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Abstract
Asymptotic properties of solutions of a difference equation of the form

�mxn = anf (n, xσ (n)) + bn

are studied. We present sufficient conditions under which, for any polynomial ϕ(n) of
degree at mostm – 1 and for any real s ≤ 0, there exists a solution x of the above
equation such that xn = ϕ(n) + o(ns). We give also sufficient conditions under which,
for given real s≤ m – 1, all solutions x of the equation satisfy the condition
xn = ϕ(n) + o(ns) for some polynomial ϕ(n) of degree at mostm – 1.
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1 Introduction
Let N, Z, R denote the set of positive integers, the set of all integers and the set of real
numbers, respectively. For p,k ∈ Z, let N(p) = {p,p + , . . .}, N(p,k) = {p,p + , . . . ,k}.
Let m ∈N(). In this paper we consider the difference equation of the form

�mxn = anf (n,xσ (n)) + bn, (E)

an,bn ∈ R, f :N×R →R, σ :N → Z, limσ (n) = ∞.

By a solution of (E) we mean a sequence x :N →R satisfying (E) for all large n. We denote
the space of all sequences x : N → R by SQ. We denote the Banach space of all bounded
sequences x ∈ SQwith the norm ‖x‖ = sup{|xn| : n ∈N} by BS. If x, y in SQ, then xy denotes
the sequence defined by pointwise multiplication xy(n) = xnyn. Moreover, |x| denotes the
sequence defined by |x|(n) = |xn| for every n. We use the symbols ‘big O’ and ‘small o’ in
the usual sense, but for a ∈ SQ, we also regard o(a) and O(a) as subspaces of SQ. More
precisely, let o() = {x ∈ SQ : x is convergent to zero}, O() = {x ∈ SQ : x is bounded}, and
for a ∈ SQ, let

o(a) = ao() =
{
ax : x ∈ o()

}
, O(a) = aO() =

{
ax : x ∈O()

}
.

For m ∈ N(–), let Pol(m) denote the space Ker�m+, i.e., the space of all polynomial se-
quences of degree at most m. Now we can define asymptotically polynomial sequences.
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We say a sequence x ∈ SQ is asymptotically polynomial of degree at mostm if

x ∈ Pol(m) + o
(
ns

)
for some s ∈ (–∞,m]. Note that if t, s ∈ R, then the condition o(ns) ⊂ o(nt) is equivalent
to s ≤ t. Hence Pol(m) + o(ns) ⊂ Pol(m) + o(nt) if s ≤ t. In particular if s < , then Pol(m) +
o(ns) ⊂ Pol(m) + o() and the inclusion is proper. Note also that if k ∈ N(,m) and s ∈
(–∞,k], then x ∈ Pol(m) + o(ns) if and only if

xn = cmnm + cm–nm– + · · · + cknk + o
(
ns

)
for some fixed constants cm, . . . , ck . For k ∈N(), we use the factorial notation

n(k) = n(n – ) · · · (n – k + ) with n() = .

The integer part of real number t is denoted by �t	.
The purpose of this paper is to study the asymptotic behavior of solutions of equation

(E). In Section  we present some preliminary results. Main results appear in Sections
 and . We establish sufficient conditions under which, for some natural k and for any
ϕ ∈ Pol(m–) such that ϕ ◦σ = O(nk), there exists a solution x of (E) such that x = ϕ+o(ns).
We also give sufficient conditions under which all solutions are asymptotically polyno-
mial. The proofs of main theorems are based on the Schauder fixed point theorem (The-
orem .) and on the discrete Bihari-type inequality (Theorem .).
Asymptotically polynomial solutions appear in the theory of both differential and differ-

ence equations. Especially in the theory of second-order equations, the so-called asymp-
totically linear solutions, i.e., asymptotically polynomial solutions of degree at most one,
are considered. Asymptotically linear solutions of differential equations are considered,
for example, in papers [–]. A historical survey of this topic can be found in []. The
asymptotic linearity of a solution x, called in some papers ‘property (L)’, usually means
(passing over some additional properties of a derivative) one of the following two condi-
tions:

x(t) = at + b + o() or x(t) = at + o(t).

In [] and [] the condition of the form x(t) = at + o(td) for some d ∈ (, ) is also consid-
ered.
Asymptotically polynomial solutions of differential equations of higher order appear, for

example, in papers [–]. In [], Naito presented necessary and sufficient conditions
under which some neutral differential equation of order m possesses a solution x such
that

lim
t→∞

x(t)
tk

= a, for some fixed k ∈N(,m – ) and a ∈R.

Note that the condition limt→∞ x(t)/tk = a can be written in the form x(t) = atk + o(tk).
In [], Hasanbulli and Rogovchenko obtained sufficient conditions under which every
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nonoscillatory solution x of some neutral differential equation of orderm has the property

lim
t→∞

x(t)
tm– = a ∈R, i.e., x(t) = atm– + o

(
tm–).

In [], Philos, Purnaras and Tsamatos presented sufficient conditions under which, for
givenm ∈N() and k ∈N(,m– ), every solution of the equation x(m)(t) = f (t,x(t)) fulfills
the condition x(t) = c + ct + · · · + cktk + o(). Moreover, they obtained sufficient condi-
tions under which, for every polynomial function ϕ of degree at mostm– , there exists a
solution x of this equation such that x(t) = ϕ(t) + o().
Asymptotically linear solutions of difference equations are studied, for example, in pa-

pers [–]. Asymptotic linearity, similarly as in the continuous case, usually means one
of the following two conditions:

xn = an + b + o() or x(n) = an + o(n).

Asymptotically polynomial solutions of difference equations of higher order appear, for
example, in papers [–]. In [], Popenda and Drozdowicz presented necessary and
sufficient conditions under which the equation �mxn = anf (xn) has a convergent solution
(i.e., a solution that is asymptotically polynomial of degree zero). In [], Zafer obtained
sufficient conditions under which the equation �mxn = F(n,xg(n)) + bn has a solution x
such that limn→∞ xn/n(m–) = a ∈ R, i.e., xn = an(m–) + o(n(m–)). It is easy to see that the
last condition is equivalent to xn = anm– + o(nm–). In [] sufficient conditions under
which, for any ϕ ∈ Pol(m– ), there exists a solution x of the equation �mxn = anf (xn) + bn
such that xn = ϕ(n) + o() are presented. In [] sufficient conditions under which every
solution x of the equation �mxn = anF(n,xg(n)) + bn has the property xn = ϕ(n) + o() for
some ϕ ∈ Pol(m–) are presented. Moreover, sufficient conditions under which, for every
ϕ ∈ Pol(m – ) there exists a solution x of this equation such that xn = ϕ(n) + o(), are
presented.

2 Asymptotically polynomial sequences
In this sectionwe obtain some technical resultswhichwill be used in the next sections. The
solutions of ‘the simplest’ difference equation �mxn =  are the polynomial sequences. In
Theorem ., which is the main result of this section, we show that if a ∈ SQ is sufficiently
‘small’ then the solutions of the ‘equation’ �mxn = O(a) are asymptotically polynomial se-
quences. This result will be used in the proofs of our main Theorems . and .. Lem-
mas ., . and . are used in the proof of Theorem ., Lemma . is used in the proof
of Theorem . and Lemma . is used to justify an important example (see Remark .
and Example .).

Lemma . Assume that s ∈ (–,∞),m ∈N() and �mxn = o(ns). Then xn = o(ns+m).

Proof Induction onm. Let m = . Using de l’Hospital theorem, we obtain

lim
n→∞

�ns+

ns
= lim

n→∞
(n + )s+ – ns+

n–ns+
= lim

n→∞
( + n–)s+ – 

n–

= lim
n→∞

(s + )( + n–)s(–n–)
–n–

= s + .
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So, by the assumption �x = o(ns), we obtain

lim
�xn
�ns+

= lim
�xn
ns

ns

�ns+
= lim

�xn
ns

lim
ns

�ns+
=


s + 

= .

Since s > –, the sequence (ns+) is increasing to infinity. By the Stolz-Cesaro theorem, we
obtain xn = o(ns+). Hence the assertion is true for m = . Assume that it is true for some
m ≥ , and let �m+xn = o(ns). Then �m�xn = o(ns), and by an inductive hypothesis, we
get�xn = o(ns+m). Hence, by the first part of the proof, we obtain xn = o(ns+m+). The proof
is complete. �

For k ∈N(), n ∈ N(), let

skn =
(
n + k – 

k

)
=
n(n + ) · · · (n + k – )

k!
=
(n + k – )(k)

k!
.

Lemma . Assume that m ∈ N(), and let the series
∑

nm–xn be absolutely convergent.
Then there exists exactly one sequence z such that z = o() and�mz = (–)mx.The sequence
z is defined by

zn =
∞∑
i=n

∞∑
i=i

· · ·
∞∑

im=im–

xim =
∞∑
j=

sm–
j+ xn+j =

∞∑
k=n

sm–
k–n+xk .

Moreover,

|zn| ≤
∞∑
k=n

km–|xk| for any n ∈ N().

Proof The first assertion is an immediate consequence of Lemma  in []. The second
assertion follows from the inequality sm–

k–n+ < km–. �

Lemma . Assume that u is a positive and nondecreasing sequence, m ∈N() and

∞∑
n=

nm–un|an| <∞.

Then there exists a sequence w ∈ o(u–) such that �mw = a.

Proof Since u is positive and nondecreasing, we have
∑∞

n= nm–|an| < ∞. By Lemma .,
there exist sequences x, z ∈ o() such that �mx = (–)ma and �mz = (–)m|ua|. Moreover,
using Lemma ., we obtain

|unxn| =
∣∣sm–
 unan + sm–

 unan+ + · · · ∣∣ ≤ sm–
 un|an| + sm–

 un|an+| + · · ·
≤ sm–

 un|an| + sm–
 un+|an+| + sm–

 un+|an+| + · · · = zn = o().

Hence x = o(u–), and we can take w = (–)mx. �
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Theorem . Assume that m ∈N(), s ∈ (–∞,m – ], �mx ∈O(a), and

∞∑
n=

nm––s|an| <∞.

Then x ∈ Pol(m – ) + o(ns).

Proof Assume that s ≤ . Since �mx ∈ O(a), we have
∑

nm––s|�mxn| < ∞. Let un = n–s.
By Lemma ., there exists a sequence w = o(ns) such that �mw = �mx. Then

x –w ∈ Ker�m = Pol(m – ) and x = x –w +w ∈ Pol(m – ) + o
(
ns

)
.

Let s ∈ (,m – ]. Choose k ∈ N(,m – ) such that k –  < s ≤ k. Then

∞∑
n=

nm–k–nk–s|�mx| <∞,

and by Lemma . there exists w = o(ns–k) such that �m–kw = �mx. Choose z ∈ SQ such
that �kz = w. Since s – k > –, so by Lemma ., z = o(ns). Moreover,

�mz = �m–k�kz = �m–kw = �mx.

Hence x = x – z + z ∈ Pol(m – ) + o(ns). The proof is complete. �

Lemma . Let s ∈R and n ∈N(). Then

�ns =
∞∑
k=

(
s
k

)
ns–k .

Proof If |x| < , then ( + x)s =
∑∞

k=
(s
k
)
xk . Hence

n–s�ns = n–s
(
(n + )s – ns

)
=

(
 +


n

)s

–  =
∞∑
k=

(
s
k

)
n–k –  =

∞∑
k=

(
s
k

)
n–k ,

and we obtain the result. �

Theorem . If m ∈N() and s ∈ R, then

�mns = s(m)ns–m + o
(
ns–m

)
= O

(
ns–m

)
. ()

Proof First we show, by induction onm, that there exists a sequence c such that

�mns = s(m)ns–m +
∞∑

k=m+

ckns–k . ()

For m =  this assertion follows from Lemma .. Assume it is true for some m ≥ . By
Lemma . and by an inductive hypothesis, we obtain sequences c′, b, b′, b′′, c′′ and c such
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that

�m+ns = ��mns = �

(
s(m)ns–m +

∞∑
k=m+

c′kn
s–k

)
= s(m)�ns–m +

∞∑
k=m+

c′k�ns–k

= s(m)

(
(s –m)ns–m– +

∞∑
k=

bkns–m–k

)
+

∞∑
k=m+

c′k

(
(s – k)ns–k– +

∞∑
j=

b′
jn

s–k–j

)

= s(m+)ns–m– +
∞∑
k=

b′′
kn

s–m–k +
∞∑

k=m+

c′′kn
s–k–

= s(m+)ns–m– +
∞∑

k=m+

b′′
k–mn

s–k +
∞∑

k=m+

c′′k–n
s–k = s(m+)ns–m– +

∞∑
k=m+

ckns–k .

Hence we obtain (). The assertion () is an easy consequence of (). �

Lemma . Assume that s,a ∈R and m ∈N(–). The following conditions are equivalent:

()
(
na

) ∈ Pol(m) + o
(
ns

)
, () a < s or a ∈ N(,m).

Proof If a < s, then (na) ∈ o(ns) ⊂ Pol(m) + o(ns). If a ∈N(,m), then

(
na

) ∈ Pol(m) ⊂ Pol(m) + o
(
ns

)
.

Assume that a ≥ s and a /∈ N(,m). Obviously, (na) /∈ o(ns). Hence the assumption (na) ∈
Pol(m) + o(ns) implies the existence of a nonzero constant c such that na = cnk + o(nk) +
o(ns) for some k ∈N(,m). If k > a, then dividing by nk , we obtain o() = c + o(), which is
impossible. If k < a, then dividing by na, we have  = o(), which is impossible too. Hence,
in this case, (na) /∈ Pol(m) + o(ns). The proof is complete. �

3 Asymptotically polynomial solutions
In this section we consider the first issue of the Abstract. In Theorem . we establish
sufficient conditions under which, for any ϕ ∈ Pol(m – ) and for any real s ≤ , there
exists a solution x of (E) such that x = ϕ + o(ns). However, the main result of the section
is more general Theorem . in which we establish sufficient conditions under which, for
some natural k and for any ϕ ∈ Pol(m – ) such that ϕ ◦ σ = O(nk), there exists a solution
x of (E) such that x = ϕ + o(ns). In the second part of the section (Theorems ., . and
Corollary .), we present some consequences of Theorem ..
Theorem . generalizes Theorem  of []. The method of the proof of Theorem .

shows certain similarities to the method used in the continuous case in the proof of The-
orem  of [].
In this section we regard N × R as a metric subspace of the plane R

. Moreover, we
assume a,b ∈ SQ,m ∈N(), s ∈ (–∞, ] and

∞∑
n=

nm––s|an| <∞,
∞∑
n=

nm––s|bn| <∞. ()

http://www.advancesindifferenceequations.com/content/2013/1/92
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Theorem. Assume that k ∈N(), g : [,∞)→ [,∞) is continuous, f is continuous and

∣∣f (n, t)∣∣ ≤ g
( |t|
nk

)
for (n, t) ∈N×R. ()

Then for any ϕ ∈ Pol(m – ) such that ϕ ◦ σ = O(nk), there exists a solution x of (E) such
that

x = ϕ + o
(
ns

)
.

Proof Let x be a solution of equation (E), and let ϕ ∈ Pol(m – ), ϕ(σ (n)) = O(nk). Let us
denote yn = xn – ϕ(n). Then �myn = �mxn and equation (E) takes the form

�myn = anf (n, yσ (n) + ϕσ (n)) + bn. (E*)

Hence, we have to prove that equation (E*) has a solution y such that y = o(ns). Let n =
min{n ∈N : σ (k)≥  for all k ≥ n}. For y ∈ SQ, we define y and ỹ by

yn =

{
yσ (n) + ϕσ (n) for n ≥ n,
 for n < n,

ỹn = anf (n, yn) + bn.

Let T = {y ∈ SQ : ‖y‖ ≤ }. Since ϕ(σ (n)) = O(nk), there exists a constant L such that
(yn/nk) ≤ L for y ∈ T . Hence, by the continuity of g , there exists a constant M ≥  such
that g(|yn|/nk)≤ M for every y ∈ T and every n. Moreover,

|̃yn| ≤ M|an| + |bn| ≤ M
(|an| + |bn|

)
()

for every y ∈ T and every n. Let

dn =M
∞∑
j=n

sm–
j–n+

(|aj| + |bj|
)
. ()

Choose p such that p≥ n and dn ≤  for n≥ p. Let

S =
{
z ∈ SQ : |zn| ≤ dn for n≥ p and zn =  for n < p

}
.

Then S ⊂ T and S is a convex subset of the Banach space BS. Moreover, as in the proof of
Theorem  in [], one can show that S is compact. If y ∈ T , then |̃y| ≤ M(|a|+ |b|). Hence,
by () we have

∑∞
n= nm– |̃yn| <∞. For y ∈ T , let

H(y)(n) =

{
(–)m

∑∞
j=n sm–

j–n+̃yj for n≥ p,
 for n < p.

Then, for y ∈ S and n ≥ p, by () and (), we get

∣∣H(y)(n)
∣∣ = ∣∣∣∣∣

∞∑
j=n

sm–
j–n+̃yj

∣∣∣∣∣ ≤
∞∑
j=n

sm–
j–n+ |̃yj| ≤ dn.

http://www.advancesindifferenceequations.com/content/2013/1/92
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Hence H(S) ⊂ S. Let ε > . Choose ε >  and ε >  such that ε + ε = ε. There exists
q ≥ p such that dn < ε for n≥ q. Choose α >  such that

α

q∑
j=p

sm–
j–n+|aj| < ε.

Let y ∈ S, and let j ∈ {p, . . . ,q}. By the continuity of f at a point (j, yj), there exists δj > 
such that |yj – s| < δj implies |f (j, yj) – f (j, s)| < α. Let δ =min{δp, δp+, . . . , δq}, and let z ∈ S,
‖y – z‖ < δ. If j ∈ {p, . . . ,q}, then |yj – zj| = |yσ (j) – zσ (j)| < δ. Hence

|̃yj – z̃j| =
∣∣ajf (j, yj) – ajf (j, zj)

∣∣ < |aj|α

and

q∑
j=p

sm–
j–n+ |̃yj – z̃j| <

q∑
j=p

sm–
j–n+|aj|α < ε.

Moreover, by () and (), we have

∞∑
j=q

sm–
j–n+ |̃yj – z̃j| ≤

∞∑
j=q

sm–
j–n+ |̃yj| +

∞∑
j=q

sm–
j–n+ |̃zj| ≤ dq + dq < ε.

Hence

∥∥H(y) –H(z)
∥∥ = sup

n≥p

∣∣H(y)(n) –H(z)(n)
∣∣ = sup

n≥p

∣∣∣∣∣
∞∑
j=n

sm–
j–n+(̃yj – z̃j)

∣∣∣∣∣
≤

∞∑
j=p

sm–
j–n+ |̃yj – z̃j| ≤

q∑
j=p

sm–
j–n+ |̃yj – z̃j| +

∞∑
j=q

sm–
j–n+ |̃yj – z̃j| < ε + ε = ε.

This shows that themapH is continuous. By the Schauder fixed point theorem, there exists
a sequence y ∈ S such that H(y) = y. Then yn = (–)m

∑∞
j=n sm–

j–n+̃yj for n≥ p. By Lemma .
we obtain

�myn = ỹn = anf (n, yn) + bn = anf (n, yσ (n) + ϕσ (n)) + bn

for n≥ p. Hence y is a solution of (E*). Moreover, by () we have

∣∣�myn
∣∣ = |̃yn| ≤ M

(|an| + |bn|
)
.

Hence �my = O(|a|+ |b|), and by Theorem . we obtain y ∈ Pol(m– ) + o(ns). Moreover,
s ≤  and y = o(). Hence y = o(ns). The proof is complete. �

Remark . Let k denote the greatest natural number such that for every polynomial
ϕ ∈ Pol(k), there exists a solution x of (E) such that x = ϕ+o(). Note that if in Theorem.
σ (n) = n – p for some fixed integer p, then the condition ϕ(σ (n)) = O(nk) takes the form
ϕ(n) = O(nk). Hence k = min(k,m – ). But if the sequence σ is of another form, then k
may be greater than k. In the following example, we have k =  and k = .

http://www.advancesindifferenceequations.com/content/2013/1/92
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Example . Let m = , s = , k = , σ (n) = �√n	, bn = , g(x) = x ,

f (n,x) =
x
n
, an = –

nσ (n)
(σ (n) + )(n + )()

.

Then the conditions of Theorem . are satisfied and equation (E) takes the form

�xn = –
�√n	

(�√n	 + )(n + )()
x�√n	. ()

Note, that for a polynomial ϕ, the condition ϕ(�√n	) = O(n) is equivalent to the condition
ϕ ∈ Pol(). Thus, by Theorem ., for any ϕ ∈ Pol(), equation () has a solution (xn) such
that xn = ϕn + o(). One such solution is xn = n + 

n .

Theorem . Assume that σ (n) = O(n), g : [,∞) → [,∞) is continuous, f is continuous
and

∣∣f (n, t)∣∣ ≤ g
( |t|
nm–

)
for (n, t) ∈ N×R.

Then, for any ϕ ∈ Pol(m – ), there exists a solution x of (E) such that x = ϕ + o(ns).

Proof Let ϕ ∈ Pol(m – ). ChooseM, K such that |ϕ(n)/nm–| ≤ M and σ (n)/n≤ K . Then

∣∣∣∣ϕ(σ (n))nm–

∣∣∣∣ = ∣∣∣∣ϕ(σ (n))σ (n)m–

σ (n)m–nm–

∣∣∣∣ ≤ MKm–.

Hence ϕ ◦ σ = O(nm–). Now the assertion follows from Theorem ..
We say that a function f : N × R → R is locally equibounded if for every t ∈ R, there

exists a neighborhood U of t such that f is bounded on N×U . Obviously, every bounded
function f :N×R→R is locally equibounded. �

Example . Let f(n, t) = t and f(n, t) = n. Then f is continuous, unbounded and locally
equibounded, f is continuous but not locally equibounded.

Example . Let g :R →R be continuous, and let f (n, t) = g(t). Then f is continuous and
locally equibounded. If g, . . . , gp– : R → R are continuous and f (n, t) = gnmodp(t), then f
is continuous and locally equibounded.

Example . Assume that g,h : R → R are continuous, α,β ∈ SQ are bounded, and let
f (n, t) = αng(t) + βnh(t). Then f is continuous and locally equibounded.

Theorem . If c ∈R, U is a neighborhood of c and the function f |N×U is bounded and
continuous, then there exists a solution x of (E) such that x = c + o(ns). Moreover, if f is
continuous and locally equibounded, then for any c ∈R, there exists a solution x of (E) such
that x = c + o(ns).
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Proof Choose α,β ∈ R such that α < c < β and [α,β]⊂ U . Let

f :N×R →R, f(n, t) =

⎧⎪⎨⎪⎩
f (n,α) for t ≤ α,
f (n, t) for t ∈ (α,β),
f (n,β) for t ≥ β .

Then f is continuous and bounded. Choose M >  such that |f(n, t)| ≤ M for any (n, t).
Let g : [,∞)→ [,∞), g(t) =M, and let k ≥ m – . Then

∣∣f(n, t)∣∣ ≤ M = g
(|t|/nk)

for any (n, t) ∈N×R. Hence, by Theorem ., there exists a solution x of the equation

�mxn = anf(n,xσ (n)) + bn

such that x = c + o(ns). Since σ (n) → ∞, xσ (n) ∈ (α,β) for large n. Hence f(n,xσ (n)) =
f (n,xσ (n)) for large n. Therefore x is a solution of (E). The second assertion is an easy con-
sequence of the first one. �

Theorem . Assume that σ (n) = O(np) for some p > , λ ∈ (,∞), ϕ ∈ Pol(m – ) and
that at least one of the following conditions is satisfied:
() f is continuous and bounded on N× [λ,∞) and ϕ(n) → ∞,
() f is continuous and bounded on N× (–∞,λ] and ϕ(n)→ –∞,
() f is continuous and bounded on N× ((–∞, –λ]∪ [λ,∞)) and ϕ is nonconstant.

Then there exists a solution x of (E) such that x = ϕ + o(ns).

Proof Assume () is satisfied. Let

f :N×R →R, f(n, t) =

{
f (n,λ) for t ≤ λ,
f (n, t) for t > λ.

Then f is continuous and bounded. Choose M >  such that |f(n, t)| ≤ M for any (n, t).
Let g : [,∞)→ [,∞), g(t) =M, and let k ≥ (m – )p. Then ϕ ◦ σ = O(nk) and

∣∣f(n, t)∣∣ ≤ M = g
(|t|/nk)

for any (n, t) ∈N×R. Then, by Theorem ., there exists a solution x of the equation

�mxn = anf(n,xσ (n)) + bn

such that x = ϕ +o(ns). Moreover, xσ (n) > λ for large n. Therefore x is a solution of (E). The
assertion () is proved. () is analogous to () and () is a consequence of () and (). �

Corollary . Assume that σ (n) = O(np) for some p > , c ∈ R, λ ∈ (,∞), ϕ ∈ Pol(m – ),
g :R →R and that at least one of the following conditions is satisfied:
() g is continuous on some neighborhood of c and ϕ = c,
() g is continuous and bounded on [λ,∞) and ϕ(n) → ∞,

http://www.advancesindifferenceequations.com/content/2013/1/92
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() g is continuous and bounded on (–∞,λ] and ϕ(n) → –∞,
() g is continuous and bounded on (–∞, –λ]∪ [λ,∞) and ϕ is nonconstant.

Then there exists a solution x of the equation

�mxn = ang(xσ (n)) + bn (E)

such that x = ϕ + o(ns).

Proof This is a consequence of Theorems . and .. �

Example . Assume that (–)man > , bn = , s = , c ∈R and

g(t) =

{
 for t ≤ c,
 for t > c.

By Corollary ., for every nonconstant polynomial ϕ ∈ Pol(m – ), there exists a solution
x of (E) such that x = ϕ +o(). Moreover, by Corollary ., for every real c �= c, there exists
a solution x of (E) such that x = c + o(). We will show that a solution of (E), which is
convergent to c, does not exist. Assume thatm is even. Then an > . Let x be a solution of
(E) such that limxn = c. Then

��m–xn = �mx = ang(xσ (n)) ≥ 

for large n. Moreover, �m–xn = �m–(c+ o()) = o(). Hence �m–xn ≤  for large n. Thus
��m–xn ≤  for large n and so on. After (m – )-steps, we obtain �xn ≤  for large n.
Choose p such that�xn ≤  for n≥ p. Then xn ≥ c for n ≥ p. If xm = c for somem≥ p, then
xn = c for every n ≥ m and �mxn =  for n≥ m. On the other hand, if σ (n)≥ m, we obtain
�mxn = ang(xσ (n)) = ang(c) = an > , which is impossible. Hence xn > c for n ≥ p. Choose
p such that σ (n) ≥ p for every n ≥ p. Then g(xσ (n)) =  for n ≥ p. Hence �mxn =  for
n ≥ p, and there exists a polynomial sequence ϕ ∈ Pol(m – ) such that xn = ϕ(n) for
n≥ p. But the only polynomial ϕ ∈ Pol(m–) which satisfies the condition ϕ(n) = c+o()
is the constant polynomial ϕ(n) = c. Hence we again obtain xn = c for large n, which is
impossible. Similarly, ifm is odd, one can show that a solution of (E), which is convergent
to c, does not exist.

4 Approximations of solutions
In this section we consider the second issue of the Abstract. In Theorem . we establish
sufficient conditions under which, for given real s ≤ m – , all solutions x of (E) satisfy
the condition x = ϕ + o(ns) for some ϕ ∈ Pol(m – ). In the second part of the section, we
present some consequences of Theorem .. Moreover, in Example . we show that the
assertion of Theorem . is in some sense optimal.
Theorem . generalizes Theorem  of []. The way Theorem . is proved partially

resembles the methods used in the continuous case in the proofs of Theorem  in [] and
Theorem  in [].
In this section we assume a,b ∈ SQ,m ∈N(), s ∈ (–∞,m – ] and

∞∑
n=

nm––s|an| <∞,
∞∑
n=

nm––s|bn| <∞. ()

http://www.advancesindifferenceequations.com/content/2013/1/92
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Lemma . Assume that ϕ : [,∞) → [,∞) is a continuous and nondecreasing function
such that ϕ(t) >  for t ≥  and

∫ ∞
 ϕ(s)– ds = ∞. Let c >  and let a, u be sequences of

nonnegative real numbers such that

∞∑
n=

an < ∞ and un ≤ c +
n–∑
i=

anϕ(un) for any n.

Then the sequence u is bounded.

Proof The assertion is an easy consequence of Theorem  in []. �

The next lemma can be found in [].

Lemma . Let (an) be a sequence of real numbers, and let p,m ∈N(), n ∈N(p+ ). Then

n–∑
im=p

im–∑
im–=p

· · ·
i–∑
i=p

ai =
n–∑
k=p

(n – k – )m–

(m – )!
ak .

Theorem. Assume that σ (n)≤ n, g : [,∞)→ [,∞) is nondecreasing and continuous,
f is continuous, and assume that

∣∣f (n, t)∣∣ ≤ g
( |t|
nm–

)
for all (n, t) ∈ N×R,

∫ ∞



dt
g(t)

= ∞ ()

and x is a solution of (E). Then x ∈ Pol(m – ) + o(ns).

Proof Assume that x is a solution of (E). Then, by () for large n, we have

∣∣�mxn
∣∣ ≤ |an|g

( |xσ (n)|
nm–

)
+ |bn|. ()

From the identity xn = x +
∑n–

i= �xi, we get |xn| ≤ |x| + ∑n–
i= |�xi|. Similarly, |�xi| ≤

|�x| +∑i–
j= |�xj|. Hence we have

|xn| ≤ |x| +
n–∑
i=

(
|�x| +

i–∑
j=

∣∣�xj
∣∣) ≤

n–∑
i=

(
|x| + |�x| +

i–∑
j=

∣∣�xj
∣∣).

Analogously, |�xj| ≤ |�x| +∑j–
k= |�xk| and then

|xn| ≤
n–∑
i=

(
|x| + |�x| +

i–∑
j=

(∣∣�x
∣∣ + j–∑

k=

∣∣�xk
∣∣))

≤
n–∑
i=

i–∑
j=

(
|x| + |�x| +

∣∣�x
∣∣ + j–∑

k=

∣∣�xk
∣∣),

and so on. Afterm –  steps, we get

|xn| ≤
n–∑
im=

im–∑
im–=

· · ·
i–∑
i=

(
|x| + |�x| + · · · + ∣∣�mx

∣∣ + i–∑
i=

∣∣�mxi
∣∣).

http://www.advancesindifferenceequations.com/content/2013/1/92


Migda Advances in Difference Equations 2013, 2013:92 Page 13 of 16
http://www.advancesindifferenceequations.com/content/2013/1/92

Let A = |x| + |�x| + · · · + |�mx|. By Lemma . we obtain

|xn| ≤
n–∑
k=

(n – k – )m–

(m – )!

(
A +

n–∑
j=

∣∣�mxj
∣∣).

Using the inequality

(n – k – )m–

(m – )!
≤ nm–,

we have |xn| ≤ nm–(A +
∑n–

j= |�mxj|). Hence

|xσ (n)|
nm– ≤ |xσ (n)|

σ (n)m– ≤ A +
σ (n)–∑
j=

∣∣�mxj
∣∣ ≤ A +

n–∑
j=

∣∣�mxj
∣∣

≤ A +
n–∑
j=

(
|aj|g

( |xσ (j)|
jm–

)
+ |bj|

)
≤ B +

n–∑
j=

|aj|g
( |xσ (j)|

jm–

)
,

where B = A +
∑∞

j= |bj|. By Lemma ., the sequence (|xσ (n)|/nm–) is bounded. Hence, by
() and the continuity of g , there exists a constantM ≥  such that

∣∣�mxn
∣∣ ≤ |an|M + |bn| ≤ M

(|an| + |bn|
)

for all large n. Hence �mx = O(|a|+ |b|), and from Theorem ., we obtain x ∈ Pol(m–)+
o(ns). The proof is complete. �

Corollary . Assume that σ (n) ≤ n, α ∈ (, ], p ≥ α(m – ) and x is a solution of the
equation

�mxn = an
|xσ (n)|α
np

+ bn.

Then x ∈ Pol(m – ) + o(ns).

Proof Let g : [,∞)→ [,∞), g(t) = tα and f (n, t) = |t|α/np. Then

∣∣f (n, t)∣∣ = f (n, t) =
|t|α
np

≤ |t|α
nα(m–) =

( |t|
nm–

)α

= g
( |t|
nm–

)
.

Hence the assertion follows from Theorem .. �

Corollary . Assume that σ (n)≤ n, α ∈ (, ], p ≥ α(m – ),

∞∑
n=

nm––s+p|an| < ∞,
∞∑
n=

nm––s|bn| < ∞

and x is a solution of the equation �mxn = an|xσ (n)|α + bn. Then x ∈ Pol(m – ) + o(ns).

http://www.advancesindifferenceequations.com/content/2013/1/92
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Proof If a′
n = npan, then

∑∞
n= nm––s|a′

n| < ∞ and x is a solution of the equation

�mxn = a′
n
|xσ (n)|α
np

+ bn.

Hence x ∈ Pol(m – ) + o(ns) by Corollary .. �

Example . Let m ≥ , s = ,

f (n,x) = , g(x) = , an = , bn = (–)m– (m – )!
(n +m)m

.

Then the conditions of Theorem . are satisfied and equation (E) takes the form

�mxn = (–)m– (m – )!
(n +m)m

. ()

The general solution x of () can be written in the form

xn = cm–nm– + cm–nm– + · · · + cn + c +
n–∑
k=


k
.

Using the formula
∑n–

k= k– = lnn + o() = o(n), we obtain x ∈ Pol(m – ) + o(n). Note that
x /∈ Pol(m – ) + o().

Remark . If the assumptions of Theorem . are satisfied, then every solution of (E) is
an element of the space

Pol(m – ) + o
(
ns

)
.

We will show that for every ε > , there exist sequences a, b and a function f such that the
assumptions of Theorem . are satisfied and equation (E) has a solution x such that

x /∈ Pol(m – ) + o
(
ns–ε

)
.

Example . Letm ∈N(), σ (n) = n, ε > ,  < λ < ε, s ∈ (–∞,m – ], s – λ /∈ N(), bn = ,
β = s – λ, μ =m – s –  + λ,  < α < λ/μ, xn = nβ ,

g(t) = tα , f (n, t) = g
( |t|
nm–

)
=

( |t|
nm–

)α

and an = nαμ�mnβ .

Since  < α < , we have
∫ ∞
 g–(t)dt = ∞. By Lemma .,

x ∈ Pol(m – ) + o
(
ns

)
and x /∈ Pol(m – ) + o

(
ns–ε

)
.

By Theorem .,

nm–s–an = nm–s–nαμ�mnβ = nm–s–+αμO
(
nβ–m)

= O
(
nαμ+β–s–).
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Moreover, αμ + β – s –  < λ + β – s –  = –. Hence nm–s–an = O(nδ) for some δ < –.
Therefore

∑∞
n= nm–s–|an| <∞. Moreover,

anf (n,xn) + bn = nαμ�mnβ
(
n–mnβ

)α = nα(μ+–m+β)�mnβ = n�mnβ = �mxn.

Hence x is a solution of the equation �mxn = anf (n,xn) + bn.
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