
Araci et al. Advances in Difference Equations 2013, 2013:96
http://www.advancesindifferenceequations.com/content/2013/1/96

RESEARCH Open Access

Extended p-adic q-invariant integrals on Zp
associated with applications of umbral
calculus
Serkan Araci1, Mehmet Acikgoz1 and Adem Kilicman2*

*Correspondence:
akilicman@putra.upm.edu.my
2Department of Mathematics and
Institute for Mathematical Research,
University Putra Malaysia, Serdang,
Selangor 43400 UPM, Malaysia
Full list of author information is
available at the end of the article

Abstract
The fundamental aim of this paper is to consider some applications of umbral
calculus by utilizing from the extended p-adic q-invariant integral on Zp. From those
considerations, we derive some new interesting properties on the extended p-adic
q-Bernoulli numbers and polynomials. That is, a systemic study of the class of Sheffer
sequences in connection with generating function of the p-adic q-Bernoulli
polynomials are given in the present work.
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1 Preliminaries
In the complex plane, the Bernoulli polynomials, Bn(x), are defined by

∞∑
n=

Bn(x)
tn

n!
=

t
et – 

etx, |t| < π . (.)

In particular, the case x =  in (.), we have Bn() := Bn are called Bernoulli numbers.
These numbers are extremely important in number theory and other areas ofmathematics
and physics. With the help of generating function of Bernoulli numbers, one can easily
derive that B = , B = – 

 , B = 
 , B = , B = 

 , B = 
 , B = – 

 , . . . , and Bn+ =  for
n ∈ N (see [–]). As is well known, the Riemann zeta function is defined by

ζ (s) =
∞∑
n=


ns

for s ∈C. (.)

We note that the Bernoulli numbers interpolate by the Riemann zeta function, which
plays an important role in analytic number theory and has applications in physics, prob-
ability theory and applied statistics. Firstly, Leonard Euler studied and introduced the
Riemann zeta function in a real argument without using complex analysis. From (.) and
(.), one has

ζ ( – n) = –
Bn

n
for n ∈N = {, , , . . .}.
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A link between the zeta function and prime numbers was discovered by Euler, who
proved the following identity:

∞∑
n=


ns

=


 – –s


 – –s
· · · 

 – p–s
· · ·

=
∏

p prime


 – p–s

,

where the both sides of Euler product formula converge for �e(s) >  (for details on this
subject, see [–]).
Let p be a fixed odd prime number. Throughout this work, we use the following nota-

tions, where Zp denotes the ring of p-adic rational integers,Q denotes the field of rational
numbers,Qp denotes the field of p-adic rational numbers, andCp denotes the completion
of algebraic closure ofQp. LetN be the set of natural numbers andN∗ =N∪{}. The p-adic
absolute value is defined by |p|p = p–. Also, we assume that |q–|p <  is an indeterminate.
Let UD(Zp) be the space of uniformly differentiable functions on Zp. For f ∈UD(Zp), Kim
defined p-adic q-invariant integral on Zp by the rule:

Iq(f ) =
∫
Zp

f (ξ )dμq(ξ ) = lim
n→∞


[pn]q

pn–∑
A=

f (A)qA, (.)

where [x]q is q-analogue of x defined by

[x]q =
qx – 
q – 

.

We note that limq→[x]q = x (for details, see [, , –]).
Let f(ξ ) := f (ξ + ). By (.), we have

qIq(f) = Iq(f ) +
q – 
logq

f ′(), (.)

where f ′() = df (x)
dx |x= (for details, see [, ]).

In [], Kim showed that Carlitz’s q-Bernoulli numbers and polynomials can be ex-
pressed as an integral by the q-analogue μq of the ordinary p-adic invariant measure as
follows:

Bm(q) =
∫
Zp

[ξ ]mq dμq(ξ ) = lim
n→∞


[pn]q

pn–∑
A=

[A]nqq
A. (.)

Now also, we consider the extended p-adic q-invariant integral on Zp due to Kim []
in the following form: for | – β|p < 

Iq(f : β) =
∫
Zp

βξ f (ξ )dμq(ξ ) = lim
n→∞


[pn]q

pn–∑
A=

βAf (A)qA, (.)

where Iq(f : β) are called extended p-adic q-invariant integral on Zp.
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Let us now consider f(ξ ) := f (ξ + ), then we compute as follows:

qβIq(f : β) = lim
n→∞


[pn]q

pn–∑
A=

βA+f (A + )qA+

= Iq(f : β) + ( – q) lim
n→∞

(
–f () + βpnqpn f (pn)

 – qpn
)

= Iq(f : β) +
q – 
logq

f ′().

Therefore, we state the following lemma.

Lemma  For f ∈UD(Zp),

qβIq(f : β) = Iq(f : β) +
q – 
logq

f ′().

Taking f (ξ ) = et(x+ξ ) ∈ UD(Zp) in Lemma , then we consider the following generating
function:

∫
Zp

βξ et(x+ξ ) dμq(ξ ) =
q – 
logq

t
qβet – 

etx

=
∞∑
n=

Bn,β (x | q) t
n

n!
(
qβ 	=  and

∣∣log(qβ) + t
∣∣ < π

)
, (.)

where Bn,β (x | q) are called extended q-Bernoulli polynomials. In the special case, x = ,
Bn,β ( | q) := Bn,β (q) are called extended q-Bernoulli numbers.
We note that

lim
β=
q→

(
q – 
logq

t
qβet – 

etx
)
=

t
et – 

ext =
∞∑
n=

Bn(x)
tn

n!
.

That is, we have

lim
β=
q→

Bn,β (x | q) = Bn(x).

The relation between extended p-adic q-Bernoulli numbers and extended p-adic q-
Bernoulli polynomials is given by

Bn,β (x | q) =
n∑
l=

(
n
l

)
xlBn–l,β (q) =

(
x + Bβ (q)

)n, (.)

with the usual of replacing (Bβ (q))n by Bn,β (q). By (.) and (.), we easily see that

B,β (q) =
q – 
logq

and qβ
(
Bβ (q) + 

)n – Bn,β (q) =

{
q–
logq , if n = ,
, if n > .
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From (.), we deriveWitt’s formulae for extended p-adic q-Bernoulli numbers and poly-
nomials, respectively:

Bn,β (q) =
∫
Zp

βξξn dμq(ξ ) and Bn,β (x | q) =
∫
Zp

βξ (x + ξ )n dμq(ξ ). (.)

By (.), we have

–
Bn,β (x | q)

n
=
q – 
logq

∞∑
m=

qm(m + x)n–βm for n ∈N. (.)

Let us now consider the following:

Fq,β (x, t) =
q – 
logq

t
qβet – 

etx =
∞∑
n=

Bn,β (x | q) t
n

n!
. (.)

By applying Mellin transformation to (.), we derive that for s ∈ C:

ζ (s,x : q : β) =
logq

(q – )�(s)

∫ ∞


Fq,β (x, –t)ts– dt

=
∞∑
m=

qmβm
(


�(s)

∫ ∞


ts–e–t(m+x) dt

)

=
∞∑
m=

qmβm

(m + x)s
. (.)

Here, �(s) is Euler’s Gamma function. Thanks to (.) and (.), we discover the fol-
lowing:

ζ ( – n,x : q : β) = –
logq
q – 

Bn,β (x | q)
n

for any n ∈ N∗. (.)

Setting β =  and q →  in (.) reduces to

ζ ( – n,x) = –
Bn(x)
n

,

which has a profound effect on number theory and complex analysis.
By (.) and (.), we develop as follows:

∫
Zp

βξ (x + ξ )n dμq(ξ ) = lim
m→∞


[dpm]q

dpm–∑
A=

βA(x +A)nqA

=
dn

[d]q

d–∑
k=

βkqk
(

lim
m→∞


[pm]qd

pm–∑
A=

(
βd)A(

qd
)A(

x + k
d

+A
)n

)

=
dn

[d]q

d–∑
k=

βkqk
∫
Zp

βdξ

(
x + k
d

+ ξ

)n

dμqd (ξ ),
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where d is a natural number. That is,

∫
Zp

βξ (x + ξ )n dμq(ξ ) =
dn

[d]q

d–∑
k=

βkqk
∫
Zp

βdξ

(
x + k
d

+ ξ

)n

dμqd (ξ ). (.)

By (.) and (.), we get

Bn,β (dx | q) = dn

[d]q

d–∑
k=

βkqkBn,βd

(
x +

k
d

∣∣∣ qd). (.)

Putting β =  and q →  in (.), then it leads to Bn(dx) = dn ∑d–
k= Bn(x + k

d ), which is
well known as Raabe’s formula.
Let us now define the following notations, where C denotes the set of complex num-

bers, F denotes the set of all formal power series in the variable t over C with F = {f (t) =∑∞
k= ak

tk
k! | ak ∈ C}, P = C[x] and P∗ denotes the vector space of all linear functional on

P , 〈L | p(x)〉 denotes the action of the linear functional L on the polynomial p(x), and it
is well known that the vector space operation on P∗ is defined by 〈L + M | p(x)〉 = 〈L |
p(x)〉 + 〈M | p(x)〉 and 〈cL | p(x)〉 = c〈L | p(x)〉 for some constant c in C (see [–]).
The following is well known as a formal power series by the rule:

f (t) =
∞∑
k=

ak
tk

k!
∈F ,

which describes a linear functional on P as 〈f (t) | xn〉 = an for all n ≥  (for details, see
[–]). Moreover,

〈
tk | xn〉 = n!δn,k , (.)

where δn,k is the Kronecker delta. It is easy to see that

fL(t) =
∞∑
k=

〈
L | xk 〉 tk

k!
,

therefore we procure

〈
fL(t) | xn

〉
=

〈
L | xn〉

and so as linear functionals L = fL(t) (see [–]). Additionally, the map L → fL(t) is a
vector space isomorphism fromP∗ ontoF . Henceforth,F will denote both the algebra of
the formal power series in t and the vector space of all linear functionals on P , and so an
element f (t) of F will be thought of as both a formal power series and a linear functional.
F will be called as umbral algebra (see [–]).
Obviously, 〈eyt | xn〉 = yn. From this, it reduces to

〈
eyt | p(x)〉 = p(y)
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(see [–]). We note that for all f (t) in F

f (t) =
∞∑
k=

〈
f (t) | xk 〉 tk

k!
(.)

and for all polynomial p(x),

p(x) =
∞∑
k=

〈
tk | p(x)〉xk

k!
(.)

(for details, see [–]). The order o(f (t)) of the power series f (t) 	=  is the smallest
integer k for which ak does not vanish. It is considered o(f (t)) = ∞ if f (t) = . We see that
o(f (t)g(t)) = o(f (t)) + o(g(t)) and o(f (t) + g(t)) ≥ min{o(f (t)),o(g(t))}. The series f (t) has a
multiplicative inverse, denoted by f (t)– or 

f (t) , if and only if o(f (t)) = . Such series is
called an invertible series. A series f (t) for which o(f (t)) =  is called a delta series (see
[–]). For f (t), g(t) ∈ F , we have 〈f (t)g(t) | p(x)〉 = 〈f (t) | g(t)p(x)〉. A delta series f (t)
has a compositional inverse f (t) such that f (f (t)) = f (f (t)) = t.
For f (t), g(t) ∈F , we have 〈f (t)g(t) | p(x)〉 = 〈f (t) | g(t)p(x)〉. From (.), we have

p(k)(x) =
dkp(x)
dxk

=
∞∑
l=k

〈tl | p(x)〉
l!

l(l – ) · · · (l – k + )xl–k . (.)

Hence, we get that

p(k)() =
〈
tk | p(x)〉 = 〈

 | p(k)(x)〉. (.)

By (.), we have

tkp(x) = p(k)(x) =
dkp(x)
dxk

. (.)

So from the above

eytp(x) = p(x + y). (.)

Let Sn(x) be a polynomial with degSn(x) = n. Let f (t) be a delta series and let g(t) be
an invertible series. Then there exists a unique sequence Sn(x) of polynomials such that
〈g(t)f (t)k | Sn(x)〉 = n!δn,k for all n,k ≥ . The sequence Sn(x) is called the Sheffer sequence
for (g(t), f (t)) or that Sn(t) is Sheffer for (g(t), f (t)).
The Sheffer sequence for (, f (t)) is called the associated sequence for f (t) or Sn(x) is

associated to f (t). The Sheffer sequence for (g(t), t) is called the Appell sequence for g(t)
or Sn(x) is Appell for g(t).
Let p(x) ∈P . Then we have

〈
f (t) | xp(x)〉 = 〈

∂t f (t) | p(x)
〉
=

〈
f ′(t) | p(x)〉,〈

eyt +  | p(x)〉 = p(y) + p() (see []).
(.)

http://www.advancesindifferenceequations.com/content/2013/1/96
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Let Sn(x) be Sheffer for (g(t), f (t)). Then

h(t) =
∞∑
k=

〈h(t) | Sk(x)〉
k!

g(t)f (t)k , h(t) ∈F ,

p(x) =
∞∑
k=

〈g(t)f (t)k | p(x)〉
k!

Sk(x), p(x) ∈P ,


g(f (t))

eyf (t) =
∞∑
k=

Sk(y)
tk

k!
for all y ∈C, (.)

f (t)Sn(x) = nSn–(x).

Also, it is well known in [] that

〈
f(t)f(t) · · · fm(t) | xn

〉
=

∑(
n

i, . . . , im

)〈
f(t) | xi

〉 · · · 〈fm(t) | xim 〉
, (.)

where f(t), f(t), . . . , fm(t) ∈ F and the sum is over all nonnegative integers i, . . . , im such
that i + · · · + im = n (see []).
Dere and Simsek have studied applications of umbral algebra to special functions in [].

Kim et al. also gave some properties of umbral calculus for Frobenius-Euler polynomials
[] and Euler polynomials []. Also, they investigated some new applications of umbral
calculus associated with p-adic invariants integral on Zp and fermionic p-adic integral on
Zp in [].
By the same motivation of the above, we also discover both new and interesting appli-

cations of umbral calculus by using extended p-adic q-invariant integral on Zp. By virtue
of which, we procure some new interesting equalities on the extended p-adic q-Bernoulli
numbers and polynomials and extended p-adic q-Bernoulli polynomials of order k. Re-
cently, several authors have studied the q-Bernoulli numbers and polynomials. Also, we
note that our q-extensions of Bernoulli numbers and polynomials in the present paper are
different from the q-extensions of Bernoulli numbers and polynomials of several authors
in previous papers.

2 Identities involving extended p-adic q-invariant integrals on Zp related to
applications of umbral calculus

Suppose that Sn(x) is an Appell sequence for g(t). Then, by (.), we have


g(t)

xn = Sn(x) ⇔ xn = g(t)Sn(x) (n≥ ). (.)

We now consider that

gq,β (t) =
logq
q – 

qβet – 
t

∈F .

Therefore, we easily notice that g(t) is an invertible series. By (.), we have

∞∑
n=

Bn,β (x | q) t
n

n!
=


gq,β (t)

ext , (.)

http://www.advancesindifferenceequations.com/content/2013/1/96
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which means


gq,β (t)

xn = Bn,β (x | q). (.)

Also, by (.), we have

tBn,β (x | q) = (
Bn,β (x | q))′ = nBn–,β (x | q). (.)

Because of (.) and (.), we have the following proposition.

Proposition  For n≥ , Bn,β (x | q) is an Appell sequence for gq,β (t) = logq
q–

qβet–
t .

By (.), we have

∞∑
n=

Bn,β (x | q) t
n

n!
=
xgq,β (t)ext – g ′

q,β (t)ext

gq,β (t)

=
∞∑
n=

(
x


gq,β (t)

xn –
g ′
q,β (t)
gq,β (t)


gq,β (t)

xn
)
tn

n!
. (.)

Because of (.) and (.), we discover the following:

Bn+,β (x | q) = xBn,β (x | q) – g ′
q,β (t)
gq,β (t)

Bn,β (x | q).

Therefore, we arrive at the following theorem.

Theorem  Let gq,β (t) = logq
q–

qβet–
t ∈F . Then we have for n ≥ :

Bn+,β (x | q) =
(
x –

g ′
q,β (t)
gq,β (t)

)
Bn,β (x | q). (.)

Also,

ζ ( – n,x : q : β) =
n

n + 

(
x –

g ′
q,β (t)
gq,β (t)

)
ζ ( – n,x : q : β),

where g ′
q,β (t) =

dgq,β (t)
dt .

By (.), it is not difficult to see that

∞∑
n=

(
qβBn,β (x +  | q) – Bn,β (x | q)) tn

n!
=
q – 
logq

∞∑
n=

xn
tn+

n!
.

By comparing the coefficients of tn
n! on the above, we have the following:

qβBn,β (x +  | q) – Bn,β (x | q) = q – 
logq

nxn–. (.)

http://www.advancesindifferenceequations.com/content/2013/1/96
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By Theorem , we derive

gq,β (t)Bn+,β (x | q) = gq,β (t)xBn,β(x | q) – g ′
q,β (t)Bn,β (x | q). (.)

So from above

(
qβet – 

)
Bn+,β (x | q) = (

qβet – 
)
xBn,β(x | q) –

(
logq
q – 

qβet – gq,β (t)
)
Bn,β (x | q).

Thus, we have

qβBn+,β (x +  | q) – Bn+,β (x | q)

= qβ(x + )Bn,β (x +  | q) – xBn,β (x | q) – qβ logq
q – 

Bn,β (x +  | q) + xn. (.)

From (.), (.) and (.), we have the following theorem.

Theorem  For n≥ , then we have

qβBn,β (x +  | q) – Bn,β (x | q) = q – 
logq

nxn–. (.)

Suppose that Sn(x) is Sheffer sequence for (g(t), f (t)). Then the following is introduced
as Sheffer identity by the rule:

Sn(x + y) =
n∑

k=

(
n
k

)
Pk(y)Sn–k(x) =

n∑
k=

(
n
k

)
Pk(x)Sn–k(y), (.)

where Pk(y) = Sk(y)g(t) is associated to f (t) (for details, see [–]).
Thanks to (.) and (.), we have

Bn,β (x + y | q) =
n∑

k=

(
n
k

)
Pk(y)Sn–k(x)

=
n∑

k=

(
n
k

)
Bn,β (y | q)xk .

From the above, we readily see that

Bn,β (x + y | q) =
n∑

k=

(
n
k

)
Bn,β (y | q)xk .

By (.), we easily get for α (	= ) ∈C:

Bn,β (αx | q) = gq,β (t)
gq,β ( tα )

Bn,β (x | q). (.)

By virtue of (.) and (.), we see that

gq,β (t)
gq,β ( tα )

Bn,β (x | q) = αn

[α]q

α–∑
k=

(qβ)kBn,βα

(
x +

k
α

∣∣∣ qα

)
.

http://www.advancesindifferenceequations.com/content/2013/1/96
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Let us now contemplate the linear functional f (t) by the following expression:

〈
f (t) | p(x)〉 = ∫

Zp

βξp(ξ )dμq(ξ ) (.)

for all polynomials p(x). From (.), we readily derive that

f (t) =
∞∑
n=

〈f (t) | xn〉
n!

tn =
∞∑
n=

(∫
Zp

βξξn dμq(ξ )
)
tn

n!
=

∫
Zp

βξ eξ t dμq(ξ ). (.)

Thus, we have

f (t) =
∫
Zp

βξ eξ t dμq(ξ ) =
q – 
logq

t
βqet – 

. (.)

Therefore, by (.) and (.), we arrive at the following theorem.

Theorem  For n ≥ , we have

〈
f (t) | p(x)〉 = ∫

Zp

βξp(ξ )dμq(ξ ). (.)

Also,〈
q – 
logq

t
qβet – 

∣∣∣ p(x)〉 = ∫
Zp

βξp(ξ )dμq(ξ ). (.)

Obviously that

Bn,β (q) =
〈∫

Zp

βξ eξ t dμq(ξ )
∣∣∣ xn〉. (.)

In view of (.) and (.), we see that

∞∑
n=

(∫
Zp

βξ (x + ξ )n dμq(ξ )
)
tn

n!
=

∫
Zp

βξ e(x+ξ )t dμq(ξ )

=
∞∑
n=

(∫
Zp

βξ eξ t dμq(ξ )xn
)
tn

n!
. (.)

By (.) and (.), we see that for n ∈N∗:

Bn,β (x | q) =
∫
Zp

βξ (x + ξ )n dμq(ξ ) =
∫
Zp

βξ eξ t dμq(ξ )xn. (.)

Consequently, we get the following theorem.

Theorem  For p(x) ∈P , we have∫
Zp

βξp(x + ξ )dμq(ξ ) =
∫
Zp

βξ eξ t dμq(ξ )p(x)

=
q – 
logq

t
βqet – 

p(x). (.)

http://www.advancesindifferenceequations.com/content/2013/1/96
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That is,

Bn,β (x | q) =
∫
Zp

βξ eξ t dμq(ξ )xn =
q – 
logq

t
βqet – 

xn. (.)

For | – β|p < , we introduce extended p-adic q-Bernoulli polynomials of order k as
follows:

∫
Z
k
p

βξ+···+ξk e(ξ+···+ξk+x)t d∗μq(ξ ) =
(
q – 
logq

t
qβet – 

)k

ext

=
∞∑
n=

B(k)
n,β (x | q) t

n

n!
, (.)

which we have used the following equality:

∫
Z
k
p

d∗μq(ξ ) :=
∫
Zp

· · ·
∫
Zp︸ ︷︷ ︸

k-times

dμq(ξ)dμq(ξ) · · · dμq(ξk).

In the special case, for x =  in (.), we have B(k)
n,β ( | q) := B(k)

n,β (q), which are called
extended p-adic q-Bernoulli numbers of order k.
From (.), we have

∫
Z
k
p

βξ+···+ξk (ξ + · · · + ξk + x)n d∗μq(ξ )

=
∑

i+···+ik=n

(
n

i, . . . , im

)∫
Zp

βξξ
i
 dμq(ξ) · · ·

∫
Zp

βξk ξ
ik
k dμq(ξk)

=
∑

i+···+ik=n

(
n

i, . . . , im

)
Bi,β (q) · · ·Bik ,β (q) = B(k)

n,β (x | q). (.)

Equating (.) and (.), we have

B(k)
n,β (x | q) =

n∑
l=

(
n
l

)
xlB(k)

n,β (q). (.)

From (.) and (.), we want to note that B(k)
n,β (x | q) is a monic polynomial of degree

n with coefficients in Q. For k ∈N, let us consider that

g(k)q,β (t) =
∫

Z
k
p
βξ+···+ξk e(ξ+···+ξk )t d∗μq(ξ )

=
(
logq
q – 

qβet – 
t

)k

. (.)

From (.), we easily see that g(k)q,β (t) is an invertible series. On account of (.) and
(.), we derive that


g(k)q,β (t)

ext =
∫
Z
k
p

βξ+···+ξk e(ξ+···+ξk+x)t d∗μq(ξ ) =
∞∑
n=

B(k)
n,β (x | q) t

n

n!
. (.)

http://www.advancesindifferenceequations.com/content/2013/1/96
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Also, we have

tB(k)
n,β (x | q) = nB(k)

n–,β (x | q). (.)

By virtue of (.) and (.), we easily see that B(k)
n,β (x | q) is an Appell sequence for

g(k)q,β (t). Then, by (.) and (.), we get the following theorem.

Theorem  For p(x) ∈P and k ∈N, we have

∫
Z
k
p

βξ+···+ξk p(ξ + · · · + ξk + x)d∗μq(ξ ) =
(
q – 
logq

t
qβet – 

)k

p(x). (.)

In the special case, the extended p-adic q-Bernoulli polynomials of degree k are given by

B(k)
n,β (x | q) =

(
q – 
logq

t
qβet – 

)k

xn =
∫
Z
k
p

βξ+···+ξk e(ξ+···+ξk )t d∗μq(ξ )xn.

Thus, we get

B(k)
n,β (x | q) ∼

((
logq
q – 

βqet – 
t

)k

, t
)
.

Let us take the linear functional f (k)(t) that satisfies

〈
f (k)(t) | p(x)〉 = ∫

Z
k
p

βξ+···+ξk p(ξ + · · · + ξk)d∗μq(ξ ) (.)

for all polynomials p(x). Therefore, we develop as follows:

f (k)(t) =
∞∑
n=

〈f (k)(t) | xn〉
n!

tn

=
∞∑
n=

(∫
Z
k
p

βξ+···+ξk (ξ + · · · + ξk)n d∗μq(ξ )
)
tn

n!

=
∫
Z
k
p

βξ+···+ξk e(ξ+···+ξk )t d∗μq(ξ ) =
(
q – 
logq

t
qβet – 

)k

.

Therefore, the following theorem can be stated.

Theorem  For p(x) ∈P , we have

〈∫
Z
k
p

βξ+···+ξk e(ξ+···+ξk )t d∗μq(ξ )
∣∣∣ p(x)〉 = ∫

Z
k
p

βξ+···+ξk p(ξ + · · · + ξk)d∗μq(ξ ).

Moreover,

〈(
q – 
logq

t
qβet – 

)k ∣∣∣ p(x)〉 = ∫
Z
k
p

βξ+···+ξk p(ξ + · · · + ξk)d∗μq(ξ ).

http://www.advancesindifferenceequations.com/content/2013/1/96
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That is,

B(k)
n,β (q) =

〈∫
Z
k
p

βξ+···+ξk e(ξ+···+ξk )t d∗μq(ξ )
∣∣∣ xn〉.

From (.), we see that

〈∫
Z
k
p

βξ+···+ξk e(ξ+···+ξk )t d∗μq(ξ )
∣∣∣ xn〉

=
∑

i+···+ik=n

(
n

i, . . . , im

)〈∫
Zp

βξeξt dμq(ξ)
∣∣∣ xi〉 · · ·

〈∫
Zp

βξk eξk t dμq(ξk)
∣∣∣ xik〉.

Therefore, we get

B(k)
n,β (q) =

∑
i+···+ik=n

(
n

i, . . . , im

)
Bi,β (q) · · ·Bik ,β (q).

Remark  Our applications for extended p-adic q-Bernoulli polynomials, extended p-adic
q-Bernoulli numbers and extended p-adic q-Bernoulli polynomials of order k seem to be
interesting for evaluating at β =  and q → , which reduce to Bernoulli polynomials and
Bernoulli polynomials of order k, are defined respectively by

∞∑
n=

Bn(x)
tn

n!
=

t
et – 

ext ,

∞∑
n=

B(k)
n (x)

tn

n!
=

(
t

et – 

)k

ext .

Also, it is known that these polynomials are expressed by the rule:

Bn(x) = lim
n→∞


pn

pn–∑
A=

(x +A)n,

B(k)
n (x) = lim

n,...,nk→∞p–(n+n+···+nk )
pn–∑
A=

pn–∑
A=

· · ·
pnk –∑
Ak=

(x +A +A + · · · +Ak)n,

where the limits are taken in Qp.
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