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1 Introduction
A symplectic difference system is the discrete first-order system

zk+ = Skzk , k ∈ Z,

where the matrices Sk ∈C
n×n are symplectic, i.e.,

S *
kJSk = J , J =

(
 I
–I 

)
. ()

In particular, if Sk ∈ R
n×n, then we have ST

k JSk = J . The terminology for symplectic
matrices is not unique. Our terminology is taken from []. An alternative terminology
J -unitary, J -orthogonal can be found in []. Also, complex-valued matrices satisfying
() are sometimes called complex symplectic.
Symplectic difference systems are discrete counterparts of linear Hamiltonian differen-

tial systems

z′ = JH(t)z

with theHermiteanmatrixH, i.e.,H* =H, in the sense that they are themost general first-
order systems whose fundamental matrix is symplectic. It is known that one can establish
oscillation and Sturmian theory for real symplectic difference systems similar to those for
Hamiltonian differential systems, even if passing from continuous to discrete is far from
being trivial. We refer to [, ] and the references given therein. Note that symplectic dif-
ference systems cover, as a very special case, the second-order Sturm-Liouville difference
equation

�(rk�xk) + ckxk+ = , rk �= ,
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whose qualitative theory is deeply developed; see, e.g., [].
In our paper we suppose that the matrices Sk depend on a (generally complex-valued)

parameter λ, i.e., we consider the system

zk+ = Sk(λ)zk . ()

Based on the papers [, ], see also the parts (i), (ii) of the next section, our assumptions
on the matrices Sk(λ) are following:
(A) System () is symplectic for λ ∈ R, i.e.,

S *
k(λ)JSk(λ) = J , k ∈ Z.

(B) The matrices Sk(λ) are periodic with the period N ∈N, i.e.,

Sk(λ) = Sk+N (λ), k ∈ Z,λ ∈C.

(C) The matrices Sk(λ), k = , . . . ,N – , are analytic in a neighborhood of λ = , in
particular,

Sk(λ) =
∞∑
j=

S[j]k λj, S[]k = I,

where S[j]k ∈C
n×n satisfy the periodicity condition

S[j]k+N = S[j]k , k ∈ Z, j ∈N.

Our principal concern is to study the stability (for k ∈ Z) of solutions of (). Concerning
the continuous counterpart of symplectic difference systems, linear Hamiltonian differ-
ential systems

z′ = λJH(t)z, ()

the stability theory of periodic Hamiltonian differential systems is deeply developed since
the fifties of the last century. In that period, Russian mathematicians Gelfand, Krein,
Lidskii, Yakubovich, Starzhinskii and others [, , ] published fundamental papers on
stability of (), which were summarized in the book [].
The requirement that our system is symplectic for real λ reads in terms of the coefficients

S[j]k as follows.We suppose that the below given formulas hold for all indices k = , . . . ,N –
, so we suppress the index k:

(
S[]

)*J +J S[] = , ()(
S[]

)*J +J S[] +
(
S[]

)*J S[] = , ()

...(
S[n]

)*J + · · · + (
S[n–j]

)*J S[j] + · · · +J S[n] = , ()

...
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The following statement plays the crucial role in the later introduced concept of a sym-
plectic system of positive type.

Proposition  Suppose that ()-() hold. Then there exist Hermitean matrices Ak(λ, λ̄)
such that for λ ∈C

S *
k(λ)JSk(λ) = J + (λ̄ – λ)Ak(λ, λ̄). ()

Proof Suppressing again the index k, using (),

S *(λ)JS(λ) =
(
I +

∞∑
j=

λ̄j(S[j])*
)
J

(
I +

∞∑
j=

λjS[j]
)

= J + (λ̄ – λ)
(
–J S[]

)
+ (λ̄)

(
S[]

)*J + λ̄λ
(
S[]

)*JS [] + λJ S[] + · · · ()

+ (λ̄)n
(
S [n])*J + · · · + (λ̄)n–jλj(S [n–j])*J S[j] + · · · + λnJS [n] ()

+ · · · .

Concerning the expression (), using (), we immediately have

(λ̄)
(
S[]

)*J + λ̄λ
(
S[]

)*JS [] + λJ S[] = (λ̄ – λ)
[
λ̄
(
S [])*J – λJS []].

Generally, concerning expression (), consider the matrices X[n]
 , . . . ,X[n]

n–, n ≥ , given by
the formulas

X[n]
 =

(
S[n]

)*J +
(
S[n–]

)*J S[],

X[n]
 = X[n]

 +
(
S[n–]

)*J S[],

...

X[n]
n– = X[n]

n– +
(
S[]

)*J S[n–].

()

Then formula () implies that we also have

–X[n]
n– =

(
S[]

)*J S[n–] +J S[n].

Now, by a direct computation, using (), we have that () for n≥  equals

(λ̄ – λ)
[
(λ̄)n–

(
S[n]

)*J + · · · + (λ̄)n–j–λjX[n]
j + · · · – λn–J S[n]

]
, ()

i.e., one can factor out the term (λ̄–λ) from the expression for S *(λ)JS(λ)–J . It remains
to prove thatA(λ, λ̄) is Hermitean. Thismatrix is given by an infinite series, and the typical
summand in this series is given by the expression in brackets in (). To prove that this

http://www.advancesindifferenceequations.com/content/2013/1/85
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expression is Hermitean, it suffices to show that (X[n]
j )* = X[n]

n–j–. We have, using (),

(
X[n]
j

)* = [(
S[n]

)*J + (
S[n–]

)*J S[] + · · · + (
S[n–j]

)*J S[j]
]*

= –
[
J S[n] +

(
S[]

)*J S[n–] + · · · + (
S[j]

)*J S[n–j]
]

=
(
S[n]

)*J +
(
S[n–]

)*J S[] + · · · + (
S[j+]

)*J S[n–j–]

= X[n]
n–j–.

Consequently, each term in the infinite series expressing A(λ, λ̄) is a Hermitean matrix,
and hence this matrix is Hermitean as well. �

2 Particular cases
In this section, we treat special cases of our periodic symplectic difference system as pre-
sented in the recent literature.
(i) Second-order matrix difference system.
The results concerning this systemwere published in [].We consider the second-order

matrix difference system with Pk ∈ C
n×n

�xk– + λPkxk = , P*
k = Pk , Pk+N = Pk . ()

In this case, we write the system in the form

�

(

λ

�xk–
)
+ λPkxk = .

If we put uk = 
λ
�xk–, then �uk = –λPkxk , i.e., uk+ = –λPkxk + uk and xk+ – xk = λuk+ =

λ(–λPkxk + uk). Consequently,

(
xk+
uk+

)
=

[
I +

(
 I

–Pk 

)
λ +

(
–Pk 
 

)
λ

](
xk
uk

)
. ()

Denote by S[] and S[] the matrices by λ and λ, respectively. By a direct computation,
taking into account the form of the matrices S[] and S[], we obtain for λ ∈C

S*(λ)J S(λ)

= J + λ̄
(
S[]

)*J + λJ S[] + (λ̄)
(
S[]

)*J + λ̄λ
(
S[]

)*J S[] + λJ S[]

+ (λ̄)λ
(
S[]

)*J S[] + λλ̄
(
S[]

)*J S[] + (λ̄λ)
(
S[]

)*J S[]

= J + (λ̄ – λ)
(
–J S[]

)
+ (λ̄)

(
 –P*

 

)
+ λλ̄

(
 P*

–P 

)

+ λ

(
 
P 

)
+

[
(λ̄)λ – λ̄λ](

P*P 
 

)

= J + (λ̄ – λ)

(
P + |λ|P*P –λ̄P

–λP I

)
.
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Therefore, () is really a symplectic system for λ ∈R, and to verify () and () with n = ,
is a matter of an easy computation.
(ii) Linear Hamiltonian difference system.
The stability of this system was investigated in []; see also []. We consider the system

�

(
xk
uk

)
= λJ

(
–Ck Ak

A*
k Bk

)(
xk+
uk

)
()

with the Hermitean matrices B, C, i.e., B = B*, C = C*. This system can be written in the
form

(
xk+
uk+

)
=

(
(I – λAk)– λ(I – λAk)–Bk

λCk(I – λAk)– λCk(I – λAk)–Bk + I – λA*
k

)(
xk
uk

)
.

If we denote by S(λ) the matrix in the last system, we have, using the formula (I –
λAk)– =

∑∞
j= λjAj

k (suppressing the index k),

S(λ) = I + λ

(
A B
C –A*

)
+

∞∑
j=

S[j]λj

with the matrices (for j ≥ )

S[j] =

(
Aj Aj–B

CAj– CAj–B

)
.

To show that the matrices S[j], j ≥ , together with the matrix

S[] =

(
A B
C –A*

)
,

satisfy symplecticity condition () requires rather tedious computations. Consider two
successive terms in ()

(
S[n–j+]

)*J S[j–] +
(
S[n–j]

)*J S[j],

and let us compute the block matrix in the left upper corner. By a direct substitution, we
obtain the expression

–
(
A*)n–j–CAj +

(
A*)n–jCAj– –

(
A*)n–jCAj– +

(
A*)n–j+CAj–. ()

Hence, we immediately see that the second and third term cancel. Moreover, the first one
cancels against a term coming from the expression (S[n–j+])*J S[j–], and similarly, the last
term in () also disappears. By the same reasoning, we also show that the remaining three
blocks in () equal zero. Also, it is shown in [] that

S *(λ)JS(λ) = J + (λ̄ – λ)D*(λ)

(
–C A*

A B

)
D(λ), ()
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where

D(λ) =

(
(I – λA)– λ(I – λA)–B

 I

)
. ()

Therefore, we see that Hamiltonian system () is a particular case of our symplectic sys-
tem () satisfying ().
(iii) Exponential system.
By an ‘exponential’ system we mean the system (), where

Sk(λ) = I +
∞∑
j=

Rj
k
λj

j!
= exp{λRk} ()

with the matrices Rk ∈C
n×n satisfying

R*
kJ +J Rk = , Rk+N = Rk .

When S is a symplectic matrix ‘close’ to the identity matrix (‖I – S‖ < ), then there is a
well-defined matrix logS, and we have

Sλ = exp{λ logS} =
∞∑
j=

(logS)j
λj

j!
,

and it is known (see, e.g., [, p.]) that the logarithm of a symplectic matrix is the Hamil-
tonian matrix, i.e., (logS)*J +J logS = .
The symplectic system where Sk(λ) depend on λ in the form () was investigated in

[]. Here we have

S[j]k =
Rj
k
j!
,

so identity () holds as can be verified by a short direct computation. Moreover, it was
shown in [] that the matrix A(λ, λ̄) in () is of the form

A(λ, λ̄) =
∞∑
j=

(–)j
(λ̄ – λ)j

(j + )!
(
R*)j(–J R)Rj +

∞∑
j=

(–)j
(λ̄ – λ)j–

(j)!
(
R*)jJ Rj. ()

Also, [] shows, using the time scales calculus, that the dependence of S(λ) on λ given by
() is, in a certain sense, a natural discrete counterpart of the multiplicative dependence
on λ in ().
(iv) Symplectic systems with nonlinear dependence on a spectral parameter.
In [], oscillatory and spectral properties of () with real-valued Sk(λ) were investi-

gated. The crucial assumption in that paper is that the matrices (with˙= d
dλ
)

�k(λ) := Ṡk(λ)JST
k (λ) are symmetric ()

(and nonpositive definite).We show that our assumptions (), (), and () imply (). First
of all, observe that the symplecticity of a matrix S is equivalent to the symplecticity of its

http://www.advancesindifferenceequations.com/content/2013/1/85
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transpose ST . Hence, identities (), (), () are equivalent (for real S[j]) to

S[]J +J
(
S[]

)T = ,

S[]J +J
(
S[]

)T + S[]J
(
S[]

)T = ,

...

S[n]J + · · · + S[n–j]J
(
S[j]

)T + · · · +J
(
S[n]

)T = .

()

We have (suppressing the index k)

Ṡ(λ)JST (λ)

=

( ∞∑
j=

jλj–S[j]
)
J

( ∞∑
j=

λjS[j]
)T

= S[]J + λ
[
S[]J

(
S[]

)T + S[]J
]
+ λ[S[]J (

S[]
)T + S[]J

(
S[]

)T+ S[]J
]
+ · · ·

+ λn[S[]J (
S[n]

)T + S[]J
(
S[n–]

)T + · · · + jS[j]J
(
S[n+–j]

)T + · · ·
+ (n + )S[n+]J

]
+ · · · .

We will show that the matrices by all powers of λ are symmetric. Suppose that n = j – 
is odd; if n is even, the situation is similar. We arrange the summands by λn in brackets in
the previous formula into the triangular scheme as follows:

S[]J
(
S[n]

)T + · · · + S[j]J
(
S[j]

)T + S[j+]J
(
S[j–]

)T + · · · + S[n+]J
...

+S[j]J
(
S[j]

)T + S[j+]J
(
S[j–]

)T + · · · + S[n+]J

+S[j+]J
(
S[j–]

)T + · · · + S[n+]J
...

+S[n+]J .

()

Substituting for the first j lines in this expression from () (with n +  instead of n), we
can write () as (we arrange again the first j lines into a triangular-type scheme)

–J
(
S[n+]

)T
–J

(
S[n+]

)T – S[]J
(
S[n]

)T
...

–J
(
S[n+]

)T – S[]J
(
S[n]

)T – · · · – S[j–]J
(
S[j+]

)T
+ S[j+]J

(
S[j–]

)T + · · · + S[n]J
(
S[]

)T + S[n+]J

...
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+S[n]J
(
S[]

)T + S[n+]J

+S[n+]J .

Now we see that the sum of the terms on the first and the last line is a symmetric matrix
(since J T = –J ). Similarly, the sum of the second and last but one line terms is a sym-
metric matrix, etc. Altogether, the term by λn, n ∈N, is a symmetric matrix, which means
that the matrix � is really symmetric.

3 Central stability zone
We rewrite the matrices S(λ) in system () into the form

Sk(λ) = I + λS[]k + o(λ) as λ → 

with S[] satisfying (). The monodromy matrix of () is

UN (λ) := SN–(λ) · · ·S(λ) = I + λ

N–∑
k=

S[]k + o(λ)

as λ → . Denote

S [] =
N–∑
k=

S[]k .

Then, for λ ∈ R with |λ| small, we have logUN (λ) = λS [] + o(λ). If we denote by γj(λ) the
eigenvalues of the matrix logUN (λ), we have

γj(λ) = λsj + o(λ),

where sj are the eigenvalues of S [].
The proof of the following statement (which shows the non-emptiness of the central

stability zone under an additional assumption that the eigenvalues of a certain matrix are
distinct) is essentially the same as that of [, Theorem .].

Theorem  Suppose that thematrixJS [] is negative definite and the eigenvalues sj of S []

are distinct. Then there exists l >  such that the solutions of () are bounded on Z for real
λ satisfying |λ| < l.

Proof The proof is based on the statement that ifA is aHermitean positive definitematrix,
then the equation det(A+ iμJ ) =  has only real roots; see []. So, letA = –JS [] and look
for the eigenvalues of S [] in the form iσ . Then

 = det
(
S [] – iσ I

)
= detJ

(
–JS [] + iσJ

)
= det(A + iσJ )

(since detJ = , see []), and hence σ ∈R and sj = iσj. Now, for λ ∈R, |λ| small, the num-
bers γj(λ) = iσjλ + o(λ) are still different. However, at the same time, for λ ∈R, the matrix
UN (λ) is symplectic, i.e., U *

N (λ)JUN (λ) = J , and hence its eigenvalues ρj(λ) = exp{γj(λ)}

http://www.advancesindifferenceequations.com/content/2013/1/85
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are symmetric with respect to the unit circle, and hence γj(λ) are symmetric with respect
to the imaginary axis. But this implies that γj(λ) themselves are on the imaginary axis, i.e.,
|ρj(λ)| = . This means, in view of the later given formula (), that solutions of () are
bounded on R for λ ∈R, |λ| small. �

4 Krein’s traffic rules
So far we did not need any assumption on the matrices S(λ) for λ ∈ C. Complex values of
λ are needed to get an extension of the previous theorem to the case when the eigenvalues
of S [] are not necessarily distinct. In this situation, the stability behavior of solutions of
() is heavily based on Krein’s traffic rules for the eigenvalues of the monodromy matrix
UN (λ).
The crucial concept is the concept of a positive-type system. In the Hamiltonian setting

(), this means

Hk ≥ , k = , . . . ,N –  and
N–∑
k=

Hk > ;

see [], where

Hk =

(
–Ck A*

k
Ak Bk

)
, ()

here > (≥, <, ≤) means positive (nonnegative, negative, nonpositive) definiteness of the
matrix indicated. Under this assumption, we have for solutions z =

(x
u
)
of system ()

�
(
z*kJ zk

)
= (λ̄ – λ)

(
xk+
uk

)*

Hk

(
xk+
uk

)
≥ ;

see []. Consequently, one can speak about J -monotonicity of the monodromy matrix
UN (λ) depending on whether Imλ >  or Imλ < , in the same way as in [].
In our symplectic setting, we have

S*k(λ)J Sk(λ) –J = (λ̄ – λ)
[
–J S[]k +Gk(λ, λ̄)

]
,

where Gk is the matrix containing powers of λ and λ̄ such that

Gk(λ, λ̄) = J S[]k +Ak(λ, λ̄);

see (). Actually, as we will see later (proof of Theorem ), the eigenvalues of the mon-
odromy matrix (i.e., multipliers) follow Krein’s traffic rules if we suppose that there exists
ε >  such that

Ak(λ, λ̄) ≥ , k = , . . . ,N –  and
N–∑
k=

Ak(λ, λ̄) >  for | Imλ| < ε. ()

A closer examination of the proofs in [] reveals that when investigating the behavior
of eigenvalues of the monodromy matrix UN (λ) in dependence on the parameter λ, one

http://www.advancesindifferenceequations.com/content/2013/1/85
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can forget about the original system from which this monodromy matrix originates (dif-
ferential system () or difference system ()). The only important fact is that this matrix is
symplectic for λ ∈ R and J -monotonic for λ ∈ C \R. Under assumption (), the traffic
rules of eigenvalues of UN (λ) are the same as in [, ].
Recall now some important facts and concepts. Let ξ ∈ C

n be an eigenvector of UN (λ)
corresponding to the eigenvalue ρ , which is called themultiplier of UN (λ). The solution z
of () given by the initial condition z = ξ satisfies

zN = UN (λ)ξ = ρξ = ρz, ()

and generally zk+N = ρzk . Consequently, solutions of () are bounded for k ∈ Z if and only if
all eigenvalues ofUN (λ) havemodulus one and are of simple type, i.e., multiple eigenvalues
have the same algebraic and geometric multiplicity.
Clearly, λ =  is the stability point of () since all solutions are constant in this case.

Theorem  states that if the eigenvalues of S [] are distinct, we have a central stability zone
for (). The restriction on distinctness of eigenvalues is removed in [] (see also [, ]
in the discrete case) using a perturbation principle, then Theorem  remains true when
Krein’s traffic rules for eigenvalues are preserved. For these rules, the crucial concept is
the concept of amultiplier of definite type which is defined as follows.

Definition  Let |ρ| =  be an eigenvalue of the monodromy matrix UN , and let Lρ be
its eigenspace. If iu*J u >  for every u ∈ Lρ , then the eigenvalue ρ is said to be the
multiplier of the first kind and it is called of second kind if iu*J u <  for u ∈ Lρ . If there
exists  �= u ∈ Lρ such that u*J u = , the multiplier ρ is of indefinite (mixed) type. If
|ρ| �=  is an eigenvalue of UN , then it is called of the first kind if |ρ| >  and of the second
kind if |ρ| < .

The following statement is proved similarly as [, Theorem .].

Theorem  Suppose that () holds and that for λ ∈ R the monodromy matrix UN (λ)
has a multiplier ρ, with |ρ| = , of definite kind with the multiplicity m > . Then in
a δ-neighborhood of λ, m eigenvalues ρ(λ), . . . ,ρm(λ) of UN (λ), for which ρj(λ) → ρ as
λ → λ, j = , . . . ,m, are situated. Moreover, if λ ∈ Oδ(λ) is real, then ρj(λ), j = , . . . ,m,
stay on the unit circle. The coefficients αj in the expansion

ρj(λ) = ρ
[
 + αj(λ – λ) + o(λ – λ)

]

are given by

αj = –


u*jJ uj

N–∑
k=

(
z[j]k

)*[–J S[]k +Gk(λ, λ̄)
]
z[j]k ,

where uj are properly taken eigenvectors of UN (λ) corresponding to ρ and z[j]k = Uk(λ)uj
are the solutions of () with λ = λ given by the initial condition z[j] = uj.

http://www.advancesindifferenceequations.com/content/2013/1/85
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Proof The only difference with respect to the proof of Theorem [, Theorem .] is that
for λ ∈Oδ(λ) and solutions z[j], j = , . . . ,m, we have

(
z[j]N

)*J z[j]N – u*jJ uj =
N–∑
k=

(
z[j]k

)*[S*k(λ)J Sk(λ) –J
]
z[j]k

= –i Imλ

N–∑
k=

(
z[j]k

)*[–J S[]k +Gk(λ, λ̄)
]
z[j]k .

Hence

(∣∣ρj(λ)
∣∣ – 

)
u*jJ uj = –i Imλ

N–∑
k=

(
z[j]k

)*[–J S[]k +Gk(λ, λ̄)
]
z[j]k

and for λ = λ + ih, h ∈ R, similarly as in [, ],

lim
h→


ih

(
 –

∣∣ρj(λ + ih)
∣∣) = –

ρ ′
j (λ)

ρj(λ)
= –

ρ ′
j (λ)
ρ

.

The previous parts of our paper show that if () is of definite type, i.e., () holds, then we
have

–i
ρ ′
j (λ)

ρj(λ)

∣∣∣∣
λ=λ

=
d
dλ

argρ(λ)|λ=λ < 

for the first kind multipliers and d
dλ

argρ(λ) >  for the second kind ones. This means that
themultipliers resulting from splitting of first kindmultipliersmove clockwise and second
kind multipliers move counterclockwise with increasing λ ∈ R, both remain on the unit
circle in some neighborhood of λ. �

Now, let us take λ = , which is surely the stability point. Then, under assumptions
of Theorem , system () is stable in some neighborhood of λ = . The multipliers move
around the unit circle as described above andmay exit the unit circle onlywhenmultipliers
of different kind meet on the unit circle. However, this may happen only when one of
the multipliers comes through the point [–, ] on the unit circle, i.e., ρ(λ) = – is the
eigenvalue of UN (λ), which is the same as that the boundary value problem

zk+ = Sk(λ)zk , zN + z = 

has a solution.
Here we have, similarly to [], the different situation in comparison with [], where the

symplectic system corresponding to the second-order system () is considered; see the
part (i) of Section . Since in our case UN (λ) is no longer a polynomial, generally it can
happen that the equation det(UN (λ)+ I) =  has no root, and hence () is stable for every λ.
Let us comment shortly on assumption (). In the Hamiltonian setting treated in the

part (ii) of Section , we have

Ak(λ̄,λ) =D*
k(λ)HkDk(λ),
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where H is given by () and D(λ) by (). Hence, () is satisfied for all λ ∈ C, not only
for those with | Imλ| sufficiently small. Concerning the exponential case of Section (iii),
we have (compare ())

Ak(λ̄,λ) = –J Rk + o(Imλ) as Imλ → .

Hence, () is satisfied if

–J Rk ≥ , k = , . . . ,N –  and –
N–∑
k=

J Rk > .

This condition is in agreement with assumptions on the matrices Hk in the Hamiltonian
setting. In the general setting, () is satisfied if

–J S[]k ≥ , k = , . . . ,N – , –
N–∑
k=

J S[]k > 

and

Gk(λ̄,λ) = o(Imλ) as Imλ → ,k = , . . . ,N – .

Finally, note that we havemade only the first step towards the elaboration of a consistent
stability theory of periodic symplectic difference systems in our paper. For example, we
have not been able yet to establish a ‘symplectic version’ of the perturbation principle
which enables to prove the statement of Theorem  without the additional assumption
that the eigenvalues of the matrix S [] are distinct. This is one of the problems which are
subject of the present investigation, and we hope to solve it, together with other open
problems, in subsequent papers.
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