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Abstract
Utilizing the theory of elliptic curves over C to the normalized lattice �τ , its
connection to the Weierstrass ℘-functions and to the Eisenstein series E4(τ ) and
E6(τ ), we establish some arithmetic identities involving certain arithmetic functions
and convolution sums of restricted divisor functions. We also prove some congruence
relations involving certain divisor functions and restricted divisor functions.
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1 Introduction
The study of arithmetical identities and congruences is classical in number theory and
such investigations have been carried out by several mathematicians including the leg-
end Srinivasa Ramanujan. This study constitutes an important and significant part of the
subject number theory.
For N ,m, r, s,d ∈ Z with d, s >  and r ≥ , we define some divisor functions for our use

in the sequel. Let

σs(N) =
∑
d|N

ds,

and let us define the restricted divisor function

σs,r(N ;m) =
∑
d|N

d≡r mod m

ds.

Note that

σ (N) := σ(N) =
∑
d|N

d.

For a,b,n ∈N, let us define the convolution sum

Sa,b(n) :=
n–∑
m=

σa(m)σb(n –m).
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Ramanujan showed that the sum Sa,b(n) can be evaluated in terms of σa+b+(n),σa+b–(n),
. . . ,σ(n),σ(n) for the nine pairs (a,b) ∈ N

 satisfying a + b = ,, , , , a≤ b, a ≡ b ≡ 
(mod ). For example, explicitly, we know (see []) that

S,(n) =


,
σ(n) +

(



–



n
)

σ(n) –


,
σ(n) ()

and (see [, p.])

S,(n) =


,
σ(n) –




σ(n) +



σ(n). ()

From [], we note that for any integer n≥ , we have

∑
(m,m,m)∈N

m+m+m=n

mmσ(m)σ(m)σ(m)

=



(
nσ(n) +

(
n – n

)
σ(n) –

(
n – n

)
σ(n)

)
. ()

For an elementary proof of () and (), we refer to []. An another interesting arithmetical
identity (which was stated by Ramanujan, see [, p.], for some analytical proofs of this
identity, one may refer to [, p.], [, p.] and [], also []) is for n ∈N, we have

n–∑
k=

σ(k + )σ(n – k) =



σ(n + ) –




σ(n + ). ()

There are some nice arithmetical identities connecting the divisor functions along with
Ramanujan’s τ -function. For instance, we know (see []) that

n–∑
m=

m(n –m)σ(m)σ(n –m) =



nσ(n) –




τ (n) ()

and from [], we observe that for n ∈N∪ {},

t(n) =


,

(
σ *
(n + ) – τ (n + ) – ,τ

(
n + 


))
, ()

where tk(n) denotes the number of representations of n as a sum of k triangular numbers,
i.e. (with N =N∪ {}),

tk(n) := #

{
(m, . . . ,mk) ∈ N

k


∣∣∣ n =


m(m + ) + · · · + 


mk(mk + )

}
,

σ *
k (n) :=

∑
d|n

n
d odd

dk ,

and τ (n) is the coefficient defined by the expression:

q
{
( – q)

(
 – q

) · · ·} = ∞∑
n=

τ (n)qn, q ∈C with |q| < .
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For any integer k ≥ , let

rk(n) := #
{
(x, . . . ,xk) ∈ Z

k | n = x + · · · + xk
}
.

An another identity worth mentioning (see []) is

r(n) =



σ **
 (n) +




(
(–)n–τ (n) – τ

(
n


))
, ()

where σ **
k (n) :=

∑
d|n(–)ddk and τ ( n ) =  if n

 is not an integer.
From (), () and (), it is immediate (and interesting) to note that, for n ∈N,

nσ(n) +
(
n – n

)
σ(n) –

(
n – n

)
σ(n) ≡  (mod ), ()

σ(n + ) – σ(n + )≡  (mod ) ()

and

nσ(n) – τ (n)≡  (mod ). ()

The proofs of all these identities and congruences heavily depend upon the theory ofmod-
ular functions and the properties of Eisenstein series. Later some of these identities have
been proved using only elementary techniques.
Define the integers a(n) (for n ∈N) by

∞∑
n=

a(n)qn = q
∞∏
n=

(
 – qn

), q ∈C with |q| < . ()

Also define the integers b(n) (for n ∈ N) by

∞∑
n=

b(n)qn = q
∞∏
n=

(
 – qn

)( – qn
), q ∈C with |q| < . ()

Note that a(n) ≡  if n ≡  (mod ) and b(n) ≡  if n ≡  (mod ). It has been proved by
Kenneth Williams (see [, ]) that (for n ∈ N),

r(n) = σ(n) – σ

(
n


)
+ a(n) ()

and

A(n) =



σ(n) +




σ

(
n


)
+




σ

(
n


)
+


σ

(
n


)

+
(




–



n
)

σ(n) +
(




–


n
)

σ

(
n


)
–




b(n),

where r(n) is as mentioned before and for s,n ∈N,

As(n) :=
∑
k∈N
k< n

s

σ(k)σ(n – sk).
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It should be mentioned that Bernoulli identities associated with the Weierstrass
℘-function have been studied by Chang and Srivastava in []. Families of Weierstrass
type functions and their applications have been investigated by Chang, Srivastava andWu
in []. It is also interesting to note that the families of Weierstrass type functions, Weber
type functions and their applications have been studied by Aygunes and Simsek in [].
A few more related references are [, ] and [].
Though there are plenty of identities and congruences involving various arithmetic

functions available in the literature, practically nothing seriously known involving re-
stricted divisor functions.
For any integerM ≥  withM = pe · · ·perr , we define ordpj M := ej.
Throughout the paper, q = eπ iτ where τ ∈ h = {x + yi | y > } unless otherwise specified

hereafter. The aim of this article is to prove some arithmetical identities involving certain
arithmetic functions and convolution sums of restricted divisor functions. We also estab-
lish some congruence relations similar to (), () and (). More precisely, we prove the
following theorems.

Theorem .
(i) For any integerM ≥ , we have

σ(M) ≡ σ(M) + σ,(M; ) (mod ).

(ii) Moreover, ifM is odd or ordpM is odd for an odd prime p, then

σ(M) ≡ σ(M) + σ,(M; ) (mod ).

Theorem . For any integer M ≥ , we have

–σ(M) + σ,(M; ) ≡ σ(M) – σ(M) (mod ).

Theorem . Let N ∈N. Then, we have

∑
n+l+m–=N
n,l,m≥

σ,(n – ; )σ,(l – ; )σ,(m – ; )

=



[
σ(N – ) – a(N – )

]
,

where

∞∑
N=

a(N)qN = q
∞∏
N=

(
 – qN

).
Corollary . For N ∈N, we have

(N + )a(N – ) ≡ (N + )σ(N – ) (mod ).

In particular, if N ≡ , (mod ), then we have

a(N – )≡ σ(N – ) (mod ).

http://www.advancesindifferenceequations.com/content/2013/1/84
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Theorem . Let N ∈N. Then we have

N–∑
M=

M–∑
m=

σ,(N –  – M; )σ,(M –m; )σ,(m; )

=


,
[
σ(N – ) – σ(N – ) + σ(N – ) + a(N – )

]
.

Remark The main idea in proving Theorems . and . is to obtain q-series expansions
for E(τ ) and E(τ ) with coefficients being restricted divisor functions and their convolu-
tion sums. Then we have to compare these expressions with the already known q-series
expressions of E(τ ) and E(τ ).

The paper is organized as follows. In Section , we express g(τ ) and g(τ ) in terms of
q-products. In Section , g(τ ) and g(τ ) are transformed into expressions involving S and
S where S and S are q-series expressionswith coefficients as restricted divisor functions.
Then we obtain q-series expressions for E(τ ) and E(τ ) with coefficients being restricted
divisor functions and their convolution sums. Thenwe compare these expressions of E(τ )
and E(τ ) with already known expressions. Section  concludes the proofs of Theorems .
and .. In proving arithmetical identities involving the coefficient a(n) (where a(n) is de-
fined as in ()), we need to study the quantities S and SS and in turn the convolution
sums of restricted divisor functions along with a(n) come out very naturally.

2 q-product expressions for the Eisenstein series g2(τ ) and g3(τ )
Let �τ = Z + τZ (τ ∈ H the complex upper half plane) be a lattice and z ∈ C. The
Weierstrass ℘ function relative to �τ is defined by the series

℘(z;�τ ) =

z

+
∑
ω∈�τ

ω �=

{


(z –ω)
–


ω

}
,

and the Eisenstein series of weight k for �τ with k >  is the series

Gk(�τ ) =
∑
ω∈�τ

ω �=

ω–k .

We shall use the notations ℘(z) and Gk instead of ℘(z;�τ ) and Gk(�τ ), respectively,
when the lattice �τ has been fixed. Then the Laurent series for ℘(z) about z =  is given
by

℘(z) = z– +
∞∑
k=

(k + )Gk+zk .

As is customary, by setting

g(τ ) = g(�τ ) = G and g(τ ) = g(�τ ) = G,

the algebraic relation between ℘(z) and ℘ ′(z) becomes

℘ ′(z) = ℘(z) – g(τ )℘(z) – g(τ ).

http://www.advancesindifferenceequations.com/content/2013/1/84
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We use the following q-product expressions:

P =
∞∏
n=

(
 – qn

)
, P =

∞∏
n=

(
 – qn–

)
,

P =
∞∏
n=

(
 + qn

)
, P =

∞∏
n=

(
 + qn–

)
.

Theorem . We have

g(τ ) =
π


P

(
P
 – qP

P

 + qP


)

and

g(τ ) =
π


P


(
–P

 + P
P


 + P

 P
 – P


)
.

To prove Theorem ., we need the following lemma.

Lemma . Let e = ℘( τ
 ), e = ℘(  ) and e = ℘( τ+

 ).
() e – e = πP

P
 .

() e – e = πP
P

 .
() e – e = πqP

P
 .

Proof See []. �

Proof of Theorem . From [, p.], we observe that e, e and e are the roots of the
equation

℘(z) – g(τ )℘(z) – g(τ ) = .

Therefore, we have

e + e + e = ,

ee + ee + ee = –
g(τ )


and

eee =
g(τ )


.

By the above equations and Lemma ., we deduce that

e + e = e – (–e – e) = e – e = –πP
P


,

http://www.advancesindifferenceequations.com/content/2013/1/84
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and the following three identities:

e =


[
(e + e) + (e – e)

]
=


(
–πP

P

 – πqP

P


)

= –
π


P

(
P
 + qP


)
, ()

e = e + πqP
P


 = –

π


P

(
P
 – qP


)

()

and

e = e + πP
P


 = –

π


P

(
–P

 + qP

)
. ()

Using (), () and (), we obtain the identities for g(τ ) and g(τ ), namely

g(τ ) = –(ee + ee + ee)

= –
π


P

[(
P
 + qP


)(
–P

 + qP

)

+
(
P
 – qP


)(
–P

 + qP

)

+
(
P
 + qP


)(
P
 – qP


)]

=
π


P

(
P
 – qP

P

 + qP


)

()

and

g(τ ) = eee

= –
π


P


(
P
 + qP


)(
–P

 + qP

)(
P
 – qP


)

=
π


P


(
–P

 + P
P


 + P

 P
 – P


)
. ()

This proves the theorem. �

3 Eisenstein series and divisor functions
We use the q-series and q-products notions

S :=
∑
N odd

σ,(N ; )qN ,

S :=
∑

N≥ even

σ,(N ; )qN ,

(a;q)∞ := (a)∞ :=
∏
n≥

(
 – aqn

)

in the following. Some identities of the basic hypergeometric series type are quoted by Fine
(see []). Some of these identities (in a similar form) can also be found in [] and []. It

http://www.advancesindifferenceequations.com/content/2013/1/84
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should be mentioned that some generalizations and basic q-extensions of Bernoulli, Euler
and Genocchi polynomials have been studied recently by Srivastava (see []). We also
refer to [] in which zeta and q-zeta function, associated series and integrals have been
investigated by Srivastava andChoi.Wemention below two identities (see [, p., p.])
for our further use. These are

(q;q)∞
(q)∞(q;q)∞

=  + 
∞∑
N=

qN
(
 + (–)N

) ∑
ω|N

ω odd

ω ()

and

q(q;q)∞
(q;q)∞

=
∑
N odd

σ (N)qN . ()

Using (), () and the facts,

∞∏
n=

(
 – qn–

)
=

∞∏
n=

( – qn)
( – qn)

,
∞∏
n=

(
 + qn–

)
=

∞∏
n=

( – qn)
( – qn)

( – qn)
( – qn)

and

∞∏
n=

(
 + qn

)
=

∞∏
n=

( – qn)
( – qn)

,

our aim here is first to prove the following lemma.

Lemma . Let q = eπ iτ , τ ∈H. Then we have
(a)

℘

(
τ



)
= –

π


( + S + S).

(b)

℘

(
τ + 


)
= –

π


( – S + S).

(c)

℘

(



)
=
π


( + S).

Proof
(a) From (), we have

℘

(
τ



)
= –

π



(
(q;q)∞

(q)∞(q;q)∞
+ 

q(q;q)∞
(q;q)∞

)

= –
π



(
 + 

∞∑
N=

qN
(
 + (–)N

) ∑
ω|N

ω odd

ω + 
∑
Nodd

σ (N)qN
)

http://www.advancesindifferenceequations.com/content/2013/1/84
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= –
π



(
 + 

∑
N odd

qN
∑
ω|N

ω odd

ω + 
∑

N even

qN
∑
ω|N

ω odd

ω + 
∑
N odd

σ (N)qN
)

= –
π



(
 + 

∞∑
N=

qN
∑
ω|N

ω odd

ω

)

= –
π



(
 + 

∞∑
N=

σ,(N ; )qN
)

= –
π


( + S + S). ()

(b) From (), we have

℘

(
τ + 


)

= –
π



(
(q;q)∞

(q)∞(q;q)∞
– 

q(q;q)∞
(q;q)∞

)

= –
π



(
 + 

∞∑
N=

qN
(
 + (–)N

) ∑
ω|N

ω odd

ω – 
∑
N odd

σ (N)qN
)

= –
π



(
 + 

∑
N odd

qN
∑
ω|N

ω odd

ω + 
∑

N even

qN
∑
ω|N

ω odd

ω – 
∑
N odd

σ (N)qN
)

= –
π



(
 + 

∞∑
N=

(–)NqN
∑
ω|N

ω odd

ω

)

= –
π



(
 + 

∞∑
N=

(–)Nσ,(N ; )qN
)

= –
π


( – S + S). ()

(c) From (), we have

℘

(



)
=
π



(
(q;q)∞

(q)∞(q;q)∞
– 

q(q;q)∞
(q;q)∞

)

=
π



(
 + 

∞∑
N=

qN
(
 + (–)N

) ∑
ω|N

ω odd

ω – 
∑
N odd

σ (N)qN
)

=
π



(
 + 

∑
N odd

qN
∑
ω|N

ω odd

ω + 
∑

N even

qN
∑
ω|N

ω odd

ω – 
∑
N odd

σ (N)qN
)

=
π



(
 + 

∑
N even

qN
∑
ω|N

ω odd

ω

)

http://www.advancesindifferenceequations.com/content/2013/1/84
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=
π



(
 + 

∑
N even

σ,(N ; )qN
)

=
π


( + S). ()

This proves the lemma. �

Using the fact that e, e and e are the roots of the equation ℘(z) – g(τ )℘(z) – g(τ ) =
, indeed we can express g(τ ) and g(τ ) in terms of S and S. More precisely, we have the
following lemma.

Lemma . We have

g(τ ) =
π


[
( + S) + S

]

and

g(τ ) =
π


[
( + S) – S ( + S)

]
.

Proof Note that g(τ ) = –[ee + ee + ee], and hence

g(τ ) = –
[
℘

(
τ



)
℘

(



)
+℘

(



)
℘

(
τ + 


)
+℘

(
τ + 


)
℘

(
τ



)]

= –
[
–
π


( + S + S)( + S) –

π


( + S)( – S + S)

+
π


( – S + S)( + S + S)

]

=
π


[
( + S) + S

]
.

Also note that g(τ ) = eee, and hence

g(τ ) = ℘

(
τ



)
℘

(



)
℘

(
τ + 


)

=
π


( + S + S)( + S)( – S + S)

=
π


[
( + S) – S ( + S)

]
.

This completes the proof of the lemma. �

In the next theorem, we give q-series expressions for E(τ ) and E(τ ) with the coeffi-
cients involving restricted divisor functions σ,(N ; ) and its convolution sums. Precisely,
we prove the following theorem.

http://www.advancesindifferenceequations.com/content/2013/1/84
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Theorem . We have

E(τ ) =
 · 
(π )

g(τ )

=  + q +
∞∑

M=

[
σ,(M; ) + 

M–∑
k=

k+l=M

σ,(k; )σ,(l; )

+ 
M∑
k=

k+l–=M

σ,(k – ; )σ,(l – ; )

]
qM

and

E(τ ) =
 · 
(π )

g(τ )

=  – q – ,q +
∞∑

M=

[
σ,(M; ) + ,

M–∑
k=

k+l=M

σ,(k; )σ,(l; )

+ ,
M–∑
k=

k+l+m=M

σ,(k; )σ,(l; )σ,(m; )

– 
M∑
k=

k+l–=M

σ,(k – ; )σ,(l – ; )

– ,
M–∑
k=

k+l+m–=M

σ,(k – ; )σ,(l – ; )σ,(m; )

]
qM.

Proof From Lemma ., we observe that

E(τ ) =
 · 
(π )

g(τ )

=
 · 
(π )

· π


[
( + S) + S

]
=  + S + S + S

=  + 
∞∑
M=

σ,(M; )qM

+ 
∞∑

M=
k+l=M

M–∑
k=

σ,(k; )σ,(l; )qM

+ 
∞∑
M=

k+l–=M

M∑
k=

σ,(k – ; )σ,(l – ; )qM

=  + σ,(; )q + 
∞∑

M=

σ,(M; )qM

http://www.advancesindifferenceequations.com/content/2013/1/84
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+ 
∞∑

M=

M–∑
k=

k+l=M

σ,(k; )σ,(l; )qM

+ σ,(; )σ,(; )q + 
∞∑

M=
k+l–=M

M∑
k=

σ,(k – ; )σ,(l – ; )qM

=  + q +
∞∑

M=

[
σ,(M; ) + 

M–∑
k=

k+l=M

σ,(k; )σ,(l; )

+ 
M∑
k=

k+l–=M

σ,(k – ; )σ,(l – ; )

]
qM

and

E(τ ) =
 · 
(π )

g(τ )

=  + S + ,S + ,S – S – ,SS

=  + 
∞∑
M=

σ,(M; )qM + ,
∞∑

M=
k+l=M

M–∑
k=

σ,(k; )σ,(l; )qM

+ ,
∞∑

M=
k+l+m=M

M–∑
k=

σ,(k; )σ,(l; )σ,(m; )qM

– 
∞∑
M=

k+l–=M

M∑
k=

σ,(k – ; )σ,(l – ; )qM

– ,
∞∑

M=
k+l+m–=M

M–∑
k=

σ,(k – ; )σ,(l – ; )σ,(m; )qM

=  + σ,(; )q + σ,(; )q + 
∞∑

M=

σ,(M; )qM

+ ,σ,(; )σ,(; )q + ,
∞∑

M=

M–∑
k=

k+l=M

σ,(k; )σ,(l; )qM

+ ,
∞∑

M=

M–∑
k=

k+l+m=M

σ,(k; )σ,(l; )σ,(m; )qM

– σ,(; )σ,(; )q – 
[
σ,(; )σ,(; ) + σ,(; )σ,(; )

]
– 

∞∑
M=

M∑
k=

k+l–=M

σ,(k – ; )σ,(l – ; )qM

– ,σ,(; )σ,(; )σ,(; )q

http://www.advancesindifferenceequations.com/content/2013/1/84
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– ,
∞∑

M=

M–∑
k=

k+l+m–=M

σ,(k – ; )σ,(l – ; )σ,(m; )qM

=  + q + q + ,q – q – ,q – ,q

+
∞∑

M=

[
σ,(M; ) + ,

M–∑
k=

k+l=M

σ,(k; )σ,(l; )

+ ,
M–∑
k=

k+l+m=M

σ,(k; )σ,(l; )σ,(m; )

– 
M∑
k=

k+l–=M

σ,(k – ; )σ,(l – ; )

– ,
M–∑
k=

k+l+m–=M

σ,(k – ; )σ,(l – ; )σ,(m; )

]
qM.

Now replacing q into q in the above expressions for E(τ ) and E(τ ), we obtain

E(τ ) =  + q +
∞∑

M=

[
σ,(M; ) + 

M–∑
k=

k+l=M

σ,(k; )σ,(l; )

+ 
M∑
k=

k+l–=M

σ,(k – ; )σ,(l – ; )

]
qM ()

and

E(τ ) =  – q – ,q +
∞∑

M=

[
σ,(M; ) + ,

M–∑
k=

k+l=M

σ,(k; )σ,(l; )

+ ,
M–∑
k=

k+l+m=M

σ,(k; )σ,(l; )σ,(m; )

– 
M∑
k=

k+l–=M

σ,(k – ; )σ,(l – ; )

– ,
M–∑
k=

k+l+m–=M

σ,(k – ; )σ,(l – ; )σ,(m; )

]
qM. ()

This completes the proof of the theorem. �

It should be noted that E(τ ) and E(τ ) themselves have coefficients σ(M) and σ(M) in
their q-series expansions. However, the aim of the next theorem is to express σ(M) and
σ(M) in terms of convolution sums involving restricted divisor functions σ,(N ; ).
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Theorem . (a) If M ≥  is an integer, then

σ(M) = σ,(M; ) + 
M–∑
k=

σ,(k; )σ,(M – k; )

+ 
M∑
k=

σ,(k – ; )σ,(M – k + ; ).

In particular, if M ≥  is odd, then

M–
∑

k=

σ,(k; )σ,(M – k; ) =



[
σ(M) – σ,(M; )

]
.

(b) If M ≥  is an integer, then

–σ(M) = σ,(M; ) + 
M–∑
k=

σ,(k; )σ,(M – k; )

+ 
M–∑
k,l=

σ,(k; )σ,(l; )σ,(M – k – l; )

– 
M∑
k=

σ,(k – ; )σ,(M – k + ; )

– 
M–∑
k,l=

σ,(k – ; )σ,(l – ; )σ,(M – k – l + ; ).

In particular, if M ≥  is odd, then

–σ(M) + σ(M) = σ,(M; ) + 
M–∑
k=

σ,(k; )σ,(M – k; )

+ 
M–∑
k,l=

σ,(k; )σ,(l; )σ,(M – k – l; )

– 
M–∑
k,l=

σ,(k – ; )σ,(l – ; )σ,(M – k – l + ; ).

Proof From [, p.], we know that

E(τ ) =  + 
∑
M≥

σ(M)qM ()

and

E(τ ) =  – 
∑
M≥

σ(M)qM. ()

http://www.advancesindifferenceequations.com/content/2013/1/84
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So comparing () and (), we find that

σ(M) = σ,(M; ) + 
M–∑
k=

k+l=M

σ,(k; )σ,(l; )

+ 
M∑
k=

k+l–=M

σ,(k – ; )σ,(l – ; )

= σ,(M; ) + 
M–∑
k=

σ,(k; )σ,(M – k; )

+ 
M∑
k=

σ,(k – ; )σ,(M – k + ; ), ()

whereM ≥ .
On the other hand, Liouville [] proved

σ(M) =
M∑
k=

σ (k – )σ (M – k + ) ()

for oddM. From () and (), we note that we reprove a result in [, p.], namely,

σ(M) = σ,(M; ) + 
M–∑
k=

σ,(k; )σ,(M – k; ) + σ(M)

and so,

σ(M) = σ,(M; ) + 
M–∑
k=

σ,(k; )σ,(M – k; )

= σ (M) + 

M–
∑

k=

σ,(k; )σ,(M – k; ) ()

for oddM. By the same way, comparing () and (), we deduce

–σ(M) = σ,(M; ) + 
M–∑
k=

k+l=M

σ,(k; )σ,(l; )

+ 
M–∑
k=

k+l+m=M

σ,(k; )σ,(l; )σ,(m; )

– 
M∑
k=

k+l–=M

σ,(k – ; )σ,(l – ; )

– 
M–∑
k=

k+l+m–=M

σ,(k – ; )σ,(l – ; )σ,(m; )

http://www.advancesindifferenceequations.com/content/2013/1/84
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= σ,(M; ) + 
M–∑
k=

σ,(k; )σ,(M – k; )

+ 
M–∑
k,l=

σ,(k; )σ,(l; )σ,(M – k – l; )

– 
M∑
k=

σ,(k – ; )σ,(M – k + ; )

– 
M–∑
k,l=

σ,(k – ; )σ,(l – ; )σ,(M – k – l + ; ), ()

whereM ≥ . Note that for oddM ≥ , we get

–σ(M) = σ,(M; ) + 
M–∑
k=

σ,(k; )σ,(M – k; )

+ 
M–∑
k,l=

σ,(k; )σ,(l; )σ,(M – k – l; ) – σ(M)

– 
M–∑
k,l=

σ,(k – ; )σ,(l – ; )σ,(M – k – l + ; ), ()

where we used Equation (). This completes the proof of the theorem. �

4 Proof of the theorems

Proof of Theorem . Glaisher proved that (see [, p.])

σ ()σ (n – ) + σ ()σ (n – ) + · · · + σ (n – )σ () =


[
σ(n) – σ(n)

]
. ()

It follows directly from () that

σ ()σ (M – ) + σ ()σ (M – ) + · · · + σ (M – )σ ()

=
M∑
k=

σ,(k – ; )σ,(M – k + ; )

and

σ(M) = σ,(M; ) + 
M–∑
k=

σ,(k; )σ,(M – k; ) +


[
σ(M) – σ(M)

]
.

Thus, we have proved the identity

M–∑
k=

σ,(k; )σ,(M – k; ) =



[
σ(M) – σ(M) – σ,(M; )

]
. ()

http://www.advancesindifferenceequations.com/content/2013/1/84
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Thus, for any integer M ≥ , we have

σ(M) ≡ σ(M) + σ,(M; ) (mod ).

This proves (i).
We note that we can write () as


∑
k<M



σ,(k; )σ,(M – k; ) + σ,

(
M

; 

)
σ,

(
M

; 

)

=



[
σ(M) – σ(M) – σ,(M; )

]
. ()

IfM is odd, then () is equivalent to

 · 
∑
k<M



σ,(k; )σ,(M – k; ) = σ(M) – σ(M) – σ,(M; )

and hence,

σ(M) ≡ σ(M) + σ,(M; ) (mod ).

LetM = mpnpe p
e
 · · ·perr . Therefore, if ordpM = n is odd for an odd prime p, then we note

that

σ,

(
M

; 

)
σ,

(
M

; 

)
= σ,

(
m–pnpe p

e
 · · ·perr ; 

)
σ,

(
m–pnpe p

e
 · · ·perr ; 

)
=

{
σ,

(
m–; 

)}{
σ

(
pnpe p

e
 · · ·perr

)}
=

{
σ

(
pn

)}{
σ,

(
m–; 

)}{
σ

(
pe p

e
 · · ·perr

)}
= (l)

{
σ,

(
m–; 

)}{
σ

(
pe p

e
 · · ·perr

)},
since

σ
(
pn

)
=  + p + p + · · · + pn ≡  (mod )

and so we can write σ(pn) = l for some l ∈N. Therefore, from (), we obtain


∑
k<M



σ,(k; )σ,(M – k; ) +  · l{σ,
(
m–; 

)}{
σ

(
pe p

e
 · · ·perr

)}

=



[
σ(M) – σ(M) – σ,(M; )

]
.

This means that

σ(M) ≡ σ(M) + σ,(M; ) (mod ).

This proves (ii). �
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Remark . Define

P(N) := {p : p|N ,p is a positive prime}

and

Pmax(N) := max
p∈P(N)

p.

For example, P() = {, } and Pmax() = . For any prime p ≥ , we note that

Pmax

( p–∑
k=

σ,(k; )σ,(p – k; )

)
= p.

We observe that

p–∑
k=

σ,(k; )σ,(p – k; ) =



(
p + 


)
=
(p + )p(p – )



and (p, ) = . Thus, |(p – ) and this implies that the largest prime factor of p –  is
strictly < p.

Remark . From the fact

σ,(k; ) = σ(k) – σ

(
k


)
,

and from known results, it is possible to establish the following identity (in an elementary
way, without using the Eisenstein series), namely

M–∑
k=

σ,(k; )σ,(M – k; ) =



σ(M) +


σ

(
M


)
–




σ(M) +



σ

(
M


)
.

One can also use this identity to obtain

p–∑
k=

σ,(k; )σ,(p – k; ) =



(
p + 


)
.

Proof of Theorem . Inserting () and () into (), we obtain

–σ(M) = σ,(M; ) +  · 


[
σ(M) – σ(M) – σ,(M; )

]

+ 
M–∑
k,l=

σ,(k; )σ,(l; )σ,(M – k – l; ) –  · 

[
σ(M) – σ(M)

]

– 
M–∑
k,l=

σ,(k – ; )σ,(l – ; )σ,(M – k – l + ; ).
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Thus, we deduce the congruence relation

–σ(M) + σ,(M; ) ≡ σ(M) – σ(M) (mod ).

This completes the proof of Theorem .. �

Proof of Theorem . We expand S as

∞∑
n,l,m=

σ,(n – ; )σ,(l – ; )σ,(m – ; )q(n+l+m–)–

=
∞∑
N=

{N–∑
M=

M∑
m=

σ,(N –  – M; )

× σ,
(
M – (m – ); 

)
σ,(m – ; )

}
qN–.

Then we notice that

N–∑
M=

M∑
m=

σ,(N –  – M; )σ,
(
M – (m – ); 

)
σ,(m – ; )

=
N–∑
M=

σ,(N –  – M; )

{ M∑
m=

σ,
(
M – (m – ); 

)
σ,(m – ; )

}

=
N–∑
M=

σ(N –  – M) · 

(
σ(M) – σ(M)

)
()

by [, Lemma .(b)] and σ,(odd; ) = σ(odd). Since σ(M) = σ(M) – σ(M ), the
right-hand side of () is

=
N–∑
M=

σ(N –  – M)
{
σ(M) – σ

(
M


)}

=
N–∑
M=

σ(N –  – M)σ(M) –
∑

M< N–


σ(N –  – M)σ(M)

=



(
σ(N – ) – σ(N – )

)
–

{


,
σ(N – ) –




σ(N – ) +



a(N – )

}

by [, Theorem ] and in [, Theorem .(iii)] which state that

∑
m<N/

σ(m)σ(N – m)

=




(
σ(N) – σ (N) + σ

(
N


)
+ ( – N)σ

(
N


))
()
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and

∑
m<N/

σ(m)σ(N – m) =


,
σ(N) +




σ

(
N


)
+




σ

(
N


)

+
 – N


σ

(
N


)
–




σ(N) +



a(N) ()

respectively. This completes the proof. �

Proof of Corollary . We note that

∑
n+l+m–=N
n,l,m≥

(n – )σ,(n – ; )σ,(l – ; )σ,(m – ; )

=



∑
n+l+m–=N
n,l,m≥

(
(n + l +m – ) – 

)
σ,(n – ; )σ,(l – ; )σ,(m – ; )

=



∑
n+l+m–=N
n,l,m≥

(N – )σ,(n – ; )σ,(l – ; )σ,(m – ; ).

Therefore, from Theorem ., we obtain

∑
n+l+m–=N
n,l,m≥

nσ,(n – ; )σ,(l – ; )σ,(m – ; )

=
N + 


∑
n+l+m–=N
n,l,m≥

σ,(n – ; )σ,(l – ; )σ,(m – ; )

=
N + 


(
σ(N – ) – a(N – )

)
.

Thus, the first assertion

(N + )a(N – ) ≡ (N + )σ(N – ) (mod )

follows.
We note that  =  · , and thus whenever N +  �≡  (mod ) and N +  is odd, we

have (N + , ) = . Thus,

σ(N – ) ≡ a(N – ) (mod )

whenever N ≡ , (mod ). This proves the second assertion. �

Proof of Theorem . We note that

SS =
∞∑

n,l,m=

σ,(n – ; )σ,(l; )σ,(m; )q(n+l+m)–

=
∞∑
N=

{N–∑
M=

M–∑
m=

σ,(N –  – M; )σ,(M – m; )σ,(m; )

}
qN–.
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Thus, by σ,(m; ) = σ,(m; ) and [, ()], we obtain that

N–∑
M=

M–∑
m=

σ,(N –  – M; )σ,(M – m; )σ,(m; )

=
N–∑
M=

σ,(N –  – M; )

{M–∑
m=

σ,(M –m; )σ,(m; )

}

=
N–∑
M=

σ(N –  – M)
{




(
σ(M) – σ(M) – σ,(M; )

)}
. ()

We observe that

σ(M) – σ(M) – σ,(M; )

= σ(M) –
{
σ(M) – σ

(
M


)}
– 

{
σ(M) – σ

(
M


)}

= σ(M) + σ

(
M


)
– σ(M) + σ

(
M


)
.

Thus, the right-hand side of () is

=



[


N–∑
M=

σ(N –  – M)σ(M) + 
∑

M< N–


σ(N –  – M)σ(M)

– 
N–∑
M=

σ(N –  – M)σ(M) + 
∑

M< N–


σ(N –  – M)σ(M)

]
.

Now from (), () and (see [, (.)]), we have

∑
m<N/

σ (m)σ (N – m)

=



(
σ(N) + ( – N)σ(N) + σ

(
N


)
+ ( – N)σ

(
N


))

and from (see [, Theorem ]), we have

∑
m<N/

σ (m)σ (N – m)

=



(
σ(N) + ( – N)σ(N) + σ

(
N


)
+ σ

(
N


)
+ ( – N)σ

(
N


))
.

Thus, the theorem follows. �
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