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Abstract
In this paper, we study the equilibrium points, local asymptotic stability of equilibrium
points, and global behavior of equilibrium points of a discrete Lotka-Volterra model
given by

xn+1 =
αxn – βxnyn
1 + γ xn

, yn+1 =
δyn + εxnyn
1 + ηyn

,

where parameters α,β ,γ ,δ,ε ,η ∈R
+, and initial conditions x0, y0 are positive real

numbers. Moreover, the rate of convergence of a solution that converges to the
unique positive equilibrium point is discussed. Some numerical examples are given to
verify our theoretical results.
MSC: 39A10; 40A05
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1 Introduction and preliminaries
Many authors investigated the ecological competition systems governed by differential
equations of Lotka-Volterra type. Many interesting results related with the global charac-
ter and local asymptotic stability have been obtained. We refer to [, ] and the references
therein. Already, many authors [, ] have argued that the discrete time models governed
by difference equations are more appropriate than the continuous ones when the popula-
tions are of non-overlapping generations. Particularly, the persistence, boundedness, local
asymptotic stability, global character, and the existence of positive periodic solutions.
The discrete Lotka-Volterra models have many applications in applied sciences. Such

models were first established in mathematical biology, and then their applications were
spread to other fields [–]. Several variations of the Lotka-Volterra predator-prey model
have been proposed that offer more realistic descriptions of the interactions of the popu-
lations. If the population of rabbits is always much larger than the number of foxes, then
the considerations that entered into the development of the logistic equation may come
into play. If the number of rabbits becomes sufficiently great, then the rabbits may be in-
terfering with each other in their quest for food and space. One way to describe this effect
mathematically is to replace the original model by the more complicated system. Most
predators feed on more than one type of food. If the foxes can survive on an alternative
resource, although the presence of their natural prey (rabbits) favors growth, a possible
alternative model is the discrete dynamical system

xn+ =
αxn – βxnyn
 + γ xn

, yn+ =
δyn + εxnyn
 + ηyn

, (.)
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where parameters α,β ,γ , δ, ε,η ∈ R
+, and initial conditions x, y are positive real num-

bers.
It is a well-known fact that the discrete-time type models described by difference equa-

tions are more suitable than the continuous-time models. Nonlinear difference equations
of order greater than one are of paramount importance in applications. Such equations
also appear naturally as discrete analogues and as numerical solutions of differential and
delay differential equations which model various diverse phenomena in biology, ecology,
physiology, physics, engineering, and economics. Rational difference equations are a spe-
cial form of nonlinear difference equations. We refer to [–] for basic theory of differ-
ence equations and rational difference equations. Recently, many authors have discussed
the dynamics of rational difference equations [–].

2 Linearized stability
Let us consider a two-dimensional discrete dynamical system of the form

xn+ = f (xn, yn),

yn+ = g(xn, yn), n = , , . . . ,
(.)

where f : I × J → I and g : I × J → J are continuously differentiable functions and I , J are
some intervals of real numbers. Furthermore, a solution {(xn, yn)}∞n= of the system (.) is
uniquely determined by initial conditions (x, y) ∈ I × J . An equilibrium point of (.) is
a point (x̄, ȳ) that satisfies

x̄ = f (x̄, ȳ),

ȳ = g(x̄, ȳ).

Definition . Let (x̄, ȳ) be an equilibrium point of the system (.).
(i) An equilibrium point (x̄, ȳ) is said to be stable if for every ε >  there exists δ > 

such that for every initial condition (x, y) if ‖(x, y) – (x̄, ȳ)‖ < δ implies
‖(xn, yn) – (x̄, ȳ)‖ < ε for all n > , where ‖ · ‖ is the usual Euclidean norm in R

.
(ii) An equilibrium point (x̄, ȳ) is said to be unstable if it is not stable.
(iii) An equilibrium point (x̄, ȳ) is said to be asymptotically stable if there exists η > 

such that ‖(x, y) – (x̄, ȳ)‖ < η and (xn, yn) → (x̄, ȳ) as n→ ∞.
(iv) An equilibrium point (x̄, ȳ) is called a global attractor if (xn, yn) → (x̄, ȳ) as n→ ∞.
(v) An equilibrium point (x̄, ȳ) is called an asymptotic global attractor if it is a global

attractor and stable.

Definition . Let (x̄, ȳ) be an equilibrium point of a map F(x, y) = (f (x, y), g(x, y)), where
f and g are continuously differentiable functions at (x̄, ȳ). The linearized system of (.)
about the equilibrium point (x̄, ȳ) is given by

Xn+ = F(Xn) = FJXn,

where Xn =
( xn
yn

)
and FJ is a Jacobianmatrix of the system (.) about the equilibrium point

(x̄, ȳ).

http://www.advancesindifferenceequations.com/content/2013/1/95
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Let (x̄, ȳ) be an equilibrium point of the system (.), then

x̄ =
αx̄ – βx̄ȳ
 + γ x̄

, ȳ =
δȳ + εx̄ȳ
 + ηȳ

.

Hence, O = (, ), P = ( β–βδ+(–+α)η
βε+γ η

, γ (–+δ)+(–+α)ε
βε+γ η

), Q = (–+α
γ

, ), and R = (, –+δ
η

) are equi-
librium points of the system (.). Then, clearly, P = ( β–βδ+(–+α)η

βε+γ η
, γ (–+δ)+(–+α)ε

βε+γ η
) is the

unique positive equilibrium point of the system (.), if α > , δ ≤ , ε > γ–γ δ

α– or α > ,
δ > , η > –β+βδ

–+α
.

The Jacobian matrix of the linearized system of (.) about the fixed point (x̄, ȳ) is given
by

FJ (x̄, ȳ) =

[
α–ȳβ

(+x̄γ ) – x̄β
+x̄γ

ȳε
+ȳη

δ+x̄ε
(+ȳη)

]
.

Theorem . For the system Xn+ = F(Xn), n = , , . . . , of difference equations such that
X̄ is a fixed point of F . If all eigenvalues of the Jacobian matrix JF about X̄ lie inside the
open unit disk |λ| < , then X̄ is locally asymptotically stable. If one of them has a modulus
greater than one, then X̄ is unstable.

3 Main results
Theorem . Assume that α <  and δ < , then the following statements are true.

(i) The equilibrium point O = (, ) is locally asymptotically stable.
(ii) The equilibrium point Q = (–+α

γ
, ) is unstable.

(iii) The equilibrium point R = (, –+δ
η

) is unstable.

Proof (i) The Jacobian matrix of the linearized system of (.) about the fixed point (, )
is given by

FJ (, ) =

[
α 
 δ

]
.

Moreover, the eigenvalues of the Jacobian matrix JF (, ) about (, ) are λ = α <  and
λ = δ < . Hence, the equilibrium point (, ) is locally asymptotically stable.
(ii) The Jacobian matrix of the linearized system of (.) about the fixed point ( –+α

γ
, )

is given by

FJ
(
– + α

γ
, 

)
=

[

α

β–αβ

αγ

 (α–)ε+δγ

γ

]
.

The eigenvalues of the Jacobian matrix JF ( –+α
γ

, ) about ( –+α
γ

, ) are λ = 
α
>  and λ =

γ δ–ε+αε

γ
.

(iii) The Jacobian matrix of the linearized system of (.) about the fixed point (, –+δ
η

)
is given by

FJ
(
,

– + δ

η

)
=

[
β–βδ+αη

η


(–+δ)ε
δη


δ

]
.
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The eigenvalues of the Jacobian matrix JF (, –+δ
η

) about (, –+δ
η

) are λ = 
δ
>  and λ =

β–βδ+αη

η
. �

Theorem . The following statements are true.
(i) If α > , δ < , and ε < γ–γ δ

α– , then the equilibrium point Q = (–+α
γ

, ) is locally
asymptotically stable.

(ii) If δ >  and α < , then the equilibrium point R = (, –+δ
η

) is locally asymptotically
stable.

Theorem . Assume that α > , δ > , and η > –β+βδ

–+α
, then the unique equilibrium point

P = ( β–βδ+(–+α)η
βε+γ η

, γ (–+δ)+(–+α)ε
βε+γ η

) is locally asymptotically stable if


 <
(
β(γ – γ δ + ε) + αγ η

)(
γ δη + ε

(
β + (– + α)η

))
,

where


 = βε
(
γ δ + αγ δε + (α + δ)ε

)
+ β(γ δ + γ

(
 + α( + α + δ)

)
ε + αε

)
η

+ βγ
(
γ (α + δ

)
+ αγ

(
 + ( + α)δ

)
ε +

(
 + α + α)ε)η

+ αγ (γ ( + α + δ) + αε
)
η.

Proof Assume that α > , δ > , and η > –β+βδ

–+α
. Let L = β – βδ + (– + α)η > . Then a

characteristic polynomial of the Jacobianmatrix FJ (P) about the unique equilibrium point
P = ( L

βε+γ η
, γ (–+δ)+(–+α)ε

βε+γ η
) is given by

ϒ(λ) = λ – (A – B +C)λ +D – E + F –G +H ,

where

A =
α

( + Lγ

βε+γ η
)
,

B =
β(γ (– + δ) + (– + α)ε)(βε + γ η)

(βε + γ (L + η))
,

C =
(βε + γ η)(βδε + γ δη + Lελ)
(γ δη + ε(β + (– + α)η))

,

D =
αδ(βε + γ η)

(βε + γ (L + η))(γ δη + ε(β + (– + α)η))
,

E =
βδ(γ (– + δ) + (– + α)ε)(βε + γ η)

(βε + γ (L + η))(γ δη + ε(β + (– + α)η))
,

F =
Lαε(βε + γ η)

(βε + γ (L + η))(γ δη + ε(β + (– + α)η))
,

G =
Lβε(γ (– + δ) + (– + α)ε)(βε + γ η)

(βε + γ (L + η))(γ δη + ε(β + (– + α)η))
,
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and

H =
(βε + γ η)(Lε + βδε + γ δη)
(γ δη + ε(β + (– + α)η))

.

Let

S(λ) = λ, T(λ) = (A – B +C)λ –D + E – F +G –H .

Assume that 
 < (β(γ – γ δ + ε) + αγ η)(γ δη + ε(β + (– + α)η)). Then one has

∣∣T(λ)∣∣ ≤ A + B +C +D + E + F +G +H

<



(β(γ – γ δ + ε) + αγ η)(γ δη + ε(β + (– + α)η))
< .

Then, by Rouche’s theorem, S(λ) and S(λ) – T(λ) have the same number of zeroes in an
open unit disk |λ| < . Hence, the unique positive equilibrium point P is locally asymptot-
ically stable. �

3.1 Global character
Theorem . Let I = [a,b] and J = [c,d] be real intervals, and let f : I × J → I and g :
I×J → J be continuous functions.Consider the system (.)with initial conditions (x, y) ∈
I × J . Suppose that the following statements are true.

(i) f (x, y) is non-decreasing in x and non-increasing in y.
(ii) g(x, y) is non-decreasing in both arguments.
(iii) If (m,M,m,M) ∈ I × J is a solution of the system

m = f (m,M), M = f (M,m),

m = g(m,m), M = g(M,M)

such that m =M and m =M, then there exists exactly one equilibrium point
(x̄, ȳ) of the system (.) such that limn→∞(xn, yn) = (x̄, ȳ).

Proof According to the Brouwer fixed point theorem, the function F : I× J → I× J defined
by F(x, y) = F(f (x, y), g(x, y)) has a fixed point (x̄, ȳ), which is a fixed point of the system (.).
Assume thatm

 = a,M
 = b,m

 = c,M
 = d such that

mi+
 = f

(
mi

,M
i

)
, Mi+

 = f
(
Mi

,m
i

)
,

and

mi+
 = g

(
mi

,m
i

)
, Mi+

 = g
(
Mi

,M
i

)
.

Then

m
 = a≤ f

(
m

 ,M


) ≤ f

(
M

 ,m


) ≤ b =M

 ,

http://www.advancesindifferenceequations.com/content/2013/1/95
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and

m
 = c≤ g

(
m

 ,m


) ≤ g

(
M

 ,M


) ≤ d =M

 .

Moreover, one has

m
 ≤ m

 ≤ M
 ≤ M

 ,

and

m
 ≤ m

 ≤ M
 ≤ M

 .

We similarly have

m
 = f

(
m

 ,M


) ≤ f

(
m

,M


) ≤ f

(
M

,m


) ≤ f

(
M

 ,m


) ≤ M

,

and

m
 = g

(
m

 ,m


) ≤ g

(
m

,m


) ≤ g

(
M

,M


) ≤ g

(
M

 ,M


) ≤ M

.

Now observe that for each i≥ ,

a =m
 ≤ m

 ≤ · · · ≤mi
 ≤ Mi

 ≤ Mi–
 ≤ · · · ≤M

 = b,

and

c =m
 ≤ m

 ≤ · · · ≤mi
 ≤ Mi

 ≤ Mi–
 ≤ · · · ≤M

 = d.

Hence, mi
 ≤ xn ≤ Mi

, and mi
 ≤ yn ≤ Mi

 for n ≥ i + . Let m = limn→∞ mi
, M =

limn→∞ Mi
,m = limn→∞ mi

, andM = limn→∞ Mi
. Then a ≤ m ≤ M ≤ b and c≤ m ≤

M ≤ d. By the continuity of f and g , one has

m = f (m,M), M = f (M,m),

m = g(m,m), M = g(M,M).

Hence,m =M,m =M. �

Theorem . Assume that ηγ – βε �= , then the unique positive equilibrium point P of
the system (.) is a global attractor.

Proof Let f (x, y) = αx–βxy
+γ x and g(x, y) = δy+εxy

+ηy . Then it is easy to see that f (x, y) is non-
decreasing in x and non-increasing in y. Moreover, g(x, y) is non-decreasing in both x
and y. Let (m,M,m,M) be a positive solution of the system

m = f (m,M), M = f (M,m),

m = g(m,m), M = g(M,M).

http://www.advancesindifferenceequations.com/content/2013/1/95
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Then one has

m =
αm – βmM

 + γm
, M =

αM – βMm

 + γM
, (.)

and

m =
δm + εmm

 + ηm
, M =

δM + εMM

 + ηM
. (.)

From (.), one has

 + γm = α – βM,  + γM = α – βm. (.)

On subtraction, (.) implies that

γ (m –M) = β(m –M). (.)

Similarly, from (.), one has

 + ηm = δ + εm,  + ηM = δ + εM. (.)

On subtraction, (.) implies that

η(m –M) = ε(m –M). (.)

Comparing (.) and (.), one has

(ηγ – βε)(m –M) = .

Then one has m = M and m = M. Hence, from Theorem . the equilibrium point
( β–βδ+(–+α)η

βε+γ η
, γ (–+δ)+(–+α)ε

βε+γ η
) of the system (.) is a global attractor. �

Theorem . Assume that α > , δ > , and ηγ –βε �= . Then the unique positive equilib-
rium point (x̄, ȳ) = ( β–βδ+(–+α)η

βε+γ η
, γ (–+δ)+(–+α)ε

βε+γ η
) is globally asymptotically stable.

Proof The proof follows from Theorem . and Theorem .. �

3.2 Rate of convergence
In this section we determine the rate of convergence of a solution that converges to the
unique positive equilibrium point of the system (.).
The following result gives the rate of convergence of solutions of a system of difference

equations:

Xn+ =
(
A + B(n)

)
Xn, (.)

where Xn is anm-dimensional vector, A ∈ Cm×m is a constant matrix, and B : Z+ → Cm×m

is a matrix function satisfying

∥∥B(n)∥∥ →  (.)

http://www.advancesindifferenceequations.com/content/2013/1/95
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as n→ ∞, where ‖ · ‖ denotes any matrix norm which is associated with the vector norm

∥∥(x, y)∥∥ =
√
x + y.

Proposition . (Perron’s theorem []) Suppose that condition (.) holds. If Xn is a so-
lution of (.), then either Xn =  for all large n or

ρ = lim
n→∞

(‖Xn‖
)/n (.)

exists and is equal to the modulus of one of the eigenvalues of matrix A.

Proposition . [] Suppose that condition (.) holds. If Xn is a solution of (.), then
either Xn =  for all large n or

ρ = lim
n→∞

‖Xn+‖
‖Xn‖ (.)

exists and is equal to the modulus of one of the eigenvalues of matrix A.

Let {(xn, yn)} be any solution of the system (.) such that limn→∞ xn = x̄, and limn→∞ yn =
ȳ, where (x̄, ȳ) = ( β–βδ+(–+α)η

βε+γ η
, γ (–+δ)+(–+α)ε

βε+γ η
). To find the error terms, one has from the sys-

tem (.)

xn+ – x̄ =
αxn – βxnyn
 + γ xn

–
αx̄ – βx̄ȳ
 + γ x̄

=
(α – βyn)

( + γ xn)( + γ x̄)
(xn – x̄) –

βx̄
 + γ x̄

(yn – ȳ),

and

yn+ – ȳ =
δyn + εxnyn
 + ηyn

–
δȳ + εx̄ȳ
 + ηȳ

=
εȳ

 + ηȳ
(xn – x̄) +

δ + εxn
( + ηyn)( + εȳ)

(yn – x̄).

Let en = xn – x̄ and en = yn – ȳ, then one has

en+ = anen + bnen,

and

en+ = cnen + dnen,

where

an =
(α – βyn)

( + γ xn)( + γ x̄)
, bn = –

βx̄
 + γ x̄

,

cn =
εȳ

 + ηȳ
, dn =

δ + εxn
( + ηyn)( + εȳ)

.

http://www.advancesindifferenceequations.com/content/2013/1/95
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Moreover,

lim
n→∞an =

α – ȳβ
( + x̄γ )

, lim
n→∞bn = –

x̄β
 + x̄γ

,

lim
n→∞ cn =

ȳε
 + ȳη

, lim
n→∞dn =

δ + x̄ε
( + ȳη)

.

Now the limiting system of error terms can be written as

[
en+
en+

]
=

[
α–ȳβ

(+x̄γ ) – x̄β
+x̄γ

ȳε
+ȳη

δ+x̄ε
(+ȳη)

][
en
en

]
,

which is similar to the linearized system of (.) about the equilibrium point (x̄, ȳ).
Using Proposition ., one has following result.

Theorem . Assume that {(xn, yn)} is a positive solution of the system (.) such that
limn→∞ xn = x̄ and limn→∞ yn = ȳ, where

(x̄, ȳ) =
(

β – βδ + (– + α)η
βε + γ η

,
γ (– + δ) + (– + α)ε

βε + γ η

)
.

Then the error vector en =
( en
en

)
of every solution of (.) satisfies both of the following asymp-

totic relations:

lim
n→∞

(‖en‖) 
n =

∣∣λ,FJ (x̄, ȳ)
∣∣, lim

n→∞
‖en+‖
‖en‖ =

∣∣λ,FJ (x̄, ȳ)
∣∣,

where λ,FJ (x̄, ȳ) are the characteristic roots of the Jacobian matrix FJ (x̄, ȳ).

4 Examples
In this section, we consider some numerical examples which show that under a suitable
choice of parameters α, β , γ , δ, ε, η, the unique positive equilibrium point ( β–βδ+(–+α)η

βε+γ η
,

γ (–+δ)+(–+α)ε
βε+γ η

) of the system (.) is globally asymptotically stable.

Example Let α = ., β = ., γ = ., δ = ., ε = ., η = .. Then the system (.)
can be written as

xn+ =
.xn – .xnyn

 + .xn
, yn+ =

.yn + .xnyn
 + .yn

, (.)

with initial conditions x = ., y = ..
In this case, the unique positive equilibrium point P of the system (.) is given by

(
β – βδ + (– + α)η

βε + γ η
,
γ (– + δ) + (– + α)ε

βε + γ η

)
= (., .).

Moreover, the plot is shown in Figure .

http://www.advancesindifferenceequations.com/content/2013/1/95
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Figure 1 Plot of the system (4.1).

Figure 2 Plot of the system (4.2).

Example Let α = ., β = ., γ = ., δ = ., ε = ., η = .. Then the system (.) can
be written as

xn+ =
.xn – .xnyn

 + .xn
, yn+ =

.yn + .xnyn
 + .yn

, (.)

with initial conditions x = ., y = ..
In this case, the unique equilibrium point P of the system (.) is given by

(
β – βδ + (– + α)η

βε + γ η
,
γ (– + δ) + (– + α)ε

βε + γ η

)
= (., .).

Moreover, the plot is shown in Figure .

Example Let α = , β = ., γ = ., δ = , ε = ., η = .. Then the system (.) can be
written as

xn+ =
.xn – .xnyn
 + .xn

, yn+ =
yn + .xnyn
 + .yn

, (.)

with initial conditions x = ., y = ..
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Figure 3 Plot of the system (4.3).

In this case, the unique equilibrium point P of the system (.) is given by

(
β – βδ + (– + α)η

βε + γ η
,
γ (– + δ) + (– + α)ε

βε + γ η

)
= (., .).

Moreover, the plot is shown in Figure .

Example Let α = , β = , γ = ., δ = , ε = ., η = . Then the system (.) can be
written as

xn+ =
xn – xnyn

 + .xn
, yn+ =

yn + .xnyn
 + yn

, (.)

with initial conditions x = , y = .
In this case, the unique positive equilibrium point P of the system (.) is given by

(
β – βδ + (– + α)η

βε + γ η
,
γ (– + δ) + (– + α)ε

βε + γ η

)
= (., .).

Moreover, the plot of the system (.) is shown in Figure . An attractor of the system is
shown in Figure .

5 Conclusions
This work is related to the qualitative behavior of a discrete-time Lotka-Volterra model.
The continuous form of this model is given by

dx
dt

= ax – bx – cxy,
dy
dt

=mxy + ny – py,

where a, b, c, m, n, p are positive constants. Moreover, the discrete form (.) of the con-
tinuous model is obtained by using some nonstandard difference scheme such that the
equilibrium points in both cases are conserved. We proved that the system (.) has four
equilibrium points, which are locally asymptotically stable under certain conditions. The

http://www.advancesindifferenceequations.com/content/2013/1/95
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Figure 4 Plot of the system (4.4).

Figure 5 An attractor of the system (4.4).

main contribution in this paper is to prove that the unique positive equilibrium point

P =
(

β – βδ + (– + α)η
βε + γ η

,
γ (– + δ) + (– + α)ε

βε + γ η

)

of the system (.) is globally asymptotically stable. Furthermore, we have investigated
the rate of convergence of the solution that converges to the unique positive equilibrium
point of the system (.). Somenumerical examples are provided to support our theoretical
results. These examples are experimental verifications of theoretical discussions.
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