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Abstract
This paper is devoted to the study of Caputo modification of the Hadamard fractional
derivatives. From here and after, by Caputo-Hadamard derivative, we refer to this
modified fractional derivative (Jarad et al. in Adv. Differ. Equ. 2012:142, 2012, p.7). We
present the generalization of the fundamental theorem of fractional calculus (FTFC) in
the Caputo-Hadamard setting. Also, several new related results are presented.
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1 Introduction
Fractional calculus started to be considered deeply as a powerful tool to reveal the hidden
aspects of the dynamics of the complex or hypercomplex systems [–].
Finding new generalization of the existing fractional derivatives was always the main

direction of research within this field. These generalized operators will give us new op-
portunities to improve the existing results from theoretical and applied viewpoints. Al-
though the works in [–] played important roles in the development of the fractional
calculus within the frame of the Hadamard derivative, vast and vital work in this field is
still undone.
The presence of the δ-differential operator (δ = x d

dx ) in the definition of Hadamard frac-
tional derivatives could make their study uninteresting and less applicable than Riemann-
Liouville and Caputo fractional derivatives. More so, this operator appears outside the in-
tegral in the definition of the Hadamard derivatives just like the usual derivative D = d

dx is
located outside the integral in the case of Riemann-Liouville, which makes the fractional
derivative of a constant of these two types not equal to zero in general. The authors in
[] studied and modified the Hadamard derivatives into a more useful type using Caputo
definitions.
Hadamard proposed a fractional power of the form (x d

dx )
α . This fractional derivative is

invariant with respect to dilation on the whole axis. The Hadamard approach to fractional
integral was based on the generalisation of the nth integral []

(
J n
a+f

)
(x) =

∫ x

a

dt
t

∫ t

a

dt
t

· · ·
∫ tn–

a
f (tn)

dtn
tn

. ()

Just like Riemann-Liouville, Hadamard derivative has its own disadvantages as well, one of
which is the fact that the derivative of a constant is not equal to  in general. The authors in
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[] resolved these problems by modifying the derivative into a more suitable one having
physically interpretable initial conditions similar to the ones in the Caputo settings.
In [–], the authors recovered the concepts of fractional integrals and fractional

derivatives in different forms and introduced a new version of FTFC in Caputo settings,
which is regarded as a generalization of the classical fundamental theorem of calculus.
This ignites our curiosity in the possibility of generalizing FTFC in the sense our new def-
initions given in [] as Hadamard and Riemann-Liouville (for example) cannot be used
for this generalization (see Section ). Using the generalization or otherwise, we then for-
mulate new results and theorems.
We study much of this modified derivative thereby formulating some important the-

orems and results. The Caputo-Hadamard fractional derivatives are used to develop the
FTFC, and then the new results are applied in the formulation of some other theorems. As
we shall see later, some interesting properties of the modified derivatives are necessary in
order to formulate some important outcomes. Section  gives some definitions and known
results which have been used in this paper, whilst both Sections  and  are devoted to the
original results. Section  concludes the paper.

2 Auxiliary results
Below, we begin with some basic definitions and results.
Let ≤ a ≤ b ≤ ∞ be finite or infinite interval of the half-axis R+. The Hadamard frac-

tional integrals of order α ∈C are defined [] by

(
J α
a+ϕ

)
(x) =


�(α)

∫ x

a

(
log

x
t

)α–

ϕ(t)
dt
t
, a < x < b, ()

(
J α
b–ϕ

)
(x) =


�(α)

∫ b

x

(
log

t
x

)α–

ϕ(t)
dt
t
, a < x < b. ()

The left-sided and right-sidedHadamard fractional derivatives of order α ∈ CwithR(α)≥
 on (a,b) and a < x < b are defined by

(
D

α
a+ϕ

)
(x) = δn

(
J n–α
a+ ϕ

)
(x) =

(
x
d
dx

)n 
�(n – α)

∫ x

a

(
log

x
t

)n–α–
ϕ(t)dt

t
, ()

(
D

α
b–ϕ

)
(x) = (–δ)n

(
J n–α
b– ϕ

)
(x) =

(
–x

d
dx

)n 
�(n – α)

∫ b

x

(
log

t
x

)n–α–
ϕ(t)dt

t
, ()

where n = [R(α)] + .

Property  [, p.] IfR(α) > ,R(β) >  and  < a < b <∞, then we have

(
J α
a+

(
log

t
a

)β–)
(x) =

�(β)
�(β + α)

(
log

x
a

)β+α–

, ()

(
D

α
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(
log
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a
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(x) =

�(β)
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log
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a

)β–α–
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log
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Lemma  [, pp.-] Let α,β ∈C such thatR(α) >R(β) > .
(a) If  < a < b < ∞ and ≤ p < ∞, then for ϕ ∈ Lp(a,b),

D
β
a+J α

a+ϕ = J α–β
a+ ϕ and D

β

b–J α
b–ϕ = J α–β

b– ϕ; ()

(b)

J α
a+J β

a+ϕ = J α+β
a+ ϕ and J α

b–J
β

b–ϕ = J α+β

b– ϕ. ()

Equations () and () are called semigroup properties of Hadamard fractional integrals
and derivatives.

The Caputo-type modifications of the left-sided and right-sided Hadamard fractional
derivatives are defined [] respectively by

C
D

α
a+ϕ(x) =D

α
a+

[
ϕ(t) –

n–∑
k=

δkϕ(a)
k!

(
log

t
a

)k
]
(x), ()

C
D

α
b–ϕ(x) =D

α
b–

[
ϕ(t) –

n–∑
k=

(–)kδkϕ(b)
k!

(
log

b
t

)k
]
(x). ()

HereR(α)≥ , n = [R(α) + ],  < a < b < ∞ and

ϕ(x) ∈ ACn
δ [a,b] =

{
ϕ : [a,b]→C : δ(n–)ϕ(x) ∈ AC[a,b], δ = x

d
dx

}
. ()

In particular, if  <R(α) < , then

C
D

α
a+ϕ(x) =D

α
a+

[
ϕ(t) – ϕ(a)

]
(x), ()

C
D

α
b–ϕ(x) =D

α
b–

[
ϕ(t) – ϕ(b)

]
(x). ()

Theorem  [, p.] Let R(α) ≥ , n = [R(α)] +  and ϕ ∈ ACn
δ [a,b],  < a < b < ∞. Then

CDα
a+ϕ(x) and CDα

b–ϕ(x) exist everywhere on [a,b] and
(a) if α /∈N,

C
D

α
a+ϕ(x) =


�(n – α)

∫ x

a

(
log

x
t

)n–α–

δnϕ(t)
dt
t
= J n–α

a+ δnϕ(x), ()

C
D

α
b–ϕ(x) =

(–)n
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∫ b

x

(
log

t
x

)n–α–

δnϕ(t)
dt
t
= (–)nJ n–α

b– δnϕ(x); ()

(b) if α = n ∈N,

C
D

α
a+ϕ(x) = δnϕ(x), C

D
α
b–ϕ(x) = (–)nδnϕ(x). ()

In particular,

C
D


a+ϕ(x) =

C
D


b–ϕ(x) = ϕ(x). ()
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Lemma  [, p.] LetR(α) > , n = [R(α)] +  and ϕ ∈ C[a,b].
IfR(α) �=  or α ∈ N, then

C
D

α
a+

(
J α
a+ϕ

)
(x) = ϕ(x), C

D
α
b–

(
J α
b–ϕ

)
(x) = ϕ(x). ()

Lemma  [, p.] Let ϕ ∈ ACn
δ [a,b] or Cn

δ [a,b] and α ∈ C, then

J α
a+

(C
D

α
a+ϕ

)
(x) = ϕ(x) –

n–∑
k=

δkϕ(a)
k!

(
log

x
a

)k

, ()

J α
b–

(C
D

α
b–ϕ

)
(x) = ϕ(x) –

n–∑
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δkϕ(b)
k!

(
log

b
x

)k

. ()

3 FTFC in the Caputo-Hadamard setting
The fundamental theorem of calculus FTC

d
dx

∫ x

a
f (t)dt = f (x) and

∫ b

a
dt

d
dt

F(t) = F(b) – F(a) = F(t)
∣∣∣∣b
a

()

replaces tedious computations of the limit of sums of rectangular areas with a more easier
way of finding an anti-derivative.
In the fractional case, Riemann-Liouville as well as Hadamard integro-differentiation

(for example) do not have generalization of the fundamental theoremof fractional calculus
(FTFC) in the form of (), i.e.,

(
aIαbD

α
a+ϕ

)
(x) �= ϕ(b) – ϕ(a),

(
aIαbD

α
b–ϕ

)
(x) �= ϕ(a) – ϕ(b), ()(

aJ α
b D

α
a+ϕ

)
(x) �= ϕ(b) – ϕ(a),

(
aJ α

b D
α
b–ϕ

)
(x) �= ϕ(a) – ϕ(b), ()

where

(
aIαx ϕ

)
(x) =


�(α)

∫ x

a

ϕ(t)dt
(x – t)–α

, x > a,R(α) > 

and

(
D

α
a+ϕ

)
(x) =

(
d
dx

)n(
In–α
a+ ϕ

)
(x), x > a,n =

[
R(α) + 

]
are the left-sided Riemann-Liouville fractional integral and the fractional derivative, re-
spectively. While the Hadamard fractional integral and the fractional derivative, aJ α

x and
Dα

a+ respectively, are given by () to ().
The reason to the above assertion is the fact that the differential operatorsDn = ( d

dx )
n and

δn = (x d
dx )

n used in the definitions of Riemann-Liouville and Hadamard fractional deriva-
tives, respectively, appear outside the integrals; and therefore, as those operators and the
integrals are not commutative, the semigroup properties for integrals () and Lemma .
of [] cannot be applied, i.e.,

(
Iαa+D

α
a+ϕ

)
(x) = Iαa+D

nIn–α
a+ ϕ(x) �= Iαa+I

n–α
a+ Dnϕ(x), ()(

J α
a+D

α
a+ϕ

)
(x) = J α

a+δ
nJ n–α

a+ ϕ(x) �= J α
a+J n–α

a+ δnϕ(x). ()
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However, from Theorem . of [], we have

(
J α
a+D

α
a+ϕ

)
(x) = ϕ(x) –

n∑
j=

(δn–j(J n–α
a+ ϕ))(a)

�(α – j + )

(
log

x
a

)α–j
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In particular, if  <R(α) < , then n =  and

(
J α
a+D

α
a+ϕ

)
(x) = ϕ(x) –

(J –α
a+ ϕ)(a)
�(α)

(
log

x
a

)α–

. ()

If α = , then

(
J 
a+D


a+ϕ

)
(x) = ϕ(x) – ϕ(a), ()

which implies

(
aJ 

bD

a+ϕ

)
(x) = ϕ(b) – ϕ(a). ()

Thus, () cannot be considered as the fractional generalization of FTC in the formof ().
Similarly, using Lemma . of [], we can see that Riemann-Liouville fractional integrals
and derivatives cannot be used to generalize FTFC in the form of () as well.
On the other hand, replacing the Riemann-Liouville fractional derivative with the

Caputo fractional derivative, it was shown (in, for example, [, ] and []) that

(
aIαb

C
D

α
a+ϕ

)
(x) = ϕ(b) – ϕ(a). ()

In most cases, we would only be using the left-sided definitions of fractional derivatives
or integrals where the definitions are quite similar to the right-sided ones. Therefore ()
can be considered as a fractional generalization of FTC in the form of ().
In the next theorem, we give the FTFC in the Caputo-Hadamard setting.

Theorem  (Fundamental theorem of fractional calculus) Let α ∈ C with R(α) ≥  and
n = [R(α)] + . Let ϕ(x) ∈ ACn

δ [a,b],  < a < b <∞.
(a) If �(x) = J α

a+ϕ(x) or �(x) = J α
b–ϕ(x) ∀x ∈ [a,b], then

C
D

α
a+�(x) = ϕ(x), C

D
α
b–�(x) = ϕ(x). ()

(b)

aJ α
b
C
D

α
a+�(x) =�(b) –�(a), aJ α

b
C
D

α
b–�(x) =�(a) –�(b). ()

Proof (a) Using Lemma . of [], it can be seen that the Hadamard fractional integrals
and the Caputo-Hadamard fractional derivatives are inverse operations,

(C
D

α
a+J α

a+
)
ϕ(x) = ϕ(x),

(C
D

α
b–J α

b–
)
ϕ(x) = ϕ(x). ()

Thus, if �(x) = J α
a+ϕ(x) or �(x) = J α

b–ϕ(x), then we have ().
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(b) Using (), we have

J α
a+

C
D

α
a+�(x) = J α

a+J n–α
a+ δn�(x). ()

In this case we can apply the semigroup proper (), unlike in the cases of Hadamard and
Riemann-Liouville fractional derivatives where δn andDn, respectively, are located outside
the integrals.
Therefore

J α
a+

C
D

α
a+�(x) = J n

a+δ
n�(x). ()

In particular, if n = , then

J α
a+

C
D

α
a+�(x) = J 

a+δ
�(x)

=


�()

∫ x

a

dt
t

· t d
dt

�(t)

=
∫ x

a
dt

d
dt

�(t) =�(x) –�(a),

which implies that

aJ α
b
C
D

α
a+�(x) =

∫ b

a
dt

d
dt

�(t) =�(b) –�(a).

Alternatively, using Lemma . of [], we have

J α
a+

C
D

α
a+�(x) =�(x) –

n–∑
j=

δj�(a)
�(j + )

(
log

x
a

)j

. ()

In particular, if  <R(α) < , then n =  and �(x) ∈ ACδ[a,b] or �(x) ∈ Cδ[a,b]. Thus

J α
a+

C
D

α
a+�(x) =�(x) –�(a). ()

Hence aJ α
b
CDα

a+�(x) gives (). The right-sided case can be proven in a similar way. �

Lemma  Let α ∈ C with R(α) ≥  and n = [R(α)] + . If ϕ(x) ∈ ACn
δ [a,b], where  < a <

b <∞, then

ϕ(x) = ϕ(a) +
CDα

a+ϕ(ξ )
�(α + )

(
log

x
a

)α

, ξ ∈ (a,x) or

ϕ(x) = ϕ(b) +
CDα

b–ϕ(ξ )
�(α + )

(
log

b
x

)α

, ξ ∈ (x,b). ()

This is where we make the first use of Theorem .

Proof Using () and (), we obtain


�(α)

∫ x

a

(
log

x
t

)α–
C
D

α
a+ϕ(t)

dt
t
= ϕ(x) – ϕ(a),
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where the function is CDα
a+ϕ(t). Applying themean value theorem for integrals [, p.],

we have

C
D

α
a+ϕ(ξ )


�(α)

∫ x

a

(
log

x
t

)α– dt
t
= ϕ(x) – ϕ(a), ξ ∈ (a,x). ()

The left-hand side of () contains the Hadamard fractional integral of the function ϕ(t) =
, i.e., J α

a+(). Using () implies β =  and thus () becomes

CDα
a+ϕ(ξ )

�(α + )

(
log

x
t

)α

= ϕ(x) – ϕ(a), ξ ∈ (a,x). ()

Rearranging () gives (). This completes the proof. �

Note that the right-sided case can also be proven in a similar way.

Lemma  If α ∈ C with R(α) ≥ , n = [R(α)] +  and k,m ∈ N, ϕ(x) ∈ ACn
δ [a,b],  < a <

b <∞, then

(
J α
a+

)k (C
D

α
a+

)m
ϕ(x) =

(CDα
a+)

m
ϕ(ξ )

�(kα + )

(
log

x
a

)kα

, ξ ∈ (a,x) or

(
J α
b–

)k (C
D

α
b–

)m
ϕ(x) =

(CDα
b–)

m
ϕ(ξ )

�(kα + )

(
log

b
x

)kα

, ξ ∈ (x,b). ()

Proof The proof is similar to the proof of Lemma . Observe that the sequential integral

(
J α
a+

)k = J α
a+J α

a+ · · ·J α
a+︸ ︷︷ ︸

k-times

()

can be written as the J kα
a+ with order kα by the semigroup property (). Thus,

(
J α
a+

)k (C
D

α
a+

)m
ϕ(x) =


�(kα)

∫ x

a

(
log

x
t

)kα– (C
D

α
a+

)m
ϕ(t)

dt
t
. ()

Applying the mean value theorem for integral and simplifying as before, we obtain ().
�

Lemma  R(α)≥  and n = [R(α)] + , if ϕ is a function such that CDα
a+ϕ andDα

a+ϕ exist,
then

C
D

α
a+ϕ(x) =D

α
a+ϕ(x) –

n–∑
k=

δkϕ(a)
�(k – α + )

(
log

x
a

)k–α

, ()

and when  <R(α) < , then

C
D

α
a+ϕ(x) =D

α
a+ϕ(x) –

ϕ(a)
�( – α)

(
log

x
a

)–α

. ()
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Proof Using () and (), we obtain

C
D

α
a+ϕ(x) =D

α
a+ϕ(x) –

n–∑
k=

δkϕ(a)
k!

(
D

α
a+

(
log

t
a

)k)
(x)

=D
α
a+ϕ(x) –

n–∑
k=

δkϕ(a)
�(k + )

· �(k + )
�(k – α + )

(
log

x
a

)k–α

.

Thus we have (). Then if  <R(α) < , implies n =  and from (), we have (). We can
get an immediate consequence of Lemma . �

Corollary  Under the conditions of Lemma ,

C
D

α
a+ϕ(x) =D

α
a+ϕ(x) ()

if and only if ϕ has an n-fold zero at a, i.e., if and only if

δjϕ(a) = , j = , , . . . ,n – . ()

The proof is straightforward.
Now, it is known [, Theorem .] that if R(α) ≥  and α /∈ N = {, ,  . . .} such that

n = [R(α)] + , then

C
D

α
a+ϕ(a) =  and C

D
α
b–ϕ(b) = . ()

This fact disallows us to obtain (for example) a fractional Taylor series using the fractional
derivatives evaluated at these points. Otherwise, we can have a series expansion in the
form

ϕ(x) =
m∑
j=

(CDα
a+)

j
ϕ(a)

�(jα + )

(
log

x
a

)jα

+Rm(a,x), ()

where

Rm(x,a) =
(CDα

a+)
(m+)

ϕ(ξ )
�((m + )α + )

(
log

x
a

)(m+)α

, ξ ∈ [a,x] ()

is the remainder of the terms in the expansion.
However, we may relax the conditions on ϕ in Corollary  as in the next result.

Lemma  Let R(α) ≥  and n = [R(α)] +  such that α /∈ N and ϕ(x) ∈ ACn
δ [a,b]. More

so, suppose that CD
β
a+ϕ(x) is continuous on [a,b] for some β ∈ (α,n). Then CDα

a+ϕ(x) is
continuous and CDα

a+ϕ(a) = .

Proof Using (), we obtain

C
D

α
a+ϕ(x) = J n–α

a+ δnϕ(x) = J β–α
a+ J n–β

a+ δnϕ(x) = J β–α
a+

C
D

β
a+ϕ(x). ()

Thus, CDα
a+ϕ(x) is continuous and CDα

a+ϕ(a) = J β–α
a+

CD
β
a+ϕ(a) =  by (). This completes

the proof of the lemma. �
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4 Semigroup properties of Caputo-Hadamard operators
We present the first proof of the semigroup properties of Caputo-Hadamard fractional
derivatives. The Caputo version of this result is seen in [] and [].

Theorem  (Semigroup property for Caputo-Hadamard derivatives) Let ϕ(x) ∈ Cm+n
δ [a,

b],  < a < b < ∞.Moreover, let α ≥ , β ≥  such that n –  < α ≤ n,m –  < β ≤m. Then

C
D

α
a+

C
D

β
a+ϕ(x) =

C
D

α+β
a+ ϕ(x). ()

Proof Without loss of generality, let m ≥ n. Thus, m = n + k, k ∈ {, , , . . .}. Since α +
β ≤ m + n, then by definitions and using semigroup properties for Hadamard fractional
integrals (), we have

C
D

α
a+

C
D

β
a+ϕ(x) = J n–α

a+ δnCDβ
a+ϕ(x) = J n–α

a+ δnJ m–β
a+ δmϕ(x)

= J n–α
a+ δnJ n+k–β

a+ δn+kϕ(x) = J n–α
a+ δnJ n–β

a+ J k
a+δ

n+kϕ(x)

= J n–α
a+ D

β
a+J k

a+δ
n+kϕ(x) = J n–α–β

a+ J β
a+D

β
a+J k

a+δ
n+kϕ(x).

Then, using () with y(x) taken as J k
a+δ

n+kϕ(x), we obtain

C
D

α
a+

C
D

β
a+ϕ(x) = J n–α–β

a+

[
J k
a+δ

n+kϕ(x) –
n∑
j=

(δn–j(J n–β
a+ J k

a+δ
n+kϕ)(a))

�(β – j + )

(
log

x
a

)β–j
]

= J n–(α+β)
a+

[
J k
a+δ

n+kϕ(x) –
n∑
j=

(δn–jCDβ
a+ϕ(a))

�(β – j + )

(
log

x
a

)β–j
]

= J n–(α+β)
a+

(
J k
a+δ

n+kϕ(x)
)

by ()

= J n+k–(α+β)
a+ δn+kϕ(x) = C

D
α+β
a+ ϕ(x).

This ends the proof. �

Example It is important to note that the purpose of this example is to show that Theo-
rem  does not hold in general if the Hadamard fractional derivative is to be used instead
of the Caputo-Hadamard fractional derivative. Then it suffices to present a single case
where this assertion is true. Suppose that we have the function ϕ(x) =  with α = 

 , β = 
and a = . Thus by definitions, the left-hand side gives

D
/
+ D


+() =D

/
+ δ() = .

The right-hand side would be

D
/
+ () = δJ /

+ () = δ


�(  )
(logx)/ �= ,

where δ = x d
dx . However, in the case of Caputo-Hadamard derivative, the left-hand side

becomes

C
D

/
+

C
D


+() =

C
D

/
+ δ() = ,
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and by () of Property . in [], the right-hand side gives

C
D

/
+ () = .

In the next lemma, we give the generalization of Theorem .

Lemma  For ϕ(x) ∈ Cn
δ [a,b],  < a < b <∞,

C
D

α
a+

C
D

α
a+ · · · CDαm

a+ ϕ(x) = C
D

∑m
j= αj

a+ ϕ(x), ()

where αj ≥ , nj– < αj ≤ nj and
∑m

j= αj ≤ n ∀j = {, , . . . ,m}.

Proof The proof follows immediately from Theorem  and using mathematical induc-
tion. �

Theorem  Let ϕ(x) ∈ Cn
δ [a,b],  < a < b < ∞ and α ∈ C, β ∈ C such that R(α) ≥ ,

R(β) ≥ . Then

C
D

α
a+J β

a+ϕ(x) = J β–α
a+ ϕ(x) and C

D
α
b–J

β

b–ϕ(x) = J β–α

b– ϕ(x). ()

Proof

C
D

α
a+J β

a+ϕ(x) = J n–α
a+ δnJ β

a+ϕ(x)

= J n–α
a+ δnJ n–β

a+ J β–n
a+ ϕ(x)

= J n–α
a+ D

β
a+J β–n

a+ ϕ(x).

Then from (..) of [] we obtain

C
D

α
a+J β

a+ϕ(x) = J n–α
a+ J β–n

a+ ϕ(x) = J β–α
a+ ϕ(x). �

Observe that Theorem  is the generalization of Lemma .(i) of [] where β = α.

Lemma  Let α ∈ C with  < R(α) ≤  and k ∈ N. Let ϕ(x) ∈ ACn
δ [a,b],  < a < b < ∞.

Then

(
J α
a+

)(k+) (C
D

α
a+

) (k+)
ϕ(x) =

(
J α
a+

)k (C
D

α
a+

) k
ϕ(x). ()

Proof

(
J α
a+

)(k+) (C
D

α
a+

) (k+)
ϕ(x) =

(
J α
a+

)kJ α
a+

C
D

α
a+

(C
D

α
a+

) k
ϕ(x)

=
(
J α
a+

)k( (C
D

α
a+

) k
ϕ(x) –

(C
D

α
a+

) k
ϕ(a)

)
(
by () with �(x) =

(C
D

α
a+

) k
ϕ(x)

)
=

(
J α
a+

)k (C
D

α
a+

) k
ϕ(x)(

since
(C
D

α
a+

) k
ϕ(a) =  ∀k = , , , . . .

)
. �
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Both Theorem  and Lemma  deal with the reduction of higher fractional order differ-
ential systems to lower order systems for Caputo-Hadamard fractional derivatives. How-
ever, in some instances it may also be useful to involve the Caputo-Hadamard and the
Hadamard differential operator.

Lemma  Let ϕ(x) ∈ Cn
δ [a,b] for some n ∈N and  < α ≤ n. Then

D
n–α
a+

C
D

α
a+ϕ(x) = δnϕ(x), ()

where δ = x d
dx .

Proof
. If α ∈N, then by () and from (..) of [], () becomes

δn–αδαϕ(x) = δnϕ(x).

. Otherwise, since n = [R(α)] + , then by definitions

D
n–α
a+

C
D

α
a+ϕ(x) = δ[R(n–α)]+J [R(n–α)]+–(n–α)

a+ J [R(α)]+–α
a+ δ[R(α)]+ϕ(x)

= δn–[R(α)]+J 
a+

(
δ[R(α)]+ϕ(x)

)
= δn–[R(α)]δ[R(α)]ϕ(x) = δnϕ(x). �

5 Conclusion
Since the Caputo-Hadamard fractional derivatives were introduced in [], not much
about the modified derivatives were studied despite the fact that the derivatives have
many advantages over the usual Hadamard fractional derivative. We proved that the
Hadamard fractional derivatives cannot be used to generalize the FTFC whereas the
Caputo-Hadamard derivative works perfectly. The FTFC is then used in formulating other
results whose applications to fractional vector calculus in the study of Green’s theorem,
Stoke’s theorem and so forth, as well as in the study of anomalous diffusion is a further
work. Many new results such as the semigroup properties for the modified derivatives are
studied in detail.
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