RESEARCH

Open Access

On certain univalent functions with missing coefficients

Yi-Ling Cang¹ and Jin-Lin Liu^{2*}

*Correspondence: jlliu@yzu.edu.cn ²Department of Mathematics, Yangzhou University, Yangzhou, 225002, P.R. China Full list of author information is available at the end of the article

Abstract

The main object of the present paper is to show certain sufficient conditions for univalency of analytic functions with missing coefficients. **MSC:** 30C45; 30C55

Keywords: analytic; univalent; subordination

1 Introduction

Let A(n) be the class of functions of the form

$$f(z) = z + a_n z^n + a_{n+1} z^{n+1} + \dots \quad (n = 2, 3, \dots),$$
(1.1)

which are analytic in the unit disk $U = \{z : |z| < 1\}$. We write A(2) = A.

A function $f(z) \in A$ is said to be starlike in |z| < r ($r \le 1$) if and only if it satisfies

$$\operatorname{Re}\frac{zf'(z)}{f(z)} > 0 \quad (|z| < r).$$

$$(1.2)$$

A function $f(z) \in A$ is said to be close-to-convex in $|z| < r \ (r \le 1)$ if and only if there is a starlike function g(z) such that

$$\operatorname{Re}\frac{zf'(z)}{g(z)} > 0 \quad (|z| < r).$$
(1.3)

Let f(z) and g(z) be analytic in U. Then we say that f(z) is subordinate to g(z) in U, written $f(z) \prec g(z)$, if there exists an analytic function w(z) in U, such that $|w(z)| \le |z|$ and f(z) = g(w(z)) ($z \in U$). If g(z) is univalent in U, then the subordination $f(z) \prec g(z)$ is equivalent to f(0) = g(0) and $f(U) \subset g(U)$.

Recently, several authors showed some new criteria for univalency of analytic functions (see, *e.g.*, [1-7]). In this note, we shall derive certain sufficient conditions for univalency of analytic functions with missing coefficients.

For our purpose, we shall need the following lemma.

Lemma (see [8, 9]) Let f(z) and g(z) be analytic in U with f(0) = g(0). If h(z) = zg'(z) is starlike in U and $zf'(z) \prec h(z)$, then

$$f(z) \prec f(0) + \int_0^z \frac{h(t)}{t} dt.$$
 (1.4)

© 2013 Cang and Liu; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

2 Main results

Our first theorem is given by the following.

Theorem 1 Let $f(z) = z + a_n z^n + \cdots \in A(n)$ with $f(z) \neq 0$ for 0 < |z| < 1. If

$$\left| \left(\frac{z}{f(z)} \right)^{(n)} \right| \le \beta \quad (z \in U),$$
(2.1)

where $0 < \beta \leq 2[1 - (n - 2)|a_n|]$, then f(z) is univalent in U.

Proof Let

$$p(z) = \left(\frac{z}{f(z)}\right)^{(n)} \quad (z \in U),$$
(2.2)

then p(z) is analytic in U. By integration from 0 to z n-times, we obtain

$$\frac{z}{f(z)} = 1 - a_n z^{n-1} + \int_0^z dw_n \int_0^{w_n} dw_{n-1} \cdots \int_0^{w_2} p(w_1) dw_1 \quad (z \in U).$$
(2.3)

Thus, we have

$$f(z) = \frac{z}{1 - a_n z^{n-1} + \varphi(z)} \quad (z \in U),$$
(2.4)

where

$$\varphi(z) = \int_0^z dw_n \int_0^{w_n} dw_{n-1} \cdots \int_0^{w_2} p(w_1) \, dw_1 \quad (z \in U).$$
(2.5)

It is easily seen from (2.1), (2.2) and (2.5) that

$$\left|\varphi^{(n)}(z)\right| \le \beta \quad (z \in U) \tag{2.6}$$

and, in consequence,

$$|\varphi''(z)| \le \beta \quad (z \in U).$$

Since

$$\left(\frac{\varphi(z)}{z}\right)'=\frac{1}{z^2}\int_0^z w\varphi''(w)\,dw\quad (z\in U),$$

we get

$$\left| \left(\frac{\varphi(z)}{z} \right)' \right| = \left| \frac{1}{z^2} \int_0^z w \varphi''(w) \, dw \right| \le \frac{\beta}{2} \quad (z \in U)$$

and so

$$\left|\frac{\varphi(z_2)}{z_2} - \frac{\varphi(z_1)}{z_1}\right| = \left|\int_{z_1}^{z_2} \left(\frac{\varphi(w)}{w}\right)' dw\right| \le \frac{\beta}{2} |z_2 - z_1|$$
(2.7)

for $z_1, z_2 \in U$ and $z_1 \neq z_2$.

Now it follows from (2.4) and (2.7) that

$$\begin{split} \left| f(z_2) - f(z_1) \right| \\ &= \frac{\left| (z_2 - z_1) + a_n z_1 z_2 (z_2^{n-2} - z_1^{n-2}) - z_1 z_2 (\frac{\varphi(z_2)}{z_2} - \frac{\varphi(z_1)}{z_1}) \right|}{\left| 1 - a_n z_1^{n-1} + \varphi(z_1) \right| \left| 1 - a_n z_2^{n-1} + \varphi(z_2) \right|} \\ &> \frac{\left| z_2 - z_1 \right| (1 - (n-2)) a_n \right| - \frac{\beta}{2})}{\left| 1 - a_n z_1^{n-1} + \varphi(z_1) \right| \left| 1 - a_n z_2^{n-1} + \varphi(z_2) \right|} \\ &\ge 0. \end{split}$$

Hence, f(z) is univalent in U. The proof of the theorem is complete.

Let $S_n(\beta)$ denote the class of functions $f(z) = z + a_n z^n + \cdots \in A(n)$ with $f(z) \neq 0$ for 0 < |z| < 1, which satisfy the condition (2.1) given by Theorem 1.

Next we derive the following.

Theorem 2 Let $f(z) = z + a_n z^n + \cdots \in S_n(\beta)$. Then, for $z \in U$,

$$\left|\frac{z}{f(z)} - 1\right| \le |z|^{n-1} \left(|a_n| + \frac{\beta}{2}|z|\right);$$
(2.8)

$$1 - |z|^{n-1} \left(|a_n| + \frac{\beta}{2} |z| \right) \le \operatorname{Re} \frac{z}{f(z)} \le 1 + |z|^{n-1} \left(|a_n| + \frac{\beta}{2} |z| \right);$$
(2.9)

$$\left| f(z) \right| \ge \frac{|z|}{1 + |a_n| |z|^{n-1} + \frac{\beta}{2} |z|^n}.$$
(2.10)

Proof In view of (2.1), we have

$$z\left(\frac{z}{f(z)}\right)^{(n)} \prec \beta z \quad (z \in U).$$
(2.11)

Applying Lemma to (2.11), we get

$$\left(\frac{z}{f(z)}\right)^{(n-1)} + (n-1)!a_n \prec \beta z \quad (z \in U).$$

$$(2.12)$$

By using the lemma repeatedly, we finally have

$$\left(\frac{z}{f(z)}\right)' + (n-1)a_n z^{n-2} \prec \beta z \quad (z \in U).$$

$$(2.13)$$

According to a result of Hallenbeck and Ruscheweyh [1, Theorem 1], (2.13) gives

$$\frac{1}{z} \int_0^z \left[\left(\frac{t}{f(t)} \right)' + (n-1)a_n t^{n-2} \right] dt \prec \frac{\beta}{2} z \quad (z \in U),$$
(2.14)

i.e.,

$$\frac{z}{f(z)} = 1 - a_n z^{n-1} + \frac{\beta}{2} z w(z) \quad (z \in U),$$
(2.15)

where w(z) is analytic in U and $|w(z)| \le |z|^{n-1}$ ($z \in U$).

Now, from (2.15), we can easily derive the inequalities (2.8), (2.9) and (2.10). $\hfill \Box$

Theorem 3 Let $f(z) \in S_n(\beta)$ and have the form

$$f(z) = z + a_{n+1}z^{n+1} + a_{n+2}z^{n+2} + \dots \quad (z \in U).$$
(2.16)

(i) If
$$\frac{z}{\sqrt{5}} \le \beta \le 2$$
, then $f(z)$ is starlike in $|z| < \sqrt[n]{\frac{z}{\beta}} \cdot \frac{1}{2\sqrt[n]{5}}$;
(ii) If $\sqrt{3} - 1 \le \beta \le 2$, then $f(z)$ is close-to-convex in $|z| < \sqrt[n]{\frac{\sqrt{3}-1}{\beta}}$.

Proof If we put

$$p(z) = \frac{z^2 f'(z)}{f^2(z)} = 1 + p_n z^n + \dots \quad (z \in U),$$
(2.17)

then by (2.1) and the proof of Theorem 2 with $a_n = 0$, we have

$$zp'(z) = -z^2 \left(\frac{z}{f(z)}\right)'' \prec \beta z.$$
(2.18)

It follows from the lemma that

$$p(z) \prec 1 + \beta z, \tag{2.19}$$

which implies that

$$\left|\frac{z^2 f'(z)}{f^2(z)} - 1\right| \le \beta |z|^n \quad (z \in U).$$
(2.20)

(i) Let
$$\frac{2}{\sqrt{5}} \le \beta \le 2$$
 and

$$|z| < r_1 = \sqrt[n]{\frac{2}{\beta}} \cdot \frac{1}{\sqrt[2n]{5}}.$$
 (2.21)

Then by (2.20), we have

$$\left|\arg\frac{z^2f'(z)}{f^2(z)}\right| < \arcsin\frac{2}{\sqrt{5}}.$$
(2.22)

Also, from (2.8) in Theorem 2 with $a_n = 0$, we obtain

$$\left|\frac{z}{f(z)} - 1\right| < \frac{\beta}{2}r_1^n \tag{2.23}$$

and so

$$\left|\arg\frac{z}{f(z)}\right| < \frac{1}{\sqrt{5}}.$$
(2.24)

$$\left|\arg\frac{zf'(z)}{f(z)}\right| \le \left|\arg\frac{z^2f'(z)}{f^2(z)}\right| + \left|\arg\frac{z}{f(z)}\right|$$
$$< \arcsin\frac{2}{\sqrt{5}} + \arcsin\frac{1}{\sqrt{5}}$$
$$= \frac{\pi}{2}$$

for $|z| < r_1$. This proves that f(z) is starlike in $|z| < r_1$. (ii) Let $\sqrt{3} - 1 \le \beta \le 2$ and

$$|z| < r_2 = \sqrt[n]{\frac{\sqrt{3} - 1}{\beta}}.$$
(2.25)

Then we have

$$\left|\arg f'(z)\right| \le \left|\arg \frac{z^2 f'(z)}{f^2(z)}\right| + 2\left|\arg \frac{z}{f(z)}\right|$$
$$< \arcsin(\beta r_2^n) + 2\arcsin\left(\frac{\beta}{2}r_2^n\right)$$
$$= \arcsin(\sqrt{3} - 1) + 2\arcsin\left(\frac{\sqrt{3} - 1}{2}\right)$$
$$= \frac{\pi}{2}.$$

Thus, $\operatorname{Re} f'(z) > 0$ for $|z| < r_2$. This shows that f(z) is close-to-convex in $|z| < r_2$.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The authors have made the same contribution. All authors read and approved the final manuscript.

Author details

¹Department of Mathematics, Suqian College, Suqian, Jiangsu 223800, P.R. China. ²Department of Mathematics, Yangzhou University, Yangzhou, 225002, P.R. China.

Acknowledgements

Dedicated to Professor Hari M Srivastava.

We would like to express sincere thanks to the referees for careful reading and suggestions, which helped us to improve the paper.

Received: 12 January 2013 Accepted: 23 March 2013 Published: 3 April 2013

References

- 1. Dziok, J, Srivastava, HM: Certain subclasses of analytic functions associated with the generalized hypergeometric function. Integral Transforms Spec. Funct. 14, 7-18 (2003)
- 2. Nunokawa, M, Obradovič, M, Owa, S: One criterion for univalency. Proc. Am. Math. Soc. 106, 1035-1037 (1989)
- 3. Obradovič, M, Pascu, NN, Radomir, I: A class of univalent functions. Math. Jpn. 44, 565-568 (1996)
- 4. Owa, S: Some sufficient conditions for univalency. Chin. J. Math. 20, 23-29 (1992)
- 5. Samaris, S: Two criteria for univalency. Int. J. Math. Math. Sci. 19, 409-410 (1996)
- 6. Silverman, H: Univalence for convolutions. Int. J. Math. Math. Sci. 19, 201-204 (1996)
- 7. Yang, D-G, Liu, J-L: On a class of univalent functions. Int. J. Math. Math. Sci. 22, 605-610 (1999)
- 8. Hallenbeck, DJ, Ruscheweyh, S: Subordination by convex functions. Proc. Am. Math. Soc. 51, 191-195 (1975)
- 9. Suffridge, TJ: Some remarks on convex maps of the unit disk. Duke Math. J. 37, 775-777 (1970)

doi:10.1186/1687-1847-2013-89 Cite this article as: Cang and Liu: On certain univalent functions with missing coefficients. Advances in Difference Equations 2013 2013:89.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com