediately.

Corollary . Every solution u in F ′(R) (or S ′(R) resp.) of the equation

u ◦A + u ◦ B = u ◦ P + u ◦ P

has the form

u = ax,

where a ∈C.

http://www.advancesindifferenceequations.com/content/2013/1/72
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We now solve the stability problem of (.) in the spaces of S ′ and F ′.

Theorem . Suppose that u ∈F ′(R) (or S ′(R) resp.) satisfies the inequality

∥∥∥∥∥
∑

≤i<j≤n

(u ◦Aij + u ◦ Bij) – (n – )
n∑
i=

u ◦ Pi

∥∥∥∥∥ ≤ ε. (.)

Then there exists a unique quadratic function q(x) = ax such that

∥∥u – q(x)
∥∥ ≤ n – n – 

n – n
ε.

Proof Convolving the tensor product Et (x) · · ·Etn (xn) of the heat kernels on both sides
of (.), we have

∣∣∣∣∣
∑

≤i<j≤n

(
f (xi + xj, ti + tj) + f (xi – xj, ti + tj)

)
– (n – )

n∑
i=

f (xi, ti)

∣∣∣∣∣ ≤ ε (.)

for all x, . . . ,xn ∈ R, t, . . . , tn > , where f is the Gauss transform of u. Putting x = · · · =
xn =  in (.) yields

∣∣∣∣∣
∑

≤i<j≤n

f (, ti + tj) – (n – )
n∑
i=

f (, ti)

∣∣∣∣∣ ≤ ε


(.)

for all t, . . . , tn > . Then by the triangle inequality we have

∣∣(n – )f (, t)
∣∣ ≤ ε


+

∣∣∣∣∣
∑

≤i<j≤n

f (, ti + tj) – (n – )
n∑
i=

f (, ti)

∣∣∣∣∣

for all t, . . . , tn > . It follows from the continuity of f and the inequality above that

c := lim sup
t→+

f (, t)

exists. Choose a sequence tk , k = , , . . . , of positive numbers, which tends to  as k → ∞,
such that f (, tk ) → c as k → ∞. Letting t = · · · = tn = tk → + in (.) gives

|c| ≤ ε

n – n
. (.)

Setting t = t = t, t = · · · = tn = tk → + in (.) and using (.), we have

∣∣∣∣ f (, t)
– f (, t)

∣∣∣∣ ≤ n – n – 
n(n – )

ε. (.)

Using an induction argument in (.), we obtain

∣∣∣∣ f (, 
kt)

k
– f (, t)

∣∣∣∣ ≤ n – n – 
n – n

ε (.)

http://www.advancesindifferenceequations.com/content/2013/1/72
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for all k ∈N, t > . From (.) we see that –kf (, kt) is a Cauchy sequence, and hence

h(t) := lim
k→∞

–kf
(
, kt

)

exists. Replacing ti by kti in (.), i = , , . . . ,n, dividing by k and letting k → ∞, we
have

∑
≤i<j≤n

h(ti + tj) = (n – )
n∑
i=

h(ti)

for all t, . . . , tn > . As in the proof of Lemma ., the function h satisfies

h(t + t) = h(t) + h(t) (.)

for all t, t > . Given the continuity, the function h is of the form h(t) = bt for some con-
stant b ∈C. Letting k → ∞ in (.), we obtain

∣∣f (, t) – h(t)
∣∣ ≤ n – n – 

n – n
ε (.)

for all t > . It follows from (.) and (.) that

∣∣∣∣∣
k∑
j=

–jf
(
, jt

)
–

(
 – –k

)
h(t)

∣∣∣∣∣ ≤ n – n – 
(n – n)

ε. (.)

On the other hand, putting x = x = x, x = · · · = xn =  and letting t = t = t, t = · · · =
tn → + in (.), we have

∣∣∣∣ f (x, t)
+
f (, t)


– f (x, t)

∣∣∣∣ ≤ n – n – 
(n – n)

ε. (.)

Using the iterative method in (.) gives

∣∣∣∣∣f (x, t) – –kf
(
kx, kt

)
–

k∑
j=

–jf
(
, jt

)∣∣∣∣∣ ≤ (n – n – )
(n – n)

ε. (.)

Adding (.) to (.) and letting F(x, t) := f (x, t) – h(t), we obtain

∣∣F(x, t) – –kF
(
kx, kt

)∣∣ ≤ n – n – 
n – n

ε. (.)

From (.) we see that –kF(kx, kt) is a Cauchy sequence, and hence

G(x, t) := lim
k→∞

–kF
(
kx, kt

)

exists. By the definition of G and (.), we have G(, t) =  for all t >  and

∑
≤i<j≤n

(
G(xi + xj, ti + tj) +G(xi – xj, ti + tj)

)
= (n – )

n∑
i=

G(xi, ti) (.)

http://www.advancesindifferenceequations.com/content/2013/1/72


Lee Advances in Difference Equations 2013, 2013:72 Page 10 of 15
http://www.advancesindifferenceequations.com/content/2013/1/72

for all x, . . . ,xn ∈R, t, . . . , tn > . As in the proof of Lemma ., we obtain

G(x, t) = ax

for some constant a ∈C. Letting k → ∞ in (.) yields

∣∣f (x, t) – ax – bt
∣∣ ≤ n – n – 

n – n
ε (.)

for some constants a,b ∈C. Letting t → + in (.), we have

∥∥u – ax
∥∥ ≤ n – n – 

n – n
ε.

This completes the proof. �

Corollary . Suppose that u ∈F ′(R) (or S ′(R) resp.) satisfies the inequality

‖u ◦A + u ◦ B – u ◦ P – u ◦ P‖ ≤ ε.

Then there exists a unique quadratic function q(x) = ax such that

∥∥u – q(x)
∥∥ ≤ 


ε.

3 Stability inD′

In this section, we extend the previous results to the space of distributions. Recall that a
distribution u is a linear functional on C∞

c (R) of infinitely differentiable functions on R

with compact supports such that for every compact set K ⊂R, there exist constants C > 
and N ∈N satisfying

∣∣〈u,ϕ〉∣∣ ≤ C
∑

|α|≤N

sup
∣∣∂αϕ

∣∣

for all ϕ ∈ C∞
c (R) with supports contained in K . The set of all distributions is denoted by

D′(R). It is well known that the following topological inclusions hold:

C∞
c (R) ↪→ S(R), S ′(R) ↪→D′(R).

As we see in [, ], by virtue of the semigroup property of the heat kernel, equation
(.) can be controlled easily in the space S ′. But we cannot employ the heat kernel in the
space D′. Instead of the heat kernel, we use the function ψt(x) := t–ψ( xt ), x ∈ R, t > ,
where ψ(x) ∈ C∞

c (R) such that

ψ(x)≥ , suppψ(x)⊂ {
x ∈R : |x| ≤ 

}
,

∫
ψ(x)dx = .

For example, let

ψ(x) =

⎧⎨
⎩
A exp(–( – |x|)–), |x| < ,

, |x| ≥ ,

http://www.advancesindifferenceequations.com/content/2013/1/72


Lee Advances in Difference Equations 2013, 2013:72 Page 11 of 15
http://www.advancesindifferenceequations.com/content/2013/1/72

where

A =
(∫

|x|<
exp

(
–
(
 – |x|)–)dx

)–

,

then it is easy to see ψ(x) is an infinitely differentiable function with support {x : |x| ≤ }.
Now we employ the function ψt(x) := t–ψ(x/t), t > . If u ∈ D′(R), then for each t > ,
(u ∗ ψt)(x) = 〈uy,ψt(x – y)〉 is a smooth function in R and (u ∗ ψt)(x)→ u as t → + in the
sense of distributions, that is, for every ϕ ∈ C∞

c (R),

〈u,ϕ〉 = lim
t→+

∫
(u ∗ ψt)(x)ϕ(x)dx.

Theorem . Every solution u in D′(R) of the equation

∑
≤i<j≤n

(u ◦Aij + u ◦ Bij) = (n – )
n∑
i=

u ◦ Pi (.)

has the form

u = ax,

where a ∈C.

Proof Convolving the tensor product ψt (ξ) · · ·ψtn (ξn) of the regularizing functions on
both sides of (.), we have

[
(u ◦Aij) ∗

(
ψt (x) · · ·ψtn (xn)

)]
(ξ, . . . , ξn)

=
〈
u ◦Aij,ψt (ξ – x) · · ·ψtn (ξn – xn)

〉

=
〈
u,

∫
ψti (ξi – xi + xj)ψtj (ξj – xj)dxj

〉

=
〈
u,

∫
ψti (ξi + ξj – xi – xj)ψtj (xj)dxj

〉

=
〈
u, (ψti ∗ ψtj )(ξi + ξj – xi)

〉
= (u ∗ ψti ∗ ψtj )(ξi + ξj),[

(u ◦ Bij) ∗
(
ψt (x) · · ·ψtn (xn)

)]
(ξ, . . . , ξn) = (u ∗ ψti ∗ ψtj )(ξi – ξj),[

(u ◦ Pi) ∗
(
ψt (x) · · ·ψtn (xn)

)]
(ξ, . . . , ξn) = (u ∗ ψti )(ξi).

Thus, (.) is converted into the following functional equation:

∑
≤i<j≤n

(
(u ∗ ψti ∗ ψtj )(xi + xj) + (u ∗ ψti ∗ ψtj )(xi – xj)

)
= (n – )

n∑
i=

(u ∗ ψti )(xi) (.)

for all x, . . . ,xn ∈R, t, . . . , tn > . In view of (.), it is easy to see that

f (x) := lim sup
t→+

(u ∗ ψt)(x)

http://www.advancesindifferenceequations.com/content/2013/1/72
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exists. Putting x = · · · = xn =  and letting t = · · · = tn → + in (.) yields f () = . Setting
x = x, x = y, x = · · · = xn =  and letting t = t, t = s, t = · · · = tn → + in (.), we have

(u ∗ ψt ∗ ψs)(x + y) + (u ∗ ψt ∗ ψs)(x – y) = (u ∗ ψt)(x) + (u ∗ ψs)(y) (.)

for all x, y ∈ R, t, s > . Letting t → + in (.) gives

(u ∗ ψs)(x + y) + (u ∗ ψs)(x – y) = f (x) + (u ∗ ψs)(y) (.)

for all x, y ∈ R, s > . Putting y =  in (.) yields

f (x) = (u ∗ ψs)(x) – (u ∗ ψs)(). (.)

Applying (.) to (.), we see that f satisfies the following quadratic functional equation:

f (x + y) + f (x – y) = f (x) + f (y)

for all x, y ∈ R. Since f is a smooth function, in view of (.), it follows that f (x) = ax,
where a ∈C. Thus, from (.), we have

(u ∗ ψs)(x) = ax + (u ∗ ψs)(). (.)

Letting s → + in (.), we obtain

u = ax.

This completes the proof. �

In a similar manner, we have the following corollary immediately.

Corollary . Every solution u in D′(R) of the equation

u ◦A + u ◦ B = u ◦ P + u ◦ P

has the form

u = ax,

where a ∈C.

We are now going to state and prove the main result of this paper.

Theorem . Suppose that u ∈D′(R) satisfies the inequality

∥∥∥∥∥
∑

≤i<j≤n

(u ◦Aij + u ◦ Bij) – (n – )
n∑
i=

u ◦ Pi

∥∥∥∥∥ ≤ ε. (.)

http://www.advancesindifferenceequations.com/content/2013/1/72
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Then there exists a unique quadratic function q(x) = ax such that

∥∥u – q(x)
∥∥ ≤ n – n – 

n – n
ε.

Proof It suffices to show that every distribution satisfying (.) belongs to the space S ′(R).
Convolving the tensor product ψt (x) · · ·ψtn (xn) on both sides of (.), we have

∣∣∣∣∣
∑

≤i<j≤n

(
(u∗ψti ∗ψtn )(xi+xj)+(u∗ψti ∗ψtn )(xi–xj)

)
–(n–)

n∑
i=

(u∗ψti )(xi)

∣∣∣∣∣ ≤ ε (.)

for all x, . . . ,xn ∈R, t, . . . , tn > . In view of (.), it is easy to see that for each fixed x,

f (x) := lim sup
t→+

(u ∗ ψt)(x)

exists. Putting x = · · · = xn =  and letting t = · · · = tn → + in (.) yields

∣∣f ()∣∣ ≤ ε

n – n
. (.)

Setting x = x, x = y, x = · · · = xn = , letting t = t, t = s, t = · · · = tn → + in (.) and
using (.), we have

∣∣(u ∗ ψt ∗ ψs)(x + y) + (u ∗ ψt ∗ ψs)(x – y) – (u ∗ ψt)(x) – (u ∗ ψs)(y)
∣∣

≤ (n – n – )
n – n

ε. (.)

Putting y =  in (.) and dividing the result by , we obtain

∣∣(u ∗ ψt ∗ ψs)(x) – (u ∗ ψt)(x) – (u ∗ ψs)()
∣∣ ≤ n – n – 

n – n
ε. (.)

Letting t → + in (.) gives

∣∣(u ∗ ψs)(x) – f (x) – (u ∗ ψs)()
∣∣ ≤ n – n – 

n – n
ε. (.)

From (.), (.) and (.) we have

∣∣f (x + y) + f (x – y) – f (x) – f (y)
∣∣ ≤ (n – n – )

n – n
ε

for all x, y ∈ R. According to the result as in [], there exists a unique quadratic function
q :R →C satisfying

q(x + y) + q(x – y) = q(x) + q(y)

such that

∣∣f (x) – q(x)
∣∣ ≤ (n – n – )

n – n
ε. (.)

http://www.advancesindifferenceequations.com/content/2013/1/72
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It follows from (.) and (.) that

∣∣(u ∗ ψs)(x) – q(x) – (u ∗ ψs)()
∣∣ ≤ (n – n – )

n – n
ε. (.)

Letting s → + in (.), we have

∥∥u – q(x)
∥∥ ≤ n – n – 

n – n
ε. (.)

Inequality (.) implies that h(x) := u–q(x) belongs to (L)′ = L∞. Thus, we conclude that
u = q(x) + h(x) ∈ S ′(R). �

From the above theorem, we have the following corollary immediately.

Corollary . Suppose that u ∈D′(R) satisfies the inequality

‖u ◦A + u ◦ B – u ◦ P – u ◦ P‖ ≤ ε.

Then there exists a unique quadratic function q(x) = ax such that

∥∥u – q(x)
∥∥ ≤ 


ε.
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