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Abstract
There are few theoretical works on global stability of Euler difference schemes for
two-dimensional Lotka-Volterra predator-prey models. Furthermore no attempt is
made to show that the Euler schemes have positive solutions. In this paper, we
consider Euler difference schemes for both the two-dimensional models and
n-dimensional models that are a generalization of the two-dimensional models. It is
first shown that the difference schemes have positive solutions and equilibrium
points which are globally asymptotically stable in the two-dimensional cases. The
approaches used in the two-dimensional models are extended to the n-dimensional
models for obtaining the positivity and the global stability. Numerical examples are
presented to verify the results.
MSC: 34A34; 39A10; 40A05

Keywords: Euler discrete schemes; global stability; predator-prey models

1 Introduction
Consider the n-dimensional system

dxi
dt

= xi
(

σiri +
∑

≤j≤i–

aijxj –
∑
i≤j≤n

aijxj
)
, (.)

where ri > , aij >  for  ≤ i, j ≤ n, σ = , and σi ∈ {–, } for  ≤ i≤ n.
The system equation (.) can be seen as a generalization of the two-dimensional Lotka-

Volterra predator-prey model

dx
dt

= x(r – ax – ay),
dy
dt

= y(–r + ax – ay), (.)

where x and y denote the population sizes of prey and predator, respectively.
There are a number of works on investigating nonstandard finite difference schemes

for the Lotka-Volterra competition models (see [] and the references given there), but
relatively few theoretical papers are published on discretized models of equation (.). In
particular, to my knowledge, Euler difference schemes for equation (.) have not theoret-
ically been studied for the global stability of the equilibrium points except a recent paper
[]. In Section , it is shown that the Euler difference scheme has positive solutions. In or-
der to show the global asymptotic stability of the equilibrium point whose components are
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all positive, the paper [] assumes that (, ) is globally stable. Without using the assump-
tion, we show the global stability of all of the equilibrium points in Section . In addition,
we also analyze the Euler difference scheme for equation (.) with r replaced by –r.
We are interested in extending the method used in the two-dimensional discrete models
to the n-dimensional discrete models for equation (.). In Section , we demonstrate the
positivity and the global stability in the n-dimensional discrete cases. Numerical examples
are given to verify the results of this paper.

2 Two-dimensional predator-preymodel
In this section, we consider the Euler difference scheme for equation (.)

x = x(), y = y(), xk+ = Fyk (xk), yk+ =Gxk (yk), (.)

where �t is a time step size, r̂i = ri�t, âij = aij�t for  ≤ i, j ≤ , and

Fy(x) = x( + r̂ – âx – ây), Gx(y) = y( – r̂ + âx – ây). (.)

Note that if τ and τ are positive constants such that

U(τ) =
 + r̂ – âτ

â
> , U(τ) =

 – r̂ + âτ
â

> ,

then

Fτ (x) and Gτ (y) are increasing on  ≤ x <U(τ) and ≤ y <U(τ). (.)

Let �t satisfy max{r̂, r̂} < . Take positive constants χ and χ such that

–r̂ + âχ ≤ ,
r
a

≤ χ ≤U(χ),
–r + aχ

a
≤ χ ≤U(). (.)

Theorem. Let�t, χ, χ satisfy equation (.)withmax{r̂, r̂} < . If (x, y) ∈ (,χ)×
(,χ), then (xk , yk) ∈ (,χ)× (,χ) for all k with k ≥ .

Proof Since

 < x < χ ≤U(χ) <U(y),  < y < χ ≤U() <U(x),

it follows from equation (.) that

x = Fy (x) > Fy () = , y =Gx (y) >Gx () = .

If r – ax – ay ≤ , then x = Fy (x) ≤ x < χ, and otherwise,

 < x <
r – ay

a
<
r̂ + (r̂ – ây)

â
<
 + r̂ – ây

â
=U(y)

by the condition r̂ < . Hence equation (.) implies that

x = Fy (x) < Fy

(
r – ay

a

)
=
r – ay

a
<

r
a

≤ χ.

http://www.advancesindifferenceequations.com/content/2014/1/11


Choo Advances in Difference Equations 2014, 2014:11 Page 3 of 17
http://www.advancesindifferenceequations.com/content/2014/1/11

Similarly if –r + ax – ay ≤ , then y =Gx (y) ≤ y < χ, and otherwise,

 < y <
–r + ax

a
<
(–r̂ + âχ) + (–r̂ + âx)

â
≤  – r̂ + âx

â
=U(x)

by the condition –r̂ + âχ ≤ . Thus equation (.) gives

y =Gx (y) <Gx

(
–r + ax

a

)
=
–r + ax

a
<
–r + aχ

a
≤ χ.

Finally we obtain, if (x, y) ∈ (,χ)× (,χ), then

(x, y) ∈ (,χ)× (,χ).

By the principle of mathematical induction, the proof is completed. �

From now on, we assume that (x, y) ∈ (,χ)× (,χ) and (xk , yk) for k ≥  denote the
solutions of equation (.). For simplicity of notation, we write for all k instead of for all k
with k ≥  when there is no confusion.

Remark . Theorem . gives for all k

 < xk < χ <U(χ) <U(yk),  < yk < χ <U() <U(xk).

Hence it follows from equation (.) that for every fixed (xk , yk)

Fyk (x) and Gxk (y) are increasing on ≤ x < χ and  ≤ y < χ. (.)

Let f (x) = r–ax
a

and g(x) = –r+ax
a

. Since f and g are decreasing and increasing, respec-
tively, it follows from equation (.) that for all k

f –(yk) < f –() ≤ χ, max
{
g
(
f –()

)
, g(xk)

} ≤ g(χ)≤ χ. (.)

Set D = (,χ)× (,χ), and let Si for  ≤ i≤  denote the four areas

S =
{
(x, y) ∈D|g(x)≤ y < f (x)

}
, S =

{
(x, y) ∈D|y≤ f (x), y < g(x)

}
,

S =
{
(x, y) ∈D|f (x) < y≤ g(x)

}
, S =

{
(x, y) ∈ D|y≥ f (x), y > g(x)

}
.

Remark . Let (xk , yk) ∈ ⋃
≤i≤ Si for some k. The following can be obtained by using

equation (.), equation (.), and the definitions of Fyk (xk) and Gxk (yk).
(a) Suppose (xk , yk) ∈ S. Since g(xk) ≤ yk < f (xk), we have

xk+ = Fyk (xk) > Ff (xk )(xk) = xk , xk+ = Fyk (xk) < Fyk
(
f –(yk)

)
= f –(yk),

yk+ =Gxk (yk) ≤Gg–(yk )(yk) = yk < f (xk+).
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(b) Suppose (xk , yk) ∈ S. This gives yk ≤ f (xk) and yk < g(xk), and then

xk+ = Fyk (xk) ≥ Ff (xk )(xk) = xk ,

yk+ =Gxk (yk) >Gg–(yk )(yk) = yk , yk+ <Gxk
(
g(xk)

)
= g(xk) < g(xk+).

(c) Suppose (xk , yk) ∈ S. Since f (xk) < yk ≤ g(xk), we have

xk+ = Fyk (xk) < Ff (xk )(xk) = xk , xk+ > Fyk
(
f –(yk)

)
= f –(yk),

yk+ =Gxk (yk) ≥Gg–(yk )(yk) = yk > f (xk+).

(d) Suppose (xk , yk) ∈ S, which means that yk ≥ f (xk) and yk > g(xk). Then

xk+ = Fyk (xk) ≤ Ff (xk )(xk) = xk ,

yk+ =Gxk (yk) <Gg–(yk )(yk) = yk , yk+ >Gxk
(
g(xk)

)
= g(xk) > g(xk+).

Therefore (xk , yk) in S, S, S, and S moves to

the lower right, upper right, upper left, and lower left parts (.)

of S ∪ S, S ∪ S, S ∪ S, and S ∪ S, respectively (see Figures  and ).

Set S = S, and use the notation �xN , yN � ∈ Si+ for ≤ i≤  and a positive integer N to
denote both (xk , yk) ∈ Si for all k with  ≤ k < N and (xN , yN ) ∈ Si+. Then equation (.)
implies the following theorem.

Theorem . Let the assumptions of Theorem . hold. Suppose ≤ i≤ .

If (x, y) ∈ Si, then (xk , yk) ∈ Si for all k or �xNi , yNi � ∈ Si+ for some Ni.

Figure 1 Two-dimensional models with (σ1,σ2) = (1, –1). The dark circles denote initial conditions (see
Examples 3.2, 3.6, and 3.7 for details). (a) r1a21 – r2a11 < 0 and the limits of the four trajectories are
( r1
a11

, 0) = (10, 0). (b) r1a21 – r2a11 > 0. The solutions of equation (2.1) rotate finitely many times around the

limit θ = (θ1,θ2) = (1.25, 0.25). (c) r1a21 – r2a11 > 0. The solutions of equation (2.1) rotate infinitely many times
around the limit θ = (1.287, 28.713).
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Figure 2 Two-dimensional models with (σ1,σ2) = (1, 1). The dark circles denote initial conditions (see
Example 3.10). (a) r1a22 – r2a12 < 0 and the limits of the four trajectories are (0, r2

a22
) = (0, 2).

(b) r1a22 – r2a12 > 0. The solutions of equation (3.10) rotate finitely many times around the limit
ϑ = (0.455, 10.455). (c) r1a22 – r2a12 > 0. The solutions of equation (3.10) rotate infinitely many times around
the limit ϑ = (0.683, 29.317).

3 Dynamics of the two-dimensional predator-preymodels
In this section, we first consider dynamics of the Euler difference scheme for equation
(.) and next for equation (.) with n =  and (σ,σ) = (, ). Let θ = ra+ra

aa+aa
and

θ = ra–ra
aa+aa

. For calculating the limits of xk and yk , we use the inequalities

lim
k→∞

xk > , lim
k→∞

yk > , (.)

which is equivalent to limk→∞(xk , yk) = (θ, θ).

Theorem . Let the assumptions of Theorem . hold. Suppose ra – ra ≤ . Then
(xk , yk) satisfies the following dynamics with the limit ( r

a
, ).

(a) If (x, y) ∈ S, then (xk , yk) ∈ S for all k.
(b) If (x, y) ∈ S, then (xk , yk) ∈ S for all k or �xN , yN � ∈ S for some N.
(c) If (x, y) ∈ S, then �xN , yN � ∈ S for some N.

Proof (a) Since f –() = r
a

≤ r
a

= g–(), the set S is empty, and then Theorem . gives
(xk , yk) ∈ S for all k. Thus equation (.) shows that xk is bounded and increasing, and yk is
bounded and decreasing. Hence limk→∞ xk >  and limk→∞ yk ≥ . Finally limk→∞ yk = 
since otherwise  < limk→∞ yk = θ ≤ , which is a contradiction. Therefore limk→∞ xk =
r
a

by using equation (.) with both limk→∞ xk >  and limk→∞ yk = .
(b) Theorem . and (a) in this theorem show that it suffices to show limk→∞(xk , yk) =

( r
a

, ) in the case (xk , yk) ∈ S for all k, where limk→∞ xk ≥  and limk→∞ yk ≥  by equa-
tion (.). Then limk→∞ yk =  since otherwise the last equation in equation (.) gives
limk→∞ xk > , and hence equation (.) implies limk→∞ yk = θ ≤ , producing a contra-
diction to limk→∞ yk > .
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Note that yk > f (xk) for all k since (xk , yk) ∈ S for all k. Thus if limk→∞ xk = ,
then limk→∞ yk ≥ limk→∞ f (xk) = r

a
> , which contradicts to limk→∞ yk = . Hence

limk→∞ xk > . Consequently, limk→∞ xk = r
a

by using equation (.) with limk→∞ yk = .
(c) Assume, to the contrary, that (xk , yk) ∈ S for all k. Then equation (.) implies that xk

and yk have positive limits, and hence equation (.) gives  < limk→∞ yk = θ ≤ , which
is a contradiction. Therefore �xN , yN � ∈ S for some N, which gives limk→∞(xk , yk) =
( r
a

, ) by (b) in this theorem. �

Example . Consider the discrete system

xk+ = xk + xk( – xk – yk)�t, yk+ = yk + yk(– + xk – yk)�t

with �t = . and (χ,χ) = (, ). Then equation (.) and the conditions ra –
ra ≤  and max{r̂, r̂} <  in Theorem . are satisfied. For the four initial conditions

(, ) ∈ S, (, ) ∈ S, (, ) ∈ S, (, .) ∈ S,

Figure (a) shows that the solution (xk , yk) satisfies Theorem . and Theorem . with
the limit ( r

a
, ) = (, ). In the case (x, y) = (, .) ∈ S, Figure (a) shows that for

 ≤ i≤ , and ,≤ k ≤ ,

 <  +  ∗ – = xk ≤ xi+ ≤ xi

which implies that (xk , yk) ∈ S for all k.

In order to show the global asymptotic stability of the equilibrium point θ = (θ, θ), the
linearized system of equation (.) at θ is used: Consider the Jacobian matrix of T(x, y) =
(Fy(x),Gx(y)) at θ

DTθ =

(
 – θa�t –θa�t
θa�t  – θa�t

)
. (.)

Letting J = 
�t (DTθ – I) with the  ×  identity matrix I , we have tr(J) = –θa – θa,

det(J) = θθ(aa + aa), and the eigenvalues of DTθ

 +


{
tr(J)±

√
tr(J) – det(J)

}
�t. (.)

The following lemma is used for showing that the equilibrium point θ of the nonlinear
system xk+ = T(xk) is locally asymptotically stable.

Lemma . Suppose ra – ra > . Let J = 
�t (DTθ – I). Then all of the eigenvalues of

DTθ have magnitude less than  if one of the following is true.
(a) tr(J) ≥ det(J).
(b) tr(J) < det(J) and det(J)�t < – tr(J).

In order to find conditions for when (xn, yn) rotates finitely or infinitely many times
around θ , we need the following theorem about a hyperbolic point: A point p of xk+ =
T(xk) is called hyperbolic if all of the eigenvalues of DTp have nonzero real parts.

http://www.advancesindifferenceequations.com/content/2014/1/11


Choo Advances in Difference Equations 2014, 2014:11 Page 7 of 17
http://www.advancesindifferenceequations.com/content/2014/1/11

Theorem . (Hartman-Grobman theorem for maps) Let p be a hyperbolic fixed point of
xk+ =H(xk), where H is a continuously differentiable function defined on a neighborhood
of  ∈ R

n for n ≥ . Then there exist neighborhoods U of p, V of the hyperbolic fixed point
0 of xk+ = DHp(xk), and a homeomorphism h : V → U such that H(h(x)) = h(DHp(x)) for
all x ∈ V .

Theorem . (see [] for the proof ) states that the nonlinear system xk+ =H(xk) is topo-
logically equivalent to the linearized system xk+ =DHp(xk) of the nonlinear system at p.

Theorem . Let the assumptions of Theorem . hold and let J = 
�t (DTθ – I). Suppose

ra – ra >  and (x, y) ∈ ⋃
≤i≤ Si.

(a) If tr(J) ≥ det(J), then (xk , yk) rotates finitely many times around θ in the
counterclockwise direction and finally stays in one of Si for ≤ i≤  with
limk→∞(xk , yk) = θ .

(b) If the four inequalities tr(J) < det(J), det(J)�t < – tr(J),

�t max
≤i≤

{
ai(θ + χ) + ai(θ + χ)

}
< ., (.)

�t
{
a(a + a) + a(a + a)

}
max
≤i,j≤

aij <min{aa,aa}, (.)

are satisfied, then (xk , yk) rotates infinitely many times around θ in the
counterclockwise direction with limk→∞(xk , yk) = θ .

Proof (a) Since all of the eigenvalues of DTθ in equation (.) are positive numbers less
than , the fixed point θ of (xk+, yk+) = T(xk+, yk+) is hyperbolic and the solutions of the
linearized system of equation (.) at θ rotate finitelymany times around (, ), converging
to (, ). Hence Theorem . with Theorem . gives the proof of (a) without showing
limk→∞(xk , yk) = θ .
For obtaining the limit of (xk , yk) consider the case (xk , yk) ∈ Si for i =  and all sufficiently

large k. Then equation (.) yields the result that xk is increasing with the upper bound θ

less than r
a

, and hence  < limk→∞ xk < r
a

. Consequently limk→∞ yk > , since otherwise
limk→∞ xk = r

a
, which is a contradiction. Therefore we obtain equation (.).

In the case (xk , yk) ∈ Si for i =  and all sufficiently large k, it follows from equation (.)
that xk and yk are both increasing and bounded, which gives equation (.).
Similarly, the other two cases for i =  and  can be proved by using equation (.), equa-

tion (.), and the method of proof by contradiction.
(b) Since all of the eigenvalues ofDTθ in equation (.) have positive real parts andmag-

nitude less than  by det(J)�t < – tr(J), the fixed point θ is hyperbolic and the solutions of
the linearized system of equation (.) at θ rotate infinitely many times around (, ), con-
verging to (, ). Hence (b) is proved by using Theorem . and Theorem .. It remains
to show that limk→∞(xk , yk) = θ . Consider a function Vk defined by

Vk = a(xk – θ lnxk) + a(yk – θ ln yk) (.)

for all the solutions (xk , yk). Letting θk = θ – xk , θk = θ – yk , and �xk = xk+ – xk , we have
�xk = (âθk + âθk)xk and �yk = (–âθk + âθk)yk by equation (.). Then the Mean

http://www.advancesindifferenceequations.com/content/2014/1/11
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Value Theorem gives for some α, β with  < α,β < 

Vk+ –Vk = a�xk
(
 – θ

� lnxk
�xk

)
+ a�yk

(
 – θ

� ln yk
�yk

)

= a(âθk + âθk)
(
xk – θ

xk
α�xk + xk

)

+ a(–âθk + âθk)
(
yk – θ

yk
β�yk + yk

)
. (.)

Note that

xk
α�xk + xk

=  –
α(aθk + aθk)�t

α(aθk + aθk)�t + 
≡  – (Cθk +Cθk)�t,

yk
β�yk + yk

=  –
β(–aθk + aθk)�t

β(–aθk + aθk)�t + 
≡  – (Cθk +Cθk)�t,

where equation (.) gives

max
≤i≤

|Ci| <  max
≤i,j≤

aij. (.)

Then equation (.) becomes

Vk+ –Vk ≤ –(aâ –C�t)θ
k – (aâ –C�t)θ

k , (.)

where C = a{â(|C|+ |C|)+ â|C|}+a{â(|C|+ |C|)+ â|C|}, C = a{â|C|+
â(|C| + |C|)} + a{â|C| + â(|C| + |C|)}, and

max{C,C} < �t
{
a(a + a) + a(a + a)

}
max
≤i,j≤

aij

by equation (.). Hence equation (.) together with equation (.) becomes

Vk+ –Vk ≤ –C
(
θ
k + θ

k
)
�t

for a positive constant C.
Now assume, to the contrary, that (xk , yk) does not converge to θ . Since θ is locally

asymptotically stable by the linearization method (see []), the assumption implies that
θ
k + θ

k has a positive lower bound. Then there exists a positive constant C such that for
all k with k ≥ 

Vk+ –Vk ≤ –C and hence Vk ≤ V – kC.

This is a contradiction, since limk→∞(V – kC) = –∞ and Vk is bounded by Theorem ..
�

Example . Consider the discrete system

xk+ = xk + xk(. – xk – yk)�t, yk+ = yk + yk(– + xk – yk)�t

http://www.advancesindifferenceequations.com/content/2014/1/11
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and the four initial conditions

(., .) ∈ S, (., .) ∈ S, (., .) ∈ S, (., .) ∈ S

with �t = . and (χ,χ) = (, ). Then ra – ra > , max{r̂, r̂} < , and
θ = (., .). Since tr(J) = –. and det(J) = ., the condition tr(J) ≥ det(J) in
Theorem .(a) is satisfied. Figure (b) shows the dynamics in Theorem .(a) with the
limit θ .

Example . Consider the discrete system

xk+ = xk + xk( – xk – yk)�t, yk+ = yk + yk(– + xk – .yk)�t,

and the four initial conditions (x, y)

(., ) ∈ S, (, ) ∈ S, (, ) ∈ S, (., .) ∈ S

with �t = . and (χ,χ) = (, ). Then ra – ra > , max{r̂, r̂} < , and θ =
(., .). Since tr(J) = –. and det(J) = ., the conditions in Theorem .(b)
are satisfied. Figure (c) shows the dynamics in Theorem .(b) with the limit θ .

In the remainder of this section we consider the Euler difference scheme for equation
(.) with n =  and (σ,σ) = (, )

xk+ = xk( + r̂ – âxk – âyk), yk+ = yk( + r̂ + âxk – âyk), (.)

which has the three nonzero equilibrium points

(
r
a

, 
)
,

(
,

r
a

)
, ϑ =

(
ra – ra
aa + aa

,
ra + ra

aa + aa

)
.

Replace r in Section  with –r. For example, g(x) = –r+ax
a

is replaced with g(x) = r+ax
a

.
ThenTheorem., equation (.), andTheorem. remain true. In the case ra–ra ≤
, the set S is empty, and hence we can prove the following theorem, which corresponds
to Theorem ..

Theorem . Let the assumptions of Theorem . hold with r replaced by –r and let
g(x) = –r+ax

a
. Suppose ra – ra ≤ . Then the solution (xk , yk) of equation (.) sat-

isfies the following dynamics with the limit (, r
a

).
(a) If (x, y) ∈ S, then (xk , yk) ∈ S for all k.
(b) If (x, y) ∈ S, then (xk , yk) ∈ S for all k or �xN , yN � ∈ S for some N.
(c) If (x, y) ∈ S, then �xN , yN � ∈ S for some N.

Remark. The Jacobianmatrix of equation (.) atϑ equalsDTϑ as defined in equation
(.), and then Theorem . remains true if ra – ra > , r, and θ in Theorem . are
replacedwith ra –ra > , –r, andϑ , respectively. Therefore only the two equilibrium
points (, r

a
) and ϑ of equation (.) are globally asymptotically stable.

http://www.advancesindifferenceequations.com/content/2014/1/11
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Example . Let E = (r,a,a, r,a,a). Consider the Euler difference scheme for
equation (.) with �t = ..
(a) E = (, , , , , ) with the three initial conditions (., .) ∈ S, (, ) ∈ S, and

(., ) ∈ S. Then the conditions in Theorem . are satisfied. Figure (a) shows
that the three trajectories converge to (, r

a
) = (, ) as in Theorem .. Replacing

the values r =  in E with r = . and letting (x, y) = (., .), we
have yi ≤ yi+ ≤ yk =  – . ∗ – <  for  ≤ i≤ , and
,≤ k ≤ ,, which imply (xk , yk) ∈ S for all k.

(b) E = (., , ., , ., .) with the four initial conditions (., .) ∈ S,
(., .) ∈ S, (., .) ∈ S, and (., .) ∈ S. Then ϑ = (., .)
and ra – ra = . > . Since tr(J) = –. and det(J) = ., the condition
tr(J) ≥ det(J) in Theorem .(a) is satisfied. Figure (b) shows that solutions rotate
finitely many times around the limit ϑ .

(c) E = (, , , ., , .) with the four initial conditions (., ) ∈ S, (, ) ∈ S,
(, ) ∈ S, and (., ) ∈ S. Then ϑ = (., .) and ra – ra = . > .
Since tr(J) = –. and det(J) = ., the conditions in Theorem .(b) are
satisfied. Figure (c) shows that the spiral trajectories rotate infinitely many times
around the limit ϑ .

4 n-Dimensional predator-preymodels
In this section, we consider the Euler difference scheme for equation (.)

xik+ = Fxik
(
xik

)
for ≤ k, ≤ i≤ n, (.)

where xik denotes x

k , . . . ,x

i–
k ,xi+k , . . . ,xnk and

Fxik
(
xik

)
= xik

(
 + σir̂i +

∑
≤j≤i–

âijx
j
k –

∑
i≤j≤n

âijx
j
k

)
(.)

with σ =  and σi ∈ {–, } for  ≤ i≤ n.
Let ζ i denote ζ, . . . , ζi–, ζi+, . . . , ζn. Note that if ζ, . . . , ζn are positive constants such that

for  ≤ i≤ n

Ui
(
ζ i) =  + σir̂i +

∑
≤j≤i– âijζj –

∑
i+≤j≤n âijζj

âii
> ,

then

Fζ i (ζi) is increasing on  ≤ ζi <Ui
(
ζ i). (.)

Assume that there exist positive constants χi such that for  ≤ i ≤ n

χi <
 + σir̂i –

∑
i+≤j≤n âijχj

âii
, (.)

σiri +
∑

≤j≤i– aijχj

aii
< χi, (.)

http://www.advancesindifferenceequations.com/content/2014/1/11
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σir̂i +
∑

≤j≤i–

âijχj < , (.)

which is the generalization of equation (.).

Theorem . Let �t and χi satisfy equations (.)-(.). If (x, . . . ,xn) ∈ ∏
≤i≤n(,χi),

then (xk , . . . ,x
n
k ) ∈

∏
≤i≤n(,χi) for all k.

Proof It follows from equation (.) and the definition of Ui that for  ≤ i≤ n

 < xi < χi <
 + σir̂i –

∑
i+≤j≤n âijχj

âii
<Ui

(
xi

)
.

Then equation (.) with ζ i = xi gives

xi = Fxi
(
xi

)
> Fxi () = .

If σiri +
∑

≤j≤i– aijx
j
 –

∑
i≤j≤n aijx

j
 ≤  for  ≤ i≤ n, then

xi ≤ xi < χi,

and otherwise, we have  < xi < fi(xi) with fi(xi) =
σiri+

∑
≤j≤i– aijx

j
–

∑
i+≤j≤n aijx

j


aii
.

Since  < fi(xi) < Ui(xi) by equation (.), it follows from equation (.) with ζ i = xi
that

xi = Fxi
(
xi

)
< Fxi

(
fi
(
xi

))
= fi

(
xi

)
<

σiri +
∑

≤j≤i– aijχj

aii
< χi,

where the last inequality is obtained by equation (.). Therefore we find that if (x, . . . ,
xn) ∈

∏
≤i≤n(,χi), then

(
x, . . . ,x

n

) ∈

∏
≤i≤n

(,χi),

and hence mathematical induction completes the proof. �

From now on, we consider the global asymptotic stability of the equilibrium point of
equation (.) whose components are all positive. Let σij =  if ≤ i < j ≤ n, and otherwise,
σij = –. Assume that

the inverse matrix of the n× nmatrix (σijaij) exists and

(σijaij)–
(
σr σr · · · σnrn

)T is a positive matrix,
(.)

where (σr σr · · · σnrn)T is the transpose of × nmatrix (σr σr · · · σnrn).
Let

θT = (σijaij)–
(
σr σr · · · σnrn

)T ,

http://www.advancesindifferenceequations.com/content/2014/1/11
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which gives for ≤ i ≤ n

σiri +
∑

≤j≤i–

aijθj –
∑
i≤j≤n

aijθj = . (.)

Then equation (.) is the generalization of the condition ra – ra >  in both Lem-
ma . and Theorem ..
In order to use the linearized system of equation (.) at θ , consider the Jacobian matrix

of T(xk , . . . ,x
n
k ) = (Fxk (x


k), . . . ,Fxnk (x

n
k )) at θ

DTθ =

⎛
⎜⎜⎜⎜⎝
 – θa�t –θa�t · · · –θan�t
θa�t  – θa�t · · · –θan�t

...
... · · · ...

θnan�t θnan�t · · ·  – θnann�t

⎞
⎟⎟⎟⎟⎠ .

Since the global stability of θ implies that θ is locally stable, we need to assume the condi-
tion for the local stability of θ :

All of the eigenvalues of DTθ have magnitude less than . (.)

Let J = 
�t (DTθ – I) for the n× n identity matrix I and let P(λ) be the characteristic poly-

nomial of the matrix J . Note that  + λJ�t are the eigenvalues of DTθ for the roots λJ of
P(λ). Thus equation (.) is equivalent to the condition

all of the roots of P(λ) are negative or have negative real parts, (.)

and
∣∣Re(λJ )

∣∣ > �t


‖λJ‖ if Re(λJ ) <  and Im(λJ ) �= , (.)

where ‖λJ‖ = Re(λJ ) + Im(λJ ), Re(λJ ) and Im(λJ ) are the real and imaginary parts of λJ ,
respectively. Hence equation (.) together with equation (.) is the generalization of
Lemma ..

Remark . The condition equation (.) with  + λJ�t �=  implies that θ of equation
(.) is asymptotically stable by using Theorem . with the following two facts: first, θ
is a hyperbolic point since all of the eigenvalues of DTθ are of the form  + λJ�t, which
is nonzero. Second, equation (.) is equivalent to the fact that the linearized system of
equation (.) is asymptotically stable (see Theorem .. in []).

Remark . Using Routh-Hurwitz criteria, we can find conditions for both ri and aij to
satisfy equation (.). Let P(λ) = λn + aλn– + · · · + an–λ + an with real constants ai for
≤ i≤ n. Define the n Hurwitz matrices Hi for  ≤ i ≤ n

H = (a), H =

(
a 
a a

)
, . . . , Hn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a    · · · 
a a a  · · · 
a a a a · · · 
...

...
...

... · · · ...
    · · · an

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.
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Then equation (.) is equivalent to det(Hi) >  for ≤ i≤ n. Thus Routh-Hurwitz crite-
ria for n =  and  are

n = : a >  and a > ,

n = : a > ,a > , and aa > a. (.)

If we assume equation (.) with  + λJ�t �= , then θ is asymptotically stable (see Re-
mark .). Hence the following lemma can be proved.

Lemma . Let ri, aij, �t satisfy equations (.)-(.), (.), and (.)with +λJ�t �= .
If limk→∞(xk , . . . ,x

n
k ) �= θ , then there exists a positive constant C such that

max
≤i≤n

(
θi – xik

) > C >  for all k.

We need to find constants αi that play the same role as a and a in equations (.),
(.), and (.): If x = a and y = a, then

–x
(
aθ

n + aθnθn
)
– y

(
–aθnθn + aθ

n
)

= –
(
θn θn

)(
xa 

 (xa – ya)

 (xa – ya) ya

)(
θn θn

)T ≤ .

Hence we choose positive constants αi such that the matrices

Aij =

(
αiaii n–

 (αiaij – αjaji)
n–
 (αiaij – αjaji) αjajj

)
for ≤ i < j ≤ n (.)

are positive definite. Note that all of the eigenvalues of Aij are positive if and only if

αiaiiαjajj >
(
n – 


)

(αiaij – αjaji),

which is equivalent to

(n – )aji

(
αj

αi

)

– 
{
(n – )aijaji + aiiajj

}αj

αi
+ (n – )aij < .

Hence consider the quadratic equation in the variable t

(n – )ajit
 – 

{
(n – )aijaji + aiiajj

}
t + (n – )aij = , (.)

which has two different solutions denoted by mij and Mij with mij <Mij for  ≤ i < j ≤ n.
Therefore in order that the eigenvalues of Aij are positive, assume that there exist positive
constants αi such that for  ≤ i < j ≤ n

mij <
αj

αi
<Mij. (.)

Lemma . Suppose that there exist positive constants αi ( ≤ i ≤ n) satisfying equation
(.). Let λij be the minimum of the two positive eigenvalues of Aij for  ≤ i < j ≤ n in

http://www.advancesindifferenceequations.com/content/2014/1/11
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equation (.). Then for all (x, y) ∈R


(
x y

)
Aij

(
x y

)T ≥ λij
(
x + y

)
. (.)

Assume that

�t max
≤i≤n

∑
≤j≤n

aij(θj + χj) <


, (.)

�t
∑
≤s≤n

αsθs

{(
max
≤i≤n

asi
)
n +

( ∑
≤j≤n

asj
)}

max
≤i,j≤n

aij

< min
≤i≤n

∑
i+≤j≤n

λij

n – 
, (.)

which are the generalization of equations (.) and (.), respectively.

Theorem. Let the assumptions in Lemma . hold and let equations (.), (.), and
(.) be satisfied. If (x, . . . ,xn) ∈

∏
≤i≤n(,χi), then limk→∞(xk , . . . ,x

n
k ) = θ .

Proof Consider a function

Vk =
∑
≤i≤n

αi
(
xik – θi lnxik

)

for all the solutions xk , . . . ,x
n
k of equation (.). TheMean Value Theoremwith θik = θi –xik

and equation (.) shows that there exist constants ci ∈ (, ) such that

Vk+ –Vk =
∑
≤i≤n

αi
(
xik+ – xik

)(
 – θi

lnxik+ – lnxik
xik+ – xik

)

=
∑
≤i≤n

αi�ik

(
xik – θi

xik
ci(xik+ – xik) + xik

)
(.)

with

�ik = –
∑

≤j≤i–

âijθjk + âiiθik +
∑

i+≤j≤n

âijθjk . (.)

Note that

xik
ci(xik+ – xik) + xik

=


ci�ik�t + 
≡  –

∑
≤�≤n

ci�θ�k�t, (.)

where ci� = – ciai�
ci�ik�t+ for  ≤ � ≤ i – , ci� = ciai�

ci�ik�t+ for i ≤ � ≤ n, and

|ci�| ≤ max{aij|≤ i, j ≤ n} (.)

by equation (.). Then equation (.) with (.) becomes

Vk+ –Vk = –
∑
≤i≤n

αi�ikθik +�t
( ∑
≤i≤n

αi�ik
∑
≤�≤n

θici�θ�k

)
. (.)
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It follows from equations (.) and (.) that

∑
≤i≤n

αi�ikθik = –
∑
≤i≤n

∑
≤j<i

αiâijθikθjk +
∑
≤i≤n

αiâiiθ
ik +

∑
≤i≤n

∑
i<j≤n

αiâijθikθjk

=
∑

≤i<j≤n

(αiâij – αjâji)θikθjk +
∑

≤i<j≤n


n – 

(
αiâiiθ

ik + αjâjjθ
jk
)

=
�t
n – 

∑
≤i<j≤n

(
θik θjk

)
Aij

(
θik θjk

)T (.)

and

∑
≤i≤n

αi�ik
∑
≤�≤n

θici�θ�k ≤ �t
∑
≤i≤n

Ciθ

ik , (.)

where

Ci =
∑
≤s≤n

αsθs

{
asi

( ∑
≤�≤n

|cs�|
)
+

( ∑
≤j≤n

asj
)

|csi|
}
. (.)

Hence substituting equations (.), (.), and Lemma . into equation (.) yields

Vk+ –Vk ≤ –�t
∑
≤i≤n

{(


n – 
∑
i<j≤n

λij

)
–Ci�t

}
θ
ik . (.)

Using equations (.), (.), and (.), we obtain 
n–

∑
i+≤j≤n λij – Ci�t > , and then

equation (.) becomes

Vk+ –Vk ≤ –C�t
∑
≤i≤n

θ
ik (.)

for some positive constant C. Now assume, to the contrary, that (xk , . . . ,x
n
k ) does not con-

verge to θ as k goes to infinity. Then combining equation (.) with Lemma ., we see
that there exists a positive constant C such that

Vk+ –Vk ≤ –C for all k ≥ ,

and hence

Vk ≤ V – kC for all k ≥ .

This is a contradiction, since limk→∞(V – kC) = –∞ and Vk is lower bounded for all k
by using the boundedness of the solutions xik for  ≤ i≤ n. �

Example . Consider the three-dimensional scheme

xk+ = xk + xk
(
 – xk – xk – xk

)
�t,

xk+ = xk + xk
(
– + xk – xk – xk

)
�t,

xk+ = xk + xk
(
– + xk + xk – xk

)
�t, (.)
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which is equation (.) with n = , σ = , σ = σ = –, and �t = .. The initial condi-
tion (x,x,x) is (., ., .).
(a) Let χ = r

a
+  = , χ = aχ

a
= ., and χ = aχ+aχ

a
= .. Then equations

(.), (.), and (.) are satisfied.
(b) The condition (.) is satisfied and θ = (, ., .).
(c) The conditions (.), (.), and (.) are satisfied, since

P(λ) = λ + aλ + aλ + a = λ + .λ + .λ +  with the three roots
–. + .i, –., and –. – .i.

(d) The values α = α = α =  satisfy equation (.), since the three equations
ajit – (aijaji + aiiajj)t + aij =  (≤ i < j ≤ ) have solutions {., .},
{., .}, and {., .}, respectively.

(e) The inequalities (.) and (.) are satisfied, since λ = ., λ = , and
λ = ..

Hence the conditions in Theorem . are satisfied. Therefore the solutions of equation
(.) are positive and the equilibrium point θ is globally asymptotically stable, which are
demonstrated in Figure (a).

Example . Let E = (r,a,a,a, r,a,a,a, r,a,a,a). Consider the follow-
ing three difference schemes for equation (.) with n = , �t = ., and σ = .
(a) σ = –, σ = , and E = (., , ., ., ., , ., ., , , ., ) with the initial

condition (, , ) (see Figure (b)).
(b) σ = , σ = –, and E = (., , ., ., , , , , , , , ) with the initial condition

(, , ) (see Figure (c)).
(c) σ = , σ = , and E = (., , ., ., , , , , , ., ) with the initial condition

(., , ) (see Figure (d)).

Figure 3 Three-dimensional models with σ1 = 1 and σ2,σ3 ∈ {–1,1}. The four thicker curves denote the
trajectories of the solutions of equation (4.1) with n = 3 and the other curves are the projections of the
trajectories in two planes among x1x2, x1x3, and x2x3 planes. The four larger stars denote the limits θ (see
Examples 4.7 and 4.8). (a) (σ2,σ3) = (–1, –1) and θ = (1, 0.25, 0.25). (b) (σ2,σ3) = (–1, 1) and θ = (1, 2, 3).
(c) (σ2,σ3) = (1, –1) and θ = (1, 2, 3). (d) (σ2,σ3) = (1, 1) and θ = (1, 2, 3).
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Set χ = , χ = , χ = , θ = (, , ), and (α,α,α) = (, ., .) for the three
difference schemes. The points (λ,λ,λ) in (a), (b), and (c) are (., ., .),
(., ., .), and (., ., .), respectively. Hence the conditions in The-
orem. are satisfied. Consequently, the solutions of the three difference schemes are pos-
itive and the equilibrium point θ is globally asymptotically stable, which are demonstrated
in Figure (b), (c), and (d).

Remark . In the n-dimensional cases, we only consider the equilibrium point which
components are all positive. Thus a future study is to investigate dynamics on the other
equilibrium points with some zero components.
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