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Abstract
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1 Introduction
Let A(n) be the class of functions of the form

f (z) = z + anzn + an+zn+ + · · · (n = , , . . .), (.)

which are analytic in the unit disk U = {z : |z| < }. We write A() = A.
A function f (z) ∈ A is said to be starlike in |z| < r (r ≤ ) if and only if it satisfies

Re
zf ′(z)
f (z)

> 
(|z| < r

)
. (.)

A function f (z) ∈ A is said to be close-to-convex in |z| < r (r ≤ ) if and only if there is a
starlike function g(z) such that

Re
zf ′(z)
g(z)

> 
(|z| < r

)
. (.)

Let f (z) and g(z) be analytic in U . Then we say that f (z) is subordinate to g(z) in U ,
written f (z) ≺ g(z), if there exists an analytic function w(z) in U , such that |w(z)| ≤ |z|
and f (z) = g(w(z)) (z ∈ U). If g(z) is univalent in U , then the subordination f (z) ≺ g(z) is
equivalent to f () = g() and f (U) ⊂ g(U).
Recently, several authors showed some new criteria for univalency of analytic functions

(see, e.g., [–]). In this note, we shall derive certain sufficient conditions for univalency of
analytic functions with missing coefficients.
For our purpose, we shall need the following lemma.

Lemma (see [, ]) Let f (z) and g(z) be analytic in U with f () = g(). If h(z) = zg ′(z) is
starlike in U and zf ′(z) ≺ h(z), then

f (z) ≺ f () +
∫ z



h(t)
t

dt. (.)
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2 Main results
Our first theorem is given by the following.

Theorem  Let f (z) = z + anzn + · · · ∈ A(n) with f (z) �=  for  < |z| < . If

∣∣∣∣
(

z
f (z)

)(n)∣∣∣∣ ≤ β (z ∈U), (.)

where  < β ≤ [ – (n – )|an|], then f (z) is univalent in U .

Proof Let

p(z) =
(

z
f (z)

)(n)

(z ∈U), (.)

then p(z) is analytic in U . By integration from  to z n-times, we obtain

z
f (z)

=  – anzn– +
∫ z


dwn

∫ wn


dwn– · · ·

∫ w


p(w)dw (z ∈ U). (.)

Thus, we have

f (z) =
z

 – anzn– + ϕ(z)
(z ∈ U), (.)

where

ϕ(z) =
∫ z


dwn

∫ wn


dwn– · · ·

∫ w


p(w)dw (z ∈U). (.)

It is easily seen from (.), (.) and (.) that

∣∣ϕ(n)(z)
∣∣ ≤ β (z ∈U) (.)

and, in consequence,

∣∣ϕ′′(z)
∣∣ ≤ β (z ∈U).

Since
(

ϕ(z)
z

)′
=


z

∫ z


wϕ′′(w)dw (z ∈U),

we get

∣∣∣∣
(

ϕ(z)
z

)′∣∣∣∣ =
∣∣∣∣ z

∫ z


wϕ′′(w)dw

∣∣∣∣ ≤ β


(z ∈U)

and so∣∣∣∣ϕ(z)z
–

ϕ(z)
z

∣∣∣∣ =
∣∣∣∣
∫ z

z

(
ϕ(w)
w

)′
dw

∣∣∣∣ ≤ β


|z – z| (.)

for z, z ∈U and z �= z.
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Now it follows from (.) and (.) that
∣∣f (z) – f (z)

∣∣
=

|(z – z) + anzz(zn– – zn– ) – zz( ϕ(z)
z

– ϕ(z)
z

)|
| – anzn– + ϕ(z)|| – anzn– + ϕ(z)|

>
|z – z|( – (n – )|an| – β

 )
| – anzn– + ϕ(z)|| – anzn– + ϕ(z)|

≥ .

Hence, f (z) is univalent in U . The proof of the theorem is complete. �

Let Sn(β) denote the class of functions f (z) = z + anzn + · · · ∈ A(n) with f (z) �=  for  <
|z| < , which satisfy the condition (.) given by Theorem .
Next we derive the following.

Theorem  Let f (z) = z + anzn + · · · ∈ Sn(β). Then, for z ∈U ,∣∣∣∣ z
f (z)

– 
∣∣∣∣ ≤ |z|n–

(
|an| + β


|z|

)
; (.)

 – |z|n–
(

|an| + β


|z|

)
≤ Re

z
f (z)

≤  + |z|n–
(

|an| + β


|z|

)
; (.)

∣∣f (z)∣∣ ≥ |z|
 + |an||z|n– + β

 |z|n . (.)

Proof In view of (.), we have

z
(

z
f (z)

)(n)

≺ βz (z ∈U). (.)

Applying Lemma to (.), we get

(
z

f (z)

)(n–)

+ (n – )!an ≺ βz (z ∈U). (.)

By using the lemma repeatedly, we finally have
(

z
f (z)

)′
+ (n – )anzn– ≺ βz (z ∈U). (.)

According to a result of Hallenbeck and Ruscheweyh [, Theorem ], (.) gives


z

∫ z



[(
t

f (t)

)′
+ (n – )antn–

]
dt ≺ β


z (z ∈U), (.)

i.e.,

z
f (z)

=  – anzn– +
β


zw(z) (z ∈U), (.)

where w(z) is analytic in U and |w(z)| ≤ |z|n– (z ∈U).
Now, from (.), we can easily derive the inequalities (.), (.) and (.). �
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Finally, we discuss the following theorem.

Theorem  Let f (z) ∈ Sn(β) and have the form

f (z) = z + an+zn+ + an+zn+ + · · · (z ∈U). (.)

(i) If √


≤ β ≤ , then f (z) is starlike in |z| < n
√


β

· 
n√

;

(ii) If
√
 –  ≤ β ≤ , then f (z) is close-to-convex in |z| < n

√√
–
β

.

Proof If we put

p(z) =
zf ′(z)
f (z)

=  + pnzn + · · · (z ∈U), (.)

then by (.) and the proof of Theorem  with an = , we have

zp′(z) = –z
(

z
f (z)

)′′
≺ βz. (.)

It follows from the lemma that

p(z) ≺  + βz, (.)

which implies that

∣∣∣∣zf ′(z)
f (z)

– 
∣∣∣∣ ≤ β|z|n (z ∈U). (.)

(i) Let √


≤ β ≤  and

|z| < r = n

√

β

· 
n√

. (.)

Then by (.), we have

∣∣∣∣arg zf ′(z)
f (z)

∣∣∣∣ < arcsin
√

. (.)

Also, from (.) in Theorem  with an = , we obtain

∣∣∣∣ z
f (z)

– 
∣∣∣∣ < β


rn (.)

and so

∣∣∣∣arg z
f (z)

∣∣∣∣ < √

. (.)
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Therefore, it follows from (.) and (.) that

∣∣∣∣arg zf ′(z)
f (z)

∣∣∣∣ ≤
∣∣∣∣arg zf ′(z)

f (z)

∣∣∣∣ +
∣∣∣∣arg z

f (z)

∣∣∣∣
< arcsin

√

+ arcsin

√


=
π



for |z| < r. This proves that f (z) is starlike in |z| < r.
(ii) Let

√
 –  ≤ β ≤  and

|z| < r =
n

√√
 – 
β

. (.)

Then we have

∣∣arg f ′(z)
∣∣ ≤

∣∣∣∣arg zf ′(z)
f (z)

∣∣∣∣ + 
∣∣∣∣arg z

f (z)

∣∣∣∣
< arcsin

(
βrn

)
+  arcsin

(
β


rn

)

= arcsin(
√
 – ) +  arcsin

(√
 – 


)

=
π


.

Thus, Re f ′(z) >  for |z| < r. This shows that f (z) is close-to-convex in |z| < r. �
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