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Abstract
In this paper, a numerical solution of partial differential-algebraic equations (PDAEs) is
considered by multivariate Padé approximations. We applied this method to an
example. First, PDAE has been converted to power series by two-dimensional
differential transformation, and then the numerical solution of the equation was put
into a multivariate Padé series form. Thus, we obtained the numerical solution of
PDAEs.
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1 Introduction
In this study, we consider linear partial differential-algebraic equations (PDAEs) of the
form

Aut(t,x) + Buxx(t,x) +Cu(t,x) = f (t,x), ()

where t ∈ (, te) and x ∈ (–l, l) ⊂ R, A,B,C ∈ Rn,xn are constant matrices, u, f : [, te] ×
[–l, l]→ Rn. We are interested in cases where at least one of the matrices, A or B, is singu-
lar. The two special cases A =  or B =  lead to ordinary differential equations or DAEs
which are not considered here. Therefore, in this paper we assume that none of the ma-
trices A or B is the zero matrix [–]. Many important mathematical models can be ex-
pressed in terms of PDAEs. Suchmodels arise inmany areas of mathematics, engineering,
the physical sciences and population growth. In recent years, much research has been fo-
cused on the numerical solution of PDAEs [, ]. Some numerical methods have been
developed using Runge-Kutta methods [, ]. The purpose of this paper is to consider the
numerical solution of PDAEs by using multivariate Padé approximations.

2 Two-dimensional differential transformation
The basic definition of the two-dimensional differential transform is given as follows
[–]:

W (k,h) =


k!h!

[
∂k+hw(x, y)

∂xk∂yh

]
,
, ()

where w(x, y) is the original function andW (k,h) is the transformed function. The trans-
formation is calledT-function and lower case and upper case letters represent the original
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and transformed functions respectively. The differential inverse transform of W (k,h) is
defined as

w(x, y) =
∞∑
k=

∞∑
h=

W (k,h)xkyh ()

and from Equations () and () can be concluded

w(x, y) =
∞∑
k=

∞∑
h=


k!h!

[
∂k+hw(x, y)

∂xk∂yh

]
,
xkyh. ()

3 Multivariate Padé approximants
Consider the bivariate function f (x, y) with Taylor series development

f (x, y) =
∞∑
i,j=

cijxiyj ()

around the origin.We know that a solution of the univariate Padé approximation problem
for

f (x) =
∞∑
i=

cixi ()

is given by

p(x) =

∣∣∣∣∣∣∣∣∣∣

∑m
i= cixi x

∑m–
i= cixi · · · xn

∑m–n
i= cixi

cm+ cm · · · cm+–n
...

...
. . .

...
cm+n cm+n– · · · cm

∣∣∣∣∣∣∣∣∣∣
()

and

q(x) =

∣∣∣∣∣∣∣∣∣∣

 x · · · xn

cm+ cm · · · cm+–n
...

...
. . .

...
cm+n cm+n– · · · cm

∣∣∣∣∣∣∣∣∣∣
. ()

Let us now multiply the jth row in p(x) and q(x) by xj+m– (j = , . . . ,n + ) and afterwards
divide the jth column in p(x) and q(x) by xj– (j = , . . . ,n+). This results in amultiplication

http://www.advancesindifferenceequations.com/content/2013/1/8


Yigider and Çelik Advances in Difference Equations 2013, 2013:8 Page 3 of 10
http://www.advancesindifferenceequations.com/content/2013/1/8

of numerator and denominator by xmn. Having done so, we get

p(x)
q(x)

=

∣∣∣∣∣∣∣∣∣∣

∑m
i= cixi

∑m–
i= cixi · · · ∑m–n

i= cixi

cm+xm+ cmxm · · · cm+–nxm+–n

...
...

. . .
...

cm+nxm+n cm+n–xm+n– · · · cmxm

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

  · · · 
cm+xm+ cmxm · · · cm+–nxm+–n

...
...

. . .
...

cm+nxm+n cm+n–xm+n– · · · cmxm

∣∣∣∣∣∣∣∣∣∣

()

if (D = detDm,n �= ).
This quotient of determinants can also immediately bewritten down for a bivariate func-

tion f (x, y). The sum
∑k

i= cixi will be replaced by the kth partial sum of the Taylor series
development of f (x, y) and the expression ckxk by an expression that contains all the terms
of degree k in f (x, y). Here a bivariate term cijxiyj is said to be of degree i + j.
If we define

p(x, y) =

∣∣∣∣∣∣∣∣∣∣

∑m
i+j= cijxiyj

∑m–
i+j= cijxiyj · · · ∑m–n

i+j= cijxiyj∑
i+j=m+ cijxiyj

∑
i+j=m cijxiyj · · · ∑

i+j=m+–n cijxiyj
...

...
. . .

...∑
i+j=m+n cijxiyj

∑m
i+j=m+n– cijxiyj · · · ∑m

i+j=m cijxiyj

∣∣∣∣∣∣∣∣∣∣
()

and

q(x, y) =

∣∣∣∣∣∣∣∣∣∣

  · · · ∑
i+j=m+ cijxiyj

∑
i+j=m cijxiyj · · · ∑

i+j=m+–n cijxiyj
...

...
. . .

...∑
i+j=m+n cijxiyj

∑m
i+j=m+n– cijxiyj · · · ∑m

i+j=m cijxiyj

∣∣∣∣∣∣∣∣∣∣
, ()

then it is easy to see that p(x, y) and q(x, y) are of the form

p(x, y) =
mn+m∑
i+j=mn

aijxiyj,

q(x, y) =
mn+n∑
i+j=mn

bijxiyj.

()

We know that p(x, y) and q(x, y) are called Padé equations [, ]. So, the multivariate
Padé approximant of order (m,n) for f (x, y) is defined as

rm,n(x, y) =
p(x, y)
q(x, y)

. ()
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4 Numerical example
The test problem considers the following PDAE []:

⎛
⎜⎝
  
 – 
 – 

⎞
⎟⎠ut +

⎛
⎜⎝
–  
  
  –

⎞
⎟⎠uxx +

⎛
⎜⎝
  
 – 
  

⎞
⎟⎠u = f ,

x ∈ [–., .], t ∈ [, ], ()

where

f = –xe–

 t – e–t ,

f = –xe–t –


xe–


 t ,

f = –xe–t +


xe–


 t +

(
x – 

)
sin t.

The exact solution is

u(x, t) =

⎛
⎜⎝

xet

xe– 
 t

x sin t

⎞
⎟⎠ . ()

Equivalently, Equation () can be written as

⎛
⎜⎝
  
 – 
 – 

⎞
⎟⎠

⎛
⎜⎝
ut
ut
ut

⎞
⎟⎠ +

⎛
⎜⎝
–  
  
  –

⎞
⎟⎠

⎛
⎜⎝
uxx
uxx
uxx

⎞
⎟⎠ +

⎛
⎜⎝
  
 – 
  

⎞
⎟⎠

⎛
⎜⎝
u
u
u

⎞
⎟⎠ =

⎛
⎜⎝
f
f
f

⎞
⎟⎠ . ()

By using the basic definition of the two-dimensional differential transform and taking
the transform of Equation (), we can obtain that

(k + )U(k + ,h) – (h + )(h + )U(k,h + ) = F(k,h),

(k + )U(k + ,h) – (k + )U(k + ,h) –U(k,h) = F(k,h),

(k + )U(k + ,h) – (k + )U(k + ,h) – (h + )(h + )U(k,h + ) +U(k,h)

= F(k,h).

Consequently, by substituting the values of ui, we have obtained

u(x, t) = x – xt +


xt –



xt +




xt –



xt +




xt,

u(x, t) = x –


xt +



xt –




xt +



xt –




xt –



xt,

u(x, t) = xt –


xt +




xt.
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Table 1 Comparison of the numerical solution of u1(x, t) with exact solutions (t = 0.01)

x u1(x, t) r4,3(x, t) |u1(x, t) – r4,3(x, t)|
–0.5 0.2475124584 0.2475124584 0
–0.4 0.1584079734 0.1584079734 0
–0.3 0.08910448503 0.08910448502 1.10–11

–0.2 0.03960199335 0.03960199334 1.10–11

–0.1 0.009900498337 0.009900498336 1.10–12

0.1 0.009900498337 0.009900498336 1.10–12

0.2 0.03960199335 0.03960199334 1.10–11

0.3 0.08910448503 0.08910448502 1.10–11

0.4 0.1584079734 0.1584079734 0
0.5 0.2475124584 0.2475124584 0

Figure 1 Values of u1(x, t).

Figure 2 Values of r4,3(x, t) Padé approximant.
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Table 2 Comparison of the numerical solution of u2(x, t) with exact solutions (t = 0.01)

x u2(x, t) r4,3(x, t) |u2(x, t) – r4,3(x, t)|
–0.5 0.2487531198 0.2487531198 0
–0.4 0.1592019967 0.1592019967 0
–0.3 0.08955112313 0.08955112314 1.10–11

–0.2 0.03980049917 0.03980049917 0
–0.1 0.009950124792 0.009950124793 1.10–12

0.1 0.009950124792 0.009950124793 1.10–12

0.2 0.03980049917 0.03980049917 0
0.3 0.08955112313 0.08955112314 1.10–12

0.4 0.1592019967 0.1592019967 0
0.5 0.2487531198 0.2487531198 0

Figure 3 Values of u2(x, t).

Figure 4 Values of r4,3(x, t) Padé approximant.
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Table 3 Comparison of the numerical solution of u3(x, t) with exact solutions (t = 0.01)

x u3(x, t) r4,3(x, t) |u3(x, t) – r4,3(x, t)|
–0.5 0.002499958334 0.002499958333 1.10–12

–0.4 0.001599973333 0.001599973333 0
–0.3 0.0008999850001 0.0008999850000 1.10–13

–0.2 0.0003999933334 0.0003999933333 1.10–13

–0.1 0.00009999833334 0.00009999833333 1.10–14

0.1 0.00009999833334 0.00009999833333 1.10–14

0.2 0.0003999933334 0.0003999933333 1.10–13

0.3 0.0008999850001 0.0008999850000 1.10–13

0.4 0.001599973333 0.001599973333 0
0.5 0.002499958334 0.002499958333 1.10–12

Figure 5 Values of u3(x, t).

Figure 6 Values of r4,3(x, t) Padé approximant.
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The power series u(x, t), u(x, t) and u(x, t) can be transformed into multivariate Padé
approximation

m = , n = ,

p(x, t) =

∣∣∣∣∣∣∣∣∣∣

x – xt + 
x

t x – xt x 
– 

x
t 

x
t –xt x


x

t – 
x

t 
x

t –xt


x
t 

x
t – 

x
t 

x
t

∣∣∣∣∣∣∣∣∣∣
=




xt –



xt +




xt

= .xt + .xt + .xt,

q(x, t) =

∣∣∣∣∣∣∣∣∣∣

   
– 

x
t 

x
t –xt x


x

t – 
x

t 
x

t –xt


x
t 

x
t – 

x
t 

x
t

∣∣∣∣∣∣∣∣∣∣
=




xt +



xt +




xt +



xt

= .xt + .xt + .xt

+ .xt,

r(x, t) =
(




xt –



xt +




xt
)

/(



xt +




xt +



xt +




+ xt
)

=
(
.xt + .xt + .xt

)
/
(
.xt + .xt + .xt

+ .xt
)
,

p(x, t) =

∣∣∣∣∣∣∣∣∣∣

x – 
x

t + 
x

t x – 
x

t x 
– 

x
t 

x
t – 

x
t x


x

t – 
x

t 
x

t – 
x

t


x
t 

x
t – 

x
t 

x
t

∣∣∣∣∣∣∣∣∣∣
=




xt –



xt +




xt

= .xt – .xt

+ .xt,

q(x, t) =

∣∣∣∣∣∣∣∣∣∣

   
– 

x
t 

x
t – 

x
t x


x

t – 
x

t 
x

t – 
x

t


x
t 

x
t – 

x
t 

x
t

∣∣∣∣∣∣∣∣∣∣
=




xt +



xt +




xt +



xt
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= .xt + .xt

+ .xt + .xt,

r(x, t) =
(




xt –



xt +




xt
)

/(



xt +




xt +



xt +




xt
)

=
(
.xt – .xt

+ .xt
)

/
(
.xt + .xt

+ .xt + .xt
)
,

p(x, t) =

∣∣∣∣∣∣∣∣∣

xt xt  
– 

x
t  xt 

 – 
x

t  xt


x
t  – 

x
t 

∣∣∣∣∣∣∣∣∣
=




xt

= .xt,

q(x, t) =

∣∣∣∣∣∣∣∣∣

   
– 

x
t  xt 

 – 
x

t  xt


x
t  – 

x
t 

∣∣∣∣∣∣∣∣∣
=

(



xt +




xt
)

= .xt + .xt,

r(x, t) =
(




xt
)/(




xt +



xt

)

=
(
.xt

)
/
(
.xt + .xt

)
.

5 Conclusions
The method for solving partial differential-algebraic equations (PDAEs) has been pro-
posed. The results of the example showed from Tables - and Figures - that exactly the
same solutions have been obtained with multivariate Padé approximation. On the other
hand, the results are quite reliable. Therefore, this method can be applied to many com-
plicated PDAEs.
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8. Yiğider, M, Çelik, E: The numerical solution of partial differential-algebraic equations (PDAEs) by multivariate Padé

approximation. Eur. J. Pure Appl. Math. 4, 67-75 (2011)
9. Zhou, JK: Differential Transform and Its Applications for Electrical Circuits. Huarjung University Press, Wuhan (1986)
10. Ayaz, F: On the two-dimensional differential transform method. Appl. Math. Comput. 143, 361-374 (2003)
11. Ayaz, F: Solutions of the system of differential equations by differential transform method. Appl. Math. Comput. 147,

547-567 (2004)
12. Bildik, N, Konuralp, A: Two-dimensional differential transform method, Adomian’s decomposition method and

variational iteration method for partial differential equations. Int. J. Comput. Math. 83(12), 973-987 (2006)
13. Adomian, G: Convergent series solution of nonlinear equations. J. Comput. Appl. Math. 11, 225-230 (1984)
14. Celik, E, Karaduman, E, Bayram, M: Numerical solutions of chemical differential-algebraic equations. Appl. Math.

Comput. 139(2-3), 259-264 (2003)

doi:10.1186/1687-1847-2013-8
Cite this article as: Yigider and Çelik: The numerical solution of partial differential-algebraic equations. Advances in
Difference Equations 2013 2013:8.

http://www.advancesindifferenceequations.com/content/2013/1/8
http://dx.doi.org/10.5402/2012/737206

	The numerical solution of partial differential-algebraic equations
	Abstract
	Keywords

	Introduction
	Two-dimensional differential transformation
	Multivariate Padé approximants
	Numerical example
	Conclusions
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


