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Abstract
In view of the Nevanlinna theory, we study the growth and poles of solutions of some
classes of systems of complex difference equations and obtain some interesting
results such as the lower bounds for Nevanlinna lower order, a counting function of
poles and maximummodulus for solutions of such systems. They extend some results
concerning functional equations to the systems of functional equations in the fields
of complex equations.
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1 Introduction andmain results
The purpose of this paper is to study some properties of the poles and growth ofmeromor-
phic solutions of the systems of complex difference equations. The fundamental results
and the standard notations of the Nevanlinna value distribution theory of meromorphic
functions are used (see [–]). In this paper, a meromorphic function means being mero-
morphic in the whole complex plane C; for a meromorphic function f , S(r, f ) denotes any
quantity satisfying S(r, f ) = o(T(r, f )) for all r outside a possible exceptional set E of finite
logarithmic measure limr→∞

∫
[,r)∩E

dt
t < ∞, and a meromorphic function a(z) is called a

small function with respect to f if T(r,a(z)) = S(r, f ) = o(T(r, f )).
In , Shimomura [] and Yanagihara [] studied some existence of solutions of dif-

ference equations and obtained some theorems as follows.

Theorem . (see [, Theorem .]) For any non-constant polynomial P(y), the difference
equation

y(z + ) = P
(
y(z)

)

has a non-trivial entire solution.

Theorem . (see [, Corollary ]) For any non-constant rational function R(y), the dif-
ference equation

y(z + ) = R
(
y(z)

)

has a non-trivial meromorphic solution in the complex plane.
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It was proposed that the existence of sufficiently many meromorphic solutions of finite
order would be a strong indicator of integrability of an equation (see [–]).
In , Ablowitz, Halburd and Herbst [] studied some classes of complex difference

equations

f (z + ) + f (z – ) =
a(z) + a(z)f + · · · + ap(z)f p

b(z) + b(z)f + · · · + bq(z)f q
, ()

f (z + )f (z – ) =
a(z) + a(z)f + · · · + ap(z)f p

b(z) + b(z)f + · · · + bq(z)f q
, ()

where the coefficients are meromorphic functions, and obtained the following results.

Theorem . (see []) If difference equation () (or ()) with polynomial coefficients ai(z),
bi(z) admits a transcendental meromorphic solution of finite order, then d =max{p,q} ≤ .

In , Heittokangas et al. [] further investigated some complex difference equations
which are similar to () and () and obtained the following results which are improvements
of Theorems . and ..

Theorem . (see [, Proposition  and Proposition ]) Let c, . . . , cn ∈C\{}. If the equa-
tions

n∑
i=

f (z + ci) = R
(
z, f (z)

)
,

n∏
i=

f (z + ci) = R
(
z, f (z)

)
,

R
(
z, f (z)

)
:=

P(z, f (z))
Q(z, f (z))

=
a(z) + a(z)f + · · · + as(z)f s

b(z) + b(z)f + · · · + bt(z)f t

with rational coefficients ai(z), bi(z) admit a transcendental meromorphic solution of finite
order, then d =max{s, t} ≤ n.

In the same paper, some results of the lower bound for the characteristic functions, poles
and maximum modulus of transcendental meromorphic solutions of some complex dif-
ference equations are obtained as follows.

Theorem . (see [, Theorem ]) Let c, . . . , cn ∈ C\{} and let m ≥ . Suppose y is a
transcendental meromorphic solution of the difference equation

n∑
i=

ai(z)y(z + ci) =
m∑
i=

bi(z)y(z)i

with rational coefficients ai(z), bi(z). Denote C :=max{|c|, . . . , |cn|}.
() If y is entire or has finitely many poles, then there exist constants K >  and r > 

such that

logM(r, y) ≥ Kmr/C

holds for all r ≥ r.
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() If y has infinitely many poles, then there exist constants K >  and r >  such that

n(r, y) ≥ Kmr/c

holds for all r ≥ r.

Theorem . (see [, Theorem ]) Let c, . . . , cn ∈ C\{} and suppose that y is a non-
rational meromorphic solution of

n∑
i=

di(z)y(z + ci) =
a(z) + a(z)f + · · · + ap(z)f p

b(z) + b(z)f + · · · + bq(z)f q
, ()

where all coefficients in () are of growth o(T(r, y)) without an exceptional set as r → ∞,
and di’s are non-vanishing. If d =max{p,q} > n, then for any ε ( < ε < (d–n)/(d+n)), there
exists an r >  such that

T(r, y) ≥ K
(
d
n

(
 – ε

 + ε

))r/C

for all r ≥ r, where C :=max{|c|, . . . , |cn|} and K >  is a constant.

Recently, a number of papers have focused on difference equations, difference product
and q-difference in the complex plane C, and considerable attention has been paid to the
growth of solutions of difference equations, value distribution and uniqueness of differ-
ences analogues of Nevanlinna’s theory [, –].
In , Gao [–] also investigated the growth and existence of meromorphic so-

lutions of some systems of complex difference equations and obtained some existence
theorems and estimates on the proximity function and the counting function of solutions
of some systems of complex difference equations.
Inspired by the ideas of Refs. [–] and Ref. [], we investigate the growth and poles of

meromorphic solutions of some systems of complex difference equations and obtain the
following results.

Theorem . Suppose that (f, f) is a transcendental meromorphic solution of a system of
difference equations of the form

⎧⎨
⎩

∑n
j= aj (z)f(z + cj) =

∑d
i= bi (z)f(z)i,∑n

j= aj (z)f(z + cj) =
∑d

i= bi (z)f(z)i,
()

where dd ≥  and the coefficients atj (z), bti (z) (t = , ) are rational functions. Denote
C :=max{|c|, . . . , |cn|}. If ft (t = , ) are entire or have finitely many poles, then there exist
constants Kt >  (t = , ) and r >  such that for all r ≥ r

logM(r, ft) ≥ Kt(dd)r/(C), t = , .
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Theorem . Suppose that (f, f) is a transcendental meromorphic solution of a system of
difference equations of the form

⎧⎨
⎩

∑n
j= aj (z)f(z + cj) = R(z, f(z)) = P(z,f(z))

Q(z,f(z))
,∑n

j= aj (z)f(z + cj) = R(z, f(z)) = P(z,f(z))
Q(z,f(z))

,
()

where the coefficients atj (z), t = ,  are rational functions, and Pt , Qt are relatively prime
polynomials in ft over the field of rational functions satisfying pt = degft Pt , lt = degft Qt ,
dt = pt – lt ≥ , t = , . Denote C :=max{|c|, . . . , |cn|}. If ft have infinitely many poles, then
for sufficiently large r,

n(r, ft) ≥ Kt(dd)r/(C), t = , .

Remark . Since system () is a particular case of system (), from the conclusions of
Theorem ., we can get the following result.
Under the assumptions of Theorem ., if ft (t = , ) have infinitely many poles, then

there exist constants Kt >  (t = , ) and r >  such that for all r ≥ r,

n(r, ft) ≥ Kt(dd)r/(C), t = , .

Theorem . Suppose that (f, f) is a transcendental meromorphic solution of a system of
complex difference equations of the form

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
λ∈I dλ (z)f(z+c)

i
λ ···f(z+cn )

i
λn

∑
μ∈J eμ (z)f(z+c)

j
μ ···f(z+cn )

j
μn

=
∑s

j= a

j (z)f(z)

j

∑l
j= b


j (z)f(z)

j
,

∑
λ∈I dλ (z)f(z+c)

i
λ ···f(z+cn )

i
λn

∑
μ∈J eμ (z)f(z+c)

j
μ ···f(z+cn )

j
μn

=
∑s

j= a

j (z)f(z)

j

∑l
j= b


j (z)f(z)

j
,

()

where It = {iλt , iλt , . . . , iλtnt }, Jt = {jμt

, jμt


, . . . , jμt

nt
} are finite index sets satisfying

max
λt ,μt

{iλt + iλt + · · · + iλtnt , jμt

+ jμt


+ · · · + jμt

nt
} = σt , t = , ,

dt = max{st , lt} ≥ , t = , , n,n ∈ N+ and all coefficients of () are of growth o(T(r, f)),
o(T(r, f)) without an exceptional set. Denote C := max{|c|, . . . , |cn|}. If dd > nnσσ,
then for any ε satisfying

 < ε <
√
dd –

√
nnσσ√

dd +
√
nnσσ

,

there exist constants r >  and Kt >  (t = , ) for all r > r,

T(r, ft)≥ Kt

(
dd

nnσσ

(
 – ε

 + ε

))r/(C)

, t = , .

Theorem . Suppose that all coefficients in () are of growth S(r, f),S(r, f) and that all
the other assumptions of Theorem . hold. Then μ(ft) = ∞ (t = , ).
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2 Some lemmas
Lemma . (Valiron-Mohon’ko []) Let f (z) be a meromorphic function. Then for all ir-
reducible rational functions in f ,

R
(
z, f (z)

)
=

∑m
i= ai(z)f (z)i∑n
j= bj(z)f (z)j

,

with meromorphic coefficients ai(z), bj(z), the characteristic function of R(z, f (z)) satisfies

T
(
r,R

(
z, f (z)

))
= dT(r, f ) +O

(
�(r)

)
,

where d =max{m,n} and �(r) =maxi,j{T(r,ai),T(r,bj)}.

Lemma . (see []) Let f, f, . . . , fn be meromorphic functions. Then

T
(
r,

∑
λ∈I

f
iλ
 f

iλ
 · · · f iλnn

)
≤ σ

n∑
i=

T(r, fi) + log s,

where I = {iλ , iλ , . . . , iλn} is an index set consisting of s elements, and σ =maxλ∈I{iλ + iλ +
· · · + iλn}.

Lemma . (see []) Let g : (, +∞) →R, h : (, +∞)→R be monotone increasing func-
tions such that g(r) ≤ h(r) outside of an exceptional set of finite logarithmic measure. Then
for any α > , there exists r >  such that g(r) ≤ h(αr) for all r > r.

Lemma. (see [, Lemma ]) Given ε >  and ameromorphic function y, the Nevanlinna
characteristic function T satisfies

T
(
r, y(z± )

) ≤ ( + ε)T
(
r + , y(z)

)
+ κ

for all r ≥ /ε, for some constant κ .

3 The proof of Theorem 1.7
Since the coefficients atj (z), bti (z) (t = , ) are rational functions, we can rewrite () as

⎧⎨
⎩

∑n
j=A

j (z)f(z + cj) =
∑d

i= B
i (z)f(z)i,∑n

j=A
j (z)f(z + cj) =

∑d
i= B

i (z)f(z)i,
()

where the coefficients At
j (z), Bt

i (z) (t = , ) are polynomials.
Next, two cases will be considered as follows.
Case . Since (f, f) is a transcendental solution of system () or () and ft (t = , )

are entire, set pti = degAt
j (j = , , . . . ,n), qti = degBt

i (i = , , . . . ,di), t = , , taking mt =
max{pt, . . . ,ptn} + , we have that

⎧⎨
⎩
M(r,

∑d
i= B

i (z)f(z)i) =M(r,
∑n

j=A
j (z)f(z + cj))≤ nrmM(r +C, f),

M(r,
∑d

i= B
i (z)f(z)i) =M(r,

∑n
j=A

j (z)f(z + cj))≤ nrmM(r +C, f),
()
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when r is sufficiently large. Since ft are transcendental entire functions and Bt
i (i =

, , . . . ,dt ; t = , ) are polynomials, we have M(r,
∑d–

i= B
i f(z)i) = o(M(r, f(z)d )) and

M(r,
∑d–

i= B
i f(z)i) = o(M(r, f(z)d )). Thus, for sufficiently large r, we have

⎧⎨
⎩
M(r,

∑d
i= B

i (z)f(z)i) ≥ 
M(r,B

d f(z)
d ),

M(r,
∑d

i= B
i (z)f(z)i) ≥ 

M(r,B
d f(z)

d ).
()

From () and (), we have

⎧⎨
⎩
logM(r +C, f) ≥ d logM(r, f) + g(r),

logM(r +C, f) ≥ d logM(r, f) + g(r),
()

where |gt(r)| < Kt log r, t = ,  for some constants Kt >  and sufficiently large r. From (),
for sufficiently large r, we have

logM(r + C, f) ≥ dd logM(r, f) + g(r +C) + dg(r). ()

Iterating (), we have

logM(r + kC, f) ≥ (dd)k logM(r, f) + E
k(r) + E

k (r) (k ∈N), ()

where

∣∣E
k(r)

∣∣ = ∣∣(dd)k–g(r +C) + (dd)k–g(r + C) + · · · + g
(
r + (k – )C

)∣∣

≤ K(dd)k–
k∑
j=

log[r + (j – )C]
(dd)j

≤ K(dd)k–
∞∑
j=

log[r + (j – )C]
(dd)j–

,

and

∣∣E
k (r)

∣∣ = ∣∣d(dd)k–g(r) + d(dd)k–g(r + C) + · · · + dg
(
r + (k – )C

)∣∣

≤ Kd(dd)k–
k∑
j=

log[r + (j – )C]
(dd)j–

≤ Kd(dd)k–
∞∑
j=

log[r + (j – )C]
(dd)j–

.

Since log[r+kC] ≤ log r× logkC for sufficiently large r and k, and since dd ≥ , we know
that the series

∑∞
j=

log[r+(j–)C]
(dd)j–

and
∑∞

j=
log[r+(j–)C]

(dd)j–
are convergent. Thus, for sufficiently

large r, we have

∣∣Et
k(r)

∣∣ ≤ K ′
t (dd)

k log r, t = , , ()

http://www.advancesindifferenceequations.com/content/2013/1/75
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where K ′
t >  (t = , ) are some constants. Since f is a transcendental entire function, for

sufficiently large r, we have

logM(r, f) ≥ K ′ log r, ()

where K ′ >max{K ′
,K ′

}. Hence, from ()-(), there exists r ≥ e such that for r ≥ r, we
have

logM(r + kC, f) ≥ K ′(dd)k log r. ()

Choosing r ∈ [r, r + C) and letting k → ∞ for each choice of r, and for each sufficiently
large R := r + kC ≥ R := r +C, we have

R ∈ [
r + kC, r + (k + )C

)
, i.e. k >

R – r –C
C

. ()

From () and (), we have

logM(R, f)≥ logM(r + kC, f) ≥ K ′(dd)k log r ≥ K ′′(dd)R/(C),

where K ′′ = K ′(dd)
–r–C
C log r.

By using the same argument as above, we can get that there exist constants K >  and
r >  such that for all R≥ r,

logM(R, f) ≥ K(dd)R/(C). ()

Case . Suppose that (f, f) is a solution of system () and ft (t = , ) are meromor-
phic functions with finitely many poles. Then there exist polynomials Pt(z) such that
gt(z) = Pt(z)ft(z) (t = , ) are entire functions. Substituting ft(z) = gt (z)

Pt (z) into () and again
multiplying away the denominators, we can get a system similar to (). By using the same
argument as above, we can obtain that for sufficiently large r ≥ r ≥ r,

logM(r, ft) = logM(r, gt) + logM
(
r,


Pt(z)

)
≥ (

K ′′
t – ε

)
(dd)r/(C) ≥ K ′′′

t (dd)r/(C),

where K ′′′
t (> ) (t = , ) are some constants.

From Case  and Case , this completes the proof of Theorem ..

4 The proof of Theorem 1.8
Suppose that (f, f) is a solution of system () and ft (t = , ) are transcendental. Since the
coefficients of Pt(z, ft(z)), Qt(z, ft(z)) are rational functions, we can choose a sufficiently
large constant R (> ) such that the coefficients of Pt(z, ft(z)), Qt(z, ft(z)) have no zeros or
poles in {z ∈ C : |z| > R}. Since ft (t = , ) have infinitely many poles, we can choose a pole
z of f of multiplicity τ ≥  satisfying |z| > R. Then the right-hand side of the second
equation in system () has a pole of multiplicity dτ at z. Then there exists at least one
index j ∈ {, , . . . ,n} such that z + cj is a pole of f of multiplicity τ ′

 ≥ dτ . Replacing z

http://www.advancesindifferenceequations.com/content/2013/1/75
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by z + cj in the first equation of (), we have

n∑
j=

aj (z + cj )f(z + cj + cj) = R
(
z + cj , f(z + cj )

)
. ()

We now have two possibilities as follows.
(i) If z + cj is a pole or a zero of the coefficients of R(z, f(z)), then this process will be

terminated and we can choose another pole z of f in the way we did above.
(ii) If z + cj is neither a pole nor a zero of the coefficients of R(z, f(z)), thus the right-

hand side of () has a pole of multiplicity dτ ′
 at z + cj , then there exists at least one

index j′ ∈ {, , . . . ,n} such that z + cj + cj′ is a pole of f of multiplicity τ ≥ dτ ′
 ≥ ddτ .

Replacing z by z + cj + cj′ in the second equation of (), we have

n∑
j=

aj (z + cj + cj′ )f(z + cj + cj′ + cj) = R
(
z + cj + cj′ , f(z + cj + cj′ )

)
.

We proceed to follow the step above. Since the coefficients of Rt(z, ft(z)) have finitely
many zeros and poles in {z ∈ C : |z| > R} and f has infinitely many poles again, we may
construct poles ζk := z + cj + cj′ + cj + cj′ + · · ·+ cjk + cj′k (ji ∈ {, , . . . ,n}, j′i ∈ {, , . . . ,n},
i = , , . . . ,k) of f ofmultiplicity τk satisfying τ k ≥ (dd)kτ as k → ∞, k ∈ N. Since |ζk| →
∞ as k → ∞, for sufficiently large k, say k ≥ k and any R ∈ [|z|, |z| +C), we have

τ (dd)k ≤ τ
(
 + dd + · · · + (dd)k

) ≤ n
(|ζk|, f)

= n
(|z| + kC, f

) ≤ n
(
R + kC, f

)
. ()

If we can choose a pole z of f of multiplicity τ ′ ≥  satisfying |z| > R, similar to the above
discussion, we can get that for sufficiently large k and any R ∈ [|z|, |z| +C),

τ ′(dd)k ≤ n
(|z| + kC, f

) ≤ n(R + kC, f). ()

Thus, for each sufficiently large R := R + kC ≥ r := |z| + (k + )C, there exists a
k ∈ N such that R ∈ [|z| + kC, |z| + (k + )C) (or R ∈ [|z| + kC, |z| + (k + )C)), by
using the same method as in the proof of Theorem ., from () (or ()), we have

n(R, f) ≥ τ (dd)k ≥ τ (dd)
R–|z|–C

C ≥ K(dd)R/(C), ()

or

n(R, f)≥ τ ′(dd)k ≥ τ (dd)
R–|z|–C

C ≥ K(dd)R/(C), ()

where K = τ (dd)
–|z|–C

C and K = τ ′(dd)
–|z|–C

C .
Thus, from () and (), this completes the proof of Theorem ..

5 The proof of Theorem 1.9
From the assumptions of Theorem . and ft (t = , ) are transcendental, applying
Lemma . and Lemma . for () and by Lemma ., for any given ε ( < ε <

http://www.advancesindifferenceequations.com/content/2013/1/75
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√
dd–

√
nnσσ√

dd+
√
nnσσ

) and all r ≥ r ≥ 
ε
, we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d( – ε)T(r, f) ≤ dT(r, f) + o(T(r, f)) ≤ σ
∑n

j=T(r +C, f) + o(T(r, f))

≤ nσ( + ε)T(r +C, f),

d( – ε)T(r, f) ≤ dT(r, f) + o(T(r, f)) ≤ σ
∑n

j=T(r +C, f) + o(T(r, f))

≤ nσ( + ε)T(r +C, f).

()

From () and for all r ≥ r ≥ 
ε
, we have

dd( – ε)T(r, f) ≤ nnσσ( + ε)T(r + C, f), ()

dd( – ε)T(r, f) ≤ nnσσ( + ε)T(r + C, f). ()

Iterating () and (), we can get

T(r + kC, ft) ≥
(

dd
nnσσ

(
 – ε

 + ε

))k

T(r, ft), t = , , ()

which holds for r ≥ r and k ∈ N. Let k → ∞, for any r ∈ [r, r + C), set R := r + kC ≥
r +C, we have k ≥ R–r–C

C . Then from () we can get

T(R, ft) ≥
(

dd
nnσσ

(
 – ε

 + ε

)) R–r–C
C

T(r, ft)

≥ Kt

(
dd

nnσσ

(
 – ε

 + ε

)) R
C
,

where

Kt =
(

dd
nnσσ

(
 – ε

 + ε

)) –r–C
C

T(r, ft), t = , .

Thus, this completes the proof of Theorem ..

6 The Proof of Theorem 1.10
From the assumptions of Theorem ., by using the same argument as in Theorem .,
for any given ε ( < ε <

√
dd–

√
nnσσ√

dd+
√
nnσσ

) and all r ≥ r ≥ 
ε
, we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d( – ε)T(r, f) ≤ dT(r, f) + S(r, f)≤ σ
∑n

j=T(r +C, f) + S(r, f)

≤ nσ( + ε)T(r +C, f),

d( – ε)T(r, f) ≤ dT(r, f) + S(r, f)≤ σ
∑n

j=T(r +C, f) + S(r, f)

≤ nσ( + ε)T(r +C, f),

outside of a possible exceptional set of finite logarithmic measure.
It follows that

dd( – ε)T(r, ft) ≤ nnσσ( + ε)T(r + C, ft), t = , , ()

http://www.advancesindifferenceequations.com/content/2013/1/75
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outside of a possible exceptional set of finite logarithmic measure. From () and
Lemma ., it follows that for every α > , there exists r >  such that

T
(
αr + C, ft

) ≥ dd( – ε)

nnσσ( + ε)
T(r, ft) =: ζT(r, ft), t = , , ()

and T(r, ft) >  holds for all r ≥ r, where ζ > . Inductively, for any positive integer k ∈ N

and r ≥ r, from (), we have

T
(

αkr +
αk – 
α – 

C, ft
)

≥ ζ kT(r, ft), t = , . ()

By using the same argument as in [, Theorem .], we can get that μ(ft) = ∞ (t = , )
easily.
Thus, this completes the proof of Theorem ..
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