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Abstract
The space fractional Schrödinger equation was further extended to the concept of
space fractional variable-order derivative. The generalized equation is very difficult to
handle analytically. We solved the generalized equation numerically via the
Crank-Nicholson scheme. The stability and the convergence of the space fractional
variable-order Schrödinger equation were presented in detail.
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1 Introduction
In quantum mechanics, the Schrödinger equation is a partial differential equation that
describes how the quantum state of some physical system changes with time. It was for-
mulated in late , and published in , by the Austrian physicist Erwin Schrödinger.
Fractional-order derivatives can be dated back to the seventeenth century []. It has pri-
marily developed as a pure notional field of mathematics since its appearance. However,
fractional-order differential systems have been proved to be useful in physics, engineer-
ing and even financial analysis in the last few decades []. The fractional-order dynamical
systems consist of viscoelastic systems [], dielectric polarization [], electrode-electrolyte
polarization [], electromagnetic waves [], quantitative finance [] and quantum evolu-
tion of complex systems []. In particular, in fractional quantum evolution fields, there are
many results obtained by some scholars (see in [–]). For instance, Laskin put up the
space fractional quantum mechanics in  [–], and the Schrödinger equation with
space fractional derivative was also studied [–]. In the same way, the time fractional
Schrödinger equationwas also discussed in theworks [–]. However,many researchers
in the field ofmathematics and physics paid attention to study physical problems described
by the variable order derivative (see [–]). As a result of important differences between
fractional order differential equations (FODE) and variable-order differential equations
(VFODE), most characteristics or conclusions of the FODE systems can sometimes be ex-
tended to the case of the VFODE systems. Recently, many efforts have been devoted to the
study of chaotic dynamics of variable-order differential systems [–].Many current re-
sults about variable-order chaotic systems, however, are accomplished only by numerical
simulations. In this work we further investigate the possibility of extension of the frac-
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tional Schrödinger equation to the concept of variable-order time fractional. The stability
and the convergence of the new equation will be investigated in detail.

2 Problem formulation
For the readers that are not acquainted with the concept of the variable-order derivative,
we start this section and we present the basic definition of this derivative.

2.1 Variable-order differential operator
Let f : R → R, x → f (x) denote a continuous and necessary differentiable, let α(x) be a
continuous function in (, ]. Then its variation-order differential is defined as:

Dα(x)


(
f (x)

)
=


�( – α(x))

∫ x


(x – t)–α(t) df (t)

dt
dt. (.)

The above derivative is called the Caputo variable-order differential operator; in addition,
the derivative of the constant is zero.

2.2 Modification of the Schrödinger equation
The most famous example is the nonrelativistic Schrödinger equation for a single particle
moving in an electric field as given below

i
h
π

∂�(r, t)
∂t

=
[
–
[ h
π ]



m
∇ +V (r, t)

]
�(r, t), (.)

where m is the particle’s mass, V is its potential energy, ∇ is the Laplacian, and � is
the wave-function, more precisely, in this context, it is called the position-space wave-
function. In plain language, it means total energy equals kinetic energy plus potential en-
ergy. The Schrödinger equation plays the role of Newton’s law and conservation of energy
in classical mechanics meaning it predicts the future behavior of a dynamic system. It is
a wave equation in terms of the wave-function, which predicts analytically and precisely
the probability of events or outcome. The detailed outcome is not strictly determined, but
given a large number of events, the Schrödinger equation will predict the distribution of
results. The kinetic and potential energies are transformed into the Hamiltonian which
acts upon the wave-function to generate the evolution of the wave-function in time and
space. The Schrödinger equation gives the quantized energies of the system and gives the
form of the wave-function so that other properties may be calculated. This equation was
extended to the concept of fractional order derivative with great success (see [–]). In
this paper we extend this equation to the concept of fractional variable-order derivative
by replacing the Laplace operator in Equation (.) by the variable-order Laplace operator
to obtain:

i
h
π

∂�(r, t)
∂t

=
[
–
[ h
π ]



m
∇α(x,t) +V (r, t)

]
�(r, t),  < α(x, t)≤ . (.)

The above equation will be called the space fractional variable-order Schrödinger equa-
tion. This modified equation cannot be solved analytically, therefore, in the following
section we present, the discussion underpinning the numerical solution via the Crank-
Nicholson scheme.
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3 Numerical solution of themodified equation
Environmental phenomena, such as space fractional variable-order Schrödinger equation,
are highly complex phenomena, which do not lend themselves readily to analysis of an-
alytical models. The discussion presented in this section will therefore be devoted to the
derivation of numerical solution to the space fractional variable-order Schrödinger equa-
tion (.).
Numerical methods yield approximate solutions to the governing equation through the

discretization of space and time. Within the discretized problem domain, the variable in-
ternal properties, boundaries, and stresses of the system are approximated. Determinis-
tic, distributed-parameter, numerical models can relax the rigid idealized conditions of
analytical models or lumped-parameter models, and they can therefore be more realistic
and flexible for simulating fields conditions. The finite difference schemes for constant-
order time or space fractional diffusion equations have been extensively considered in
the literature; see, for instance, the work done in [–]. For constant-order time frac-
tional diffusion equations, an implicit difference approximation scheme was presented in
[]. The weighted average finite difference method was initiated in []. Podlubny pro-
posed the matrix approach for fractional diffusion equations [] and Hanert proposed
a flexible numerical scheme for the discretization of the space-time fractional diffusion
equation []. Recently, Zhuang well thought out the numerical schemes for the variable-
order (VO) space fractional advection-dispersion equation []. Lin studied the explicit
scheme for the VO nonlinear space fractional diffusion equation []. Recently, Atangana
and Botha presented the stability and the convergence of the generalized time-fractional
variable-order groundwater flow equation [].

3.1 Crank-Nicholson scheme
Before performing the numerical methods, we assume Equation (.) has a unique and
sufficiently smooth solution. To establish the numerical schemes for the above equation,
we let xl = lh,  ≤ l ≤ M, Mh = L, tk = kτ ,  ≤ k ≤ N , Nτ = T , h is the step and τ is the
time size,M and N are grid points.
We introduce the Crank-Nicholson scheme as follows. Firstly, the discretization of first

and second-order space derivative is stated as

∂�

∂t
=



((
�(rl+, tk+) –�(rl+, tk–)

(τ )

)
+

(
�(rl, tk+) –�(rl, tk–)

(τ )

))
+O(τ ), (.)

V =


(
V (rl, tk+) +V (rl, tk)

)
. (.)

The Crank-Nicholson scheme for the VO space fractional Schrödinger equation can be
stated as follows:

∂αk+l �(rl, tk+)

∂rα
k+
l

=
h–αk+l

�( – αk+
l )

(
�(rl+, tk) –�(rl, tk) +

k∑
j=

[
�(rl+–j, tk) –�(rl–j, tk)

]

× [
(j + )–αk+l – (j)–αk+l

])
+O(h). (.)
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It is important to point out that the quadrature formula (.) does not provide the val-
ues of the time fractional derivative at r =  which are not required by the implicit finite
difference and the Crank-Nicholson method schemes that follow.
Now, the Crank-Nicholson method with the discrete formulas (.), (.) and (.) is

used to estimate the space variable-order fractional derivative to solve numerically the VO
space fractional Schrödinger equation (.). If the potential is bounded from below,mean-
ing there is a minimum value of potential energy, the eigen-functions of the Schrödinger
equation have energy, which is also bounded from below. This can be seen most easily by
using the variational principle. For simplicity, we assume that the potential energy V has
upper and lower boundaries, and we consider its average value V (r, t) = V in this paper.
Using (.), (.) and (.) the restriction of the exact solution to the grid points centred
at (xl; tk) = (lh; τk); in Equation (.), satisfies for l = , , . . . ,N – :



i
h
π

((
�(rl+, tk+) –�(rl+, tk–)

(τ )

)
+

(
�(rl, tk+) –�(rl, tk–)

(τ )

))
+O(τ )

–V
[


(
�(rl, tk+) +�(rl, tk)

)]

=
[ h
π ]



m
h–αk+l

�( – αk+
l )

(
�(rl+, tk) –�(rl, tk)

+
k∑
j=

[
�(rl+–j, tk) –�(rl–j, tk)

][
(j + )–αk+l – (j)–αk+l

])
+O(h),



i
h
π

((
�(rl+, tk+) –�(rl+, tk–)

(τ )

)
+

(
�(rl, tk+) –�(rl, tk–)

(τ )

))

–V
[


(
�(rl, tk+) +�(rl, tk)

)]

=
[ h
π ]



m
h–αk+l

�( – αk+
l )

(
�(rl+, tk) –�(rl, tk)

+
k∑
j=

[
�(rl+–j, tk) –�(rl–j, tk)

][
(j + )–αk+l – (j)–αk+l

])
+ T(r, t),

(.)

where T(r, t) is the truncation term. Thus, according to Equation (.), the numerical
method is consistent, first order correct in time and second order correct in space.
Now, for simplicity, we let �(rl, tk) = �k

l such that, the resulting finite difference equa-
tions are defined by



i
h
π

((
�k+

l+ –�k–
l+

(τ )

)
+

(
�k+

l –�k–
l

(τ )

))
–V

[


(
�k+

l +�k
l
)]

=
[ h
π ]



m
h–αk+l

�( – αk+
l )

(
�k

l+ –�k
l

+
k∑
j=

[
�k

l+–j –�k
l–j

][
(j + )–αk+l – (j)–αk+l

])
. (.)
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Setting

Hk+
l =

( [ h
π ]



m

)– h+αk+l i�( – αk+
l )

πτ
;

Vk+
l =

–Vhαk+l �( – αk+
l )



( [ h
π ]



m

)–

, (.)

bl,k+j = (j + )–αk+l – (j)–αk+l and λ
l,k+
j = bl,k+j– – bl,k+j .

Substituting (.) into (.) and reordering, we obtained the following:

Hk+
l

((
�k+

l+ –�k–
l+

)
+

(
�k+

l –�k–
l

))
+Vk+

l
[(

�k+
l +�k

l
)]

=

(
�k

l+ –�k
l +

k∑
j=

[
�k

l+–j –�k
l–j

]
bl,k+j

)
. (.)

With the inclusion of the boundary conditions:�k
 = �k

N = , n = , , . . . ,N –. It is impor-
tant to note that, Equation (.) requires, at each time step, to solve a tri-diagonal systemof
linear equations where the right-hand side utilizes all the history of the computed solution
up to that time.
Our next concern here is to show that the stability of the fractional numerical schemes

can be analyzed very successfully with no trouble and powerfully with the distinguished
Von Neumann method of non-fractional partial differential equations [].

4 Stability analysis of space fractional variable-order Schrödinger equation
In this section, we will analyze the stability conditions of the Crank-Nicholson scheme for
the space fractional variable-order Schrödinger equation.
Let ζ k

l = �k
l –Xk

l , here X
k
l is the approximate solution at the point (xl, tk) (k = , , . . . ,N ,

l = , , . . . ,M – ) and in addition ζ k = [ζ k
 , ζ k

 , . . . , ζ k
M–]T and the function ζ k(x) is chosen

to be:

ζ k(x) =

⎧⎨
⎩ζ k

l if xl – h
 < x≤ xl + h

 , l = , , . . . ,M – ,

 if L – h
 < x ≤ L.

(.)

Then, the function ζ k(x) can be expressed in Fourier series as follows:

ζ k(x) =
m=∞∑
m=–∞

δm(m) exp[iπmk/L],

δk(x) =

L

∫ L


ρk(x) exp

[
iπmx

L

]
dx.

(.)

It was established by [] that

∥∥ρ∥∥
 =

m=∞∑
m=–∞

∥∥δk(m)
∥∥. (.)

Observe that for all k, l ≥ ,  ≤  – αk+
l < . In addition, according to the problem under

investigation, the Planck constant h, m the particle’s mass and V its potential energy are
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positive constants. Then the following properties of the coefficients Hk+
l , Vk+

l , λl,k+
j and

bk+l can be established:

. –Vk+
l ,Hk+

l are positive for all l = , , . . . ,M – ,

.  < λ
l,k
j ≤ λ

l,k
j– ≤  for all l = , , . . . ,M – ,

.  ≤ bl,kj ≤ ,
∑k–

j= b
l,k+
j+ =  – λ

l,k+
k for all l = , , . . . ,M – .

(.)

Note that in this case, the error committed while approximating the solution of the space
fractional variable-order Schrödinger equation with the Crank-Nicholson scheme can be
presented as follows:

Hk+
l

((
ζ k+
l+ – ζ k–

l+
)
+

(
ζ k+
l – ζ k–

l
))

+Vk+
l

[(
ζ k+
l + ζ k

l
)]

=

(
ζ k
l+ – ζ k

l +
k∑
j=

[
ζ k
l+–j – ζ k

l–j
]
bl,k+j

)
. (.)

If we assume that: ζ k
l in Equation (.) can be put in the delta-exponential form as follows:

ζ k
l = δk exp[iϕlk], (.)

where ϕ is a real spatial wave number, new replacing the above Equation (.) in (.) we
obtain the following expression:

δk+

(
H+k

l sin
(

ϕh


)
+ V +k

l sin
(

ϕh


))

=
[
– – V +k

l sin
(

ϕh


)
– λ

l,k+


]
δk +

k–∑
j=

λ
l,k+
j+ δk–j + λ

l,k+
k δ for k ≥ , (.)

δ

(
H

l sin

(

ϕh


)
+ V 

l sin

(

ϕh


))
=

[
– – V 

l sin

(

ϕh


)]
δ for k = . (.)

We next show that, for all k = , , . . . ,N –  the solution of Equation (.) complies with
the following condition:

|δk| < |δ|.

To achieve this, we make use of the recurrence technique on the natural number k.
For k =  and –Vk+

l , Hk+
l are positive for all l = , , . . . ,M – , then we obtain:

|δ|
|δ| =

∣∣∣∣ [ + V 
l sin

( ϕh
 )]

[H
l sin

( ϕh
 ) + V 

l sin
( ϕh

 )]

∣∣∣∣ < . (.)

The condition is true for k = .
Assuming that form = , , . . . ,k the property is verified. Then

|δk+| =
∣∣∣∣ [– – V +k

l sin( ϕh
 ) – λ

l,k+
 ]δk +

∑k–
j= λ

l,k+
j+ δk–j + λ

l,k+
k δ

H+k
l sin( ϕh

 ) + V +k
l sin( ϕh

 )

∣∣∣∣. (.)
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Using the triangular inequality we obtain:

|δk+| ≤
| – – V +k

l sin( ϕh
 ) – λ

l,k+
 ||δk| +∑k–

j= |λl,k+
j+ ||δk–j| + |λl,k+

k ||δ|
|H+k

l sin( ϕh
 ) + V +k

l sin( ϕh
 )|

,

|δk+| ≤
| + V +k

l sin( ϕh
 ) +

∑k–
j= |λl,k+

j+ |||δ|
|H+k

l sin( ϕh
 ) + V +k

l sin( ϕh
 )|

,

|δk+| ≤ |H+k
l sin( ϕh

 ) + V +k
l sin( ϕh

 )||δ|
|H+k

l sin( ϕh
 ) + V +k

l sin( ϕh
 )|

,

(.)

|δk+| ≤ |δ|,

and the proof is completed.

5 Convergence analysis of space fractional variable-order Schrödinger
equation

Assuming that, �(rl, tk) (l = , , . . . ,M, k = , , . . . ,N –) is the exact solution of our prob-
lem at the point (rl, tk), by letting �k

l = �(rl, tk) –Xk
l and �k = (,�k

 ,�k
, . . . ,�k

M–) substi-
tuting this in Equation (.), we obtain:

�
l
(
H

l +V 
l
)
+�

l+
(
H

l
)
= T 

l for k = ,

�k+
l

(
Hk+

l +Vk+
l

)
+�k+

l+H
k+
l = Tk+

l for k ≥ ,
(.)

here

Tk+
l =



i
h
π

((
�(rl+, tk+)

(τ )

)
+

(
�(rl, tk+)

(τ )

))
–V

[


(
�(rl, tk+)

)]
.

From Equations (.) and (.) we have the following:

∂�

∂t
+Vτ =




((
�(rl+, tk+) –�(rl+, tk–)

(τ )

)
+

(
�(rl, tk+) –�(rl, tk–)

(τ )

))
,

∂αk+l �(rl, tk+)

∂rα
k+
l

+wh (.)

=
h–αk+l

�( – αk+
l )

(
�(rl+, tk) –�(rl, tk) +

k∑
j=

λ
l,k+
j+ �(rl–j, tk) – bl,k+j �(rl, t)

)
.

From the above we have that:

Tk+
l ≤ K

(
h+αk+l + τhαkl

)
, (.)

whereV ,w andK are constants. Taking into account theCaputo type fractional derivative,
the detailed error analysis on the above schemes can refer to the work in [] and further
work in [].
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Lemma  ‖�k+‖∞ ≤ K(h+αk+l + τhαkl )(�l,k+
j )– is true for k = , , , . . . ,N –  where

‖wk‖∞ =max≤l≤M–(�k), K is a constant. In addition,

αk+ =

⎧⎨
⎩min≤l≤M– α

k+
l , if τ < ,

max≤l≤M– α
k+
l , if τ > .

This can be achieved via the recurrence technique on the natural number k.When k = ,
we have the following:

∣∣�
l
∣∣ ≤ ∣∣�

l
∣∣(H

l +V 
l
)
+

∣∣�
l+

∣∣(H
l
)
=

∣∣T 
l
∣∣ ≤ K

(
h+αk+l + τhαkl

)(
�

l,k+
j

)–. (.)

Now suppose that ‖�i+‖∞ ≤ K(τ +αi+l + hταil )(λl,i+
j )–, i = , . . . ,N – . Then

∣∣�k+
l

∣∣ ≤
∣∣∣∣∣�k+

l
(
Hk+

l +Vk+
l

)
+�k+

l+H
k+
l –

k–∑
j=

λ
l,k+
j+ �k–j – λ

l,k+
k �

∣∣∣∣∣,
∣∣�k+

l
∣∣ ≤ ∣∣�k+

l
∣∣(Hk+

l +Vk+
l

)
+

∣∣�k+
l+

∣∣Hk+
l +

k–∑
j=

λ
l,k+
j+ |�k–j| + λ

l,k+
k |�|.

Using the recurrence hypothesis, the above equation is reduced to the following expres-
sion:

∣∣�k+
l

∣∣ ≤
∣∣∣∣∣Tk+

l +
k–∑
j=

λ
l,k+
j+ �k–j

∣∣∣∣∣,
∣∣�k+

l
∣∣ ≤ ∣∣Tk+

l
∣∣ + k–∑

j=

λ
l,k+
j+ |�k–j|,

∣∣�k+
l

∣∣ ≤ K
(
τ +αi+l + hταil

)
+

k–∑
j=

λ
l,k+
j+ ‖�k–j‖∞,

∣∣�k+
l

∣∣ ≤ K
(
τ +αi+l + hταil

)(
λ
l,k+
j + λ

l,k+
 – λ

l,k+
j

)(
λ
l,k+
j

)–,
(.)

∣∣�k+
l

∣∣ ≤ K
(
τ +αi+l + hταil

)(
λ
l,k+


)(
λ
l,k+
j

)–,∣∣�k+
l

∣∣ ≤ K
(
τ +αi+l + hταil

)(
λ
l,k+
j

)–,
and the proof is completed.

Theorem TheCrank-Nicholson scheme of the space fractional variable-order Schröding-
er equation is convergent, and there exists a positive constant K such that:

∣∣Xk
l –�(xl, tk)

∣∣ ≤ K
(
τ + h

)
, l = , , . . . ,M – ,k = , , . . . ,N . (.)

An interested reader can find the solvability of the Crank-Nicholson scheme in the work
done in []. Therefore, the details of the proof will not be presented in this paper.
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6 Conclusion
We paid attention to study a possible generalization of the Schrödinger equation to
the concept of space fractional variable-order derivative. The Laplace operator in the
Schrödinger equation was replaced by the fractional variable Laplace operator. Since the
new equation cannot be solved analytically, it was solved numerically via the Crank-
Nicholson technique.
We presented in detail the stability and the convergence of this problem.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AA wrote the first draft and AHC corrected and improved the final version. All authors read and approved the final draft.

Author details
1Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein,
South Africa. 2Department of Mathematics and Applied Mathematics, University of the Free State, Bloemfontein, South
Africa.

Acknowledgements
Authors would like to thank the editor for his valuable time spared to access this manuscript and for his valuable
comments toward the enhancement of this paper. Also, the authors would like to thank the anonymous referee for their
valuable comments and suggestions toward the enhancement of this manuscript.

Received: 22 February 2013 Accepted: 20 March 2013 Published: 28 March 2013

References
1. Podlubny, I: Fractional Differential Equations. Academic Press, New York (1999)
2. Atangana, A, Secer, A: The time-fractional coupled-Korteweg-de-Vries equations. Abstr. Appl. Anal. 2013, Article ID

947986 (2013). doi:10.1155/2013/947986
3. Bagley, R, Calico, R: Fractional order state equations for the control of visco-elastically damped structures. J. Guid.

Control Dyn. 14, 304-311 (1991)
4. Sun, H, Abdelwahed, A, Onaral, B: Linear approximation for transfer functions with a pole of fractional order. IEEE

Trans. Autom. Control 29, 441-444 (1984)
5. Ichise, M, Nagayanagi, Y, Kojima, T: An analog simulation of non-integer order transfer functions for analysis of

electrode process. J. Electroanal. Chem. Interfacial Electrochem. 33, 253-265 (1971)
6. Heaviside, O: Electromagnetic Theory. Chelsea, New York (1971)
7. Laskin, N: Fractional market dynamics. Physica A 287, 482-492 (2000)
8. Kunsezov, D, Bulagc, A, Dang, G: Quantum Lévy processes and fractional kinetics. Phys. Rev. Lett. 2, 1136-1139 (1999)
9. Laskin, N: Fractional quantum mechanics. Phys. Rev. E 62, 3135-3145 (2000)
10. Laskin, N: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 298, 298-305 (2000)
11. Laskin, N: Fractals and quantum mechanics. Chaos 10, 780-790 (2000)
12. Laskin, N: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)
13. Guo, X, Xu, M: Some physical applications of fractional Schrödinger equation. J. Math. Phys. 47, 82104 (2006)
14. Dong, J, Xu, M: Solutions to the space fractional Schrödinger equation using momentum representation method.

J. Math. Phys. 48, 072105 (2007)
15. Wang, S, Xu, M: Generalized fractional Schrödinger equation with space-time fractional derivatives. J. Math. Phys. 48,

043502 (2007)
16. Dong, J, Xu, M: Space-time fractional Schrödinger equation with time-independent potentials. J. Math. Anal. Appl.

344, 1005-1017 (2008)
17. Naker, M: Time fractional Schrödinger equation. J. Math. Phys. 45(8), 3339-3352 (2004)
18. Umarov, S, Steinberg, S: Variable order differential equations and diffusion with changing modes. Z. Anal. Anwend.

28, 431-450 (2009)
19. Sun, HG, Chen, W, Chen, YQ: Variable order fractional differential operators in anomalous diffusion modeling. Physica

A 388, 4586-4592 (2009)
20. Samko, SG, Ross, B: Integration and differentiation to a variable fractional order. Integral Transforms Spec. Funct. 1,

277-300 (1993)
21. Pedro, HTC, Kobayashi, MH, Pereira, JMC, Coimbra, CFM: Variable order modeling of diffusive-convective effects on

the oscillatory flow past a sphere. J. Vib. Control 14, 1659-1672 (2008)
22. Solomon, TH, Weeks, ER, Swinney, HL: Observation of anomalous diffusion and Lévy flights in a two-dimensional

rotating flow. Phys. Rev. Lett. 71, 3975-3978 (1993)
23. Zhuang, P, Liu, F, Anh, V, Turner, I: Numerical methods for the variable-order fractional advection-diffusion equation

with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760-1781 (2009)
24. Lin, R, Liu, F, Anh, V, Turner, I: Stability and convergence of a new explicit finite-difference approximation for the

variable-order nonlinear fractional diffusion equation. Appl. Math. Comput. 212, 435-445 (2009)
25. Yuste, SB, Acedo, L: An explicit finite difference method and a new Von Neumann-type stability analysis for fractional

diffusion equations. SIAM J. Numer. Anal. 42, 1862-1874 (2005)

http://www.advancesindifferenceequations.com/content/2013/1/80
http://dx.doi.org/10.1155/2013/947986


Atangana and Cloot Advances in Difference Equations 2013, 2013:80 Page 10 of 10
http://www.advancesindifferenceequations.com/content/2013/1/80

26. Lin, Y, Xu, C: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225,
1533-1552 (2007)

27. Atangana, A, Botha, JF: Generalized groundwater flow equation using the concept of variable order derivative.
Bound. Value Probl. 2013, 53 (2013). doi:10.1186/1687-2770-2013-53

28. Atangana, A, Kılıçman, A: A possible generalization of acoustic wave equation using the concept of perturbed
derivative order. Math. Probl. Eng. 2013, Article ID 696597 (2013). doi:10.1155/2013/696597

doi:10.1186/1687-1847-2013-80
Cite this article as: Atangana and Cloot: Stability and convergence of the space fractional variable-order Schrödinger
equation. Advances in Difference Equations 2013 2013:80.

http://www.advancesindifferenceequations.com/content/2013/1/80
http://dx.doi.org/10.1186/1687-2770-2013-53
http://dx.doi.org/10.1155/2013/696597

	Stability and convergence of the space fractional variable-order Schrödinger equation
	Abstract
	Keywords

	Introduction
	Problem formulation
	Variable-order differential operator
	Modiﬁcation of the Schrödinger equation

	Numerical solution of the modiﬁed equation
	Crank-Nicholson scheme

	Stability analysis of space fractional variable-order Schrödinger equation
	Convergence analysis of space fractional variable-order Schrödinger equation
	Conclusion
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


