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1 Introduction
Consider the n#-dimensional system

dx,'
T =X; (om + Z a;jixj — Z ﬂijx,'), (L1)

1<j<i-1 i<j<n

where r; > 0,a;;>0for1<i,j<mo1=1,ando; € {-1,1} for2 <i <n.
The system equation (1.1) can be seen as a generalization of the two-dimensional Lotka-
Volterra predator-prey model

dx

i x(r1 — anx — a12y), o Y(=r2 + anx — azy), (1.2)

dt
where x and y denote the population sizes of prey and predator, respectively.

There are a number of works on investigating nonstandard finite difference schemes
for the Lotka-Volterra competition models (see [1] and the references given there), but
relatively few theoretical papers are published on discretized models of equation (1.2). In
particular, to my knowledge, Euler difference schemes for equation (1.2) have not theoret-
ically been studied for the global stability of the equilibrium points except a recent paper
[2]. In Section 2, it is shown that the Euler difference scheme has positive solutions. In or-
der to show the global asymptotic stability of the equilibrium point whose components are

©2014 Choo; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-

L]
@ Sprlnger tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.


http://www.advancesindifferenceequations.com/content/2014/1/11
mailto:smchoo@ulsan.ac.kr
http://creativecommons.org/licenses/by/2.0

Choo Advances in Difference Equations 2014, 2014:11
http://www.advancesindifferenceequations.com/content/2014/1/11

all positive, the paper [2] assumes that (0, 0) is globally stable. Without using the assump-
tion, we show the global stability of all of the equilibrium points in Section 3. In addition,
we also analyze the Euler difference scheme for equation (1.2) with r, replaced by —r;.
We are interested in extending the method used in the two-dimensional discrete models
to the n-dimensional discrete models for equation (1.1). In Section 4, we demonstrate the
positivity and the global stability in the #z-dimensional discrete cases. Numerical examples
are given to verify the results of this paper.

2 Two-dimensional predator-prey model
In this section, we consider the Euler difference scheme for equation (1.2)

%o = x(0), ¥o = y(0), X = Fy (x0), Vie1 = G, (92, (2.1
where At is a time step size, 7; = r;At, d;; = a;At for 1 <i,j <2, and
Fy(x) =x(1 + 71 — dnx — dpy), Gx(y) = y(1 =7y + anx — axny). (2.2)

Note that if 7; and 1, are positive constants such that

1+;"1—2112‘L'2 1—;"2+£121'[1
ul(TZ) S —— o, UZ(TI) S —— 0,
2(111 2&22

then
F.,(x) and G, (y) are increasing on 0 < x < U;(13) and 0 < y < Uy (1y). (2.3)
Let At satisfy max{7,7,} < 1. Take positive constants x; and yx, such that

~ ~ 51 —ry +d X1
—ry+dnx1 <1, — < x1 < Ui(x2) _—
an an)

< x2 < U(0). (2.4)

Theorem 2.1 Let At, x1, x2 satisfy equation (2.4) with max{F, 72} < 1. If (x0, ¥o) € (0, x1) X
(0, x2), then (xx, yx) € (0, x1) X (0, x2) for all k with k > 1.

Proof Since

0<xo <1 = Ui(x2) <th(y),  0<yo<x2 = Ux(0) < Un(xo),
it follows from equation (2.3) that

x1 = Fyy(x0) > Fy, (0) = 0, y1 = Gyy (¥0) > G, (0) = 0.
If r1 — anxo — arnyo < 0, then x; = Fy (x0) < %o < x1, and otherwise,

rn —aizdo < o+ (" —ﬂlzyo) < 1+7r—anyo
an 2an 2an

0<xy<

= Ui (yo)

by the condition 7; < 1. Hence equation (2.3) implies that

= X1

r —dai)o r —dai)o 51
x1 = Fyy (xo0) < Fy, < = < —

ai ai an
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Similarly if —ry + az1%0 — a22y0 < 0, then y; = G4, (y0) < ¥o < X2, and otherwise,

—ry + dXo < (=72 + axn 1) + (=72 + anixo) < 1-ry +anxg

0<yp< = < = = U (xo)
4 a 2a9; 2az

by the condition -7 + dy x1 < 1. Thus equation (2.3) gives

71 = Gy, (¥0) < G, (—72 + a21x0) _ —Iy +diXo < —ry +dn X1 <

an an) as

Finally we obtain, if (xo, y0) € (0, x1) x (0, x2), then

(xl’yl) € (0’ Xl) X (0: XZ)
By the principle of mathematical induction, the proof is completed. d

From now on, we assume that (xo, y0) € (0, x1) X (0, x2) and (xx, yx) for k > 1 denote the
solutions of equation (2.1). For simplicity of notation, we write for all k instead of for all k

with k > 1 when there is no confusion.

Remark 2.2 Theorem 2.1 gives for all k
0 <xr < x1 <Ui(x2) <Uily), 0 <yr < x2 < Ua(0) < Un(xk).
Hence it follows from equation (2.3) that for every fixed (xx, yx)
F), (x) and Gy, (y) are increasing on 0 <x < x; and 0 < y < xa. (2.5)

Let f(x) = “221% and g(x) = =27°21%. Since f and g are decreasing and increasing, respec-
tively, it follows from equation (2.4) that for all k

S0 <f7H0) < xu max{g(f~(0)),g(x)} <g(x1) < xo- (2.6)

Set D = (0, x1) x (0, x2), and let S; for 1 < i < 4 denote the four areas

Si={y) eDlglx) <y<f®)},  Sa={(xy) eDly<f(x),y<gw)}
S3={xy) eDf(x) <y<gw)},  Si={xy) eDly=fx),y>gx)}
Remark 2.3 Let (xx,yx) € J,<;4 Si for some k. The following can be obtained by using

equation (2.5), equation (2.6), and the definitions of Fy, (xx) and Gy, (¥x).
(a) Suppose (¥, yx) € S1. Since g(xx) < yx < f(xx), we have

K1 = Fy (1) > Fray) (1) = % a1 = Fy (1) < Fy, (7 ) = )

Vi1 = G k) < Gty k) = Vi < f (K1)
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(b) Suppose (x, yx) € Sy. This gives yx < f(xx) and yx < g(xx), and then

X1 = Fy (1) = Fray) (%) = Xk

Vit = G 1) > G Ok) =Yk Yinr < Gy () = o) < gloxksn)-

(c) Suppose (xx,¥k) € Ss. Since f(xx) < yr < g(xx), we have

Kre1 = Fy, (1) < Frie (%) = %, %1 > Fy (F ) = 0n0),s

Vi1 = G k) = Gty k) = Vi > f (Kes)-

(d) Suppose (xx,¥k) € Sa, which means that yx > f(xx) and yx > g(xx). Then

X1 = Fy (1) < Fray) (%) = Xk

Vit = G 8) < Gy Ok) =Yk Yiwr > Gy () = o) > gloxksa)-
Therefore (x, yx) in S, Sz, S3, and S4 moves to
the lower right, upper right, upper left, and lower left parts (2.7)
of $1 U Sy, S USs, S3U Sy, and S, U Sy, respectively (see Figures 1 and 2).
Set S5 = S, and use the notation [xx, yn] € S for 1 <i <4 and a positive integer N to
denote both (x, yx) € S; for all k with 0 < k < N and (xn,yn) € Si11- Then equation (2.7)

implies the following theorem.

Theorem 2.4 Let the assumptions of Theorem 2.1 hold. Suppose 1 < i < 4.

If (%0,y0) € Sis then (xi, yx) € S; for all k or [xn,,yn;] € Sis1 for some N;.

(a) 30 (c) 50

.\\ —

(@)
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N R 16)
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(b) 04
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Figure 1 Two-dimensional models with (a4, 03) = (1,-1). The dark circles denote initial conditions (see
Examples 3.2, 3.6, and 3.7 for details). (@) riax1 — rpay1 < 0 and the limits of the four trajectories are

(%,O) =(10,0). (b) naxy — a1 > 0. The solutions of equation (2.1) rotate finitely many times around the
limit @ = (61,6,) = (1.25,0.25). (c) ryax —ray; > 0. The solutions of equation (2.1) rotate infinitely many times
around the limit @ = (1.287,28.713).
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Figure 2 Two-dimensional models with (a7, 03) = (1, 1). The dark circles denote initial conditions (see
Example 3.10). (@) r1ax — ray2 < 0 and the limits of the four trajectories are (0, a%) =(0,2).

(b) ryaz, —rnay, > 0. The solutions of equation (3.10) rotate finitely many times around the limit

¥ =(0.455,10.455). (c) r1ax, — ray > 0. The solutions of equation (3.10) rotate infinitely many times around
the limit # = (0.683,29.317).

3 Dynamics of the two-dimensional predator-prey models
In this section, we first consider dynamics of the Euler difference scheme for equation
(1.2) and next for equation (1.1) with # = 2 and (07,03) = (1,1). Let §; = 1422172412 3

alpdl)+ajaz;
0, = D=4 Eor calculating the limits of xx and yx, we use the inequalities
a1p4d21+a1a3
lim x; >0, lim yx >0, (3.1)
k—o00 k—00

which is equivalent to limg_, oo (%%, %) = (61, 62).

Theorem 3.1 Let the assumptions of Theorem 2.1 hold. Suppose ran — raann < 0. Then
(k. yi) satisfies the following dynamics with the limit (ﬂr_lll’ 0).

(@) If (x0,Y0) € S1, then (xx, yx) € S1 for all k.

(b) If (x0,¥0) € Sa, then (xk, k) € Sa for all k or [xn,,yn, ] € S1 for some Nj.

(¢) If (x0,%0) € S3, then [xn,, Y, ] € Sa for some Ny.

Proof (a) Since f71(0) = a% < ;—221 =g71(0), the set S, is empty, and then Theorem 2.4 gives
(%%, yx) € S for all k. Thus equation (2.7) shows that x; is bounded and increasing, and yy is
bounded and decreasing. Hence limy_, o %% > 0 and limy_, o yx > 0. Finally limy_, o yx = 0
since otherwise 0 < limy_, o, yx = 6, < 0, which is a contradiction. Therefore limg_, o x% =
a% by using equation (2.1) with both limy_, » xx > 0 and limy_, o yx = 0.

(b) Theorem 2.4 and (a) in this theorem show that it suffices to show limy_, o (xk, yx) =
(ﬂ%, 0) in the case (xx, yx) € Sa for all k, where limy_, oo % > 0 and limy_, 5, yx > 0 by equa-
tion (2.7). Then limy_, o ¥k = 0 since otherwise the last equation in equation (2.1) gives
limy_, o %% > 0, and hence equation (3.1) implies limg_, o yx = 62 < 0, producing a contra-

diction to limy_,« yx > 0.
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Note that yx > f(xx) for all k since (xx,yx) € S4 for all k. Thus if limgoxx = O,
then limg_, o0 yx > limg_, o0 f(x%) = ﬂ% > 0, which contradicts to limi_, o, yx = 0. Hence
limy_, o %% > 0. Consequently, limy_, o %% = a% by using equation (2.1) with limy_, o yx = 0.

(c) Assume, to the contrary, that (xx, yx) € S for all k. Then equation (2.7) implies that x;
and y; have positive limits, and hence equation (3.1) gives 0 < limi_, oo yx = 62 < 0, which
is a contradiction. Therefore [xn,,yn, ]| € Sa for some Ny, which gives limy_, o (x4, 4) =

(££,0) by (b) in this theorem. d

ai

Example 3.2 Consider the discrete system
Xpy1 = X + % (50 — 5xg — 2y5) AL, YVis1 = Yk + Yk(=100 + 5xx — 5y ) At

with At = 0.001 and (x1, x2) = (80,90). Then equation (2.4) and the conditions rjay; —

ryan < 0 and max{7y,7,} <1 in Theorem 3.1 are satisfied. For the four initial conditions
(2,15) € Sy, (28,5) € S5, (10,20) € 84, (15,0.01) € Sy,

Figure 1(a) shows that the solution (x4, yx) satisfies Theorem 2.1 and Theorem 3.1 with
the limit (%,O) = (10, 0). In the case (xo,y0) = (15,0.01) € S4, Figure 1(a) shows that for
0 <i<25,000and 2,000 < k < 25,000

10 <10 +9%107%° =xp <1 <;
which implies that (xy, yx) € Sq for all k.

In order to show the global asymptotic stability of the equilibrium point 8 = (6;,6,), the
linearized system of equation (2.1) at @ is used: Consider the Jacobian matrix of T'(x,y) =
(Fy(x): Gx()’)) at 0

1-0ianAt  —6Gapp At
DT, = 1411 1412 ) (3.2)
926121At 1- 926122At

Letting J = ﬁ(DTg —I) with the 2 x 2 identity matrix I, we have tr(J) = —61ay — 62a2),
det(J) = 6165 (anaz; + arpas ), and the eigenvalues of DTy

1+ %{tr(]) + Vtr2(J) — 4det(/) } At. (3.3)

The following lemma is used for showing that the equilibrium point @ of the nonlinear
system X1 = T'(xx) is locally asymptotically stable.

Lemma 3.3 Suppose riay — ryan > 0. Let | = A%(DT(; —I). Then all of the eigenvalues of
DTy have magnitude less than 1 if one of the following is true.

(@) tr2(J) > 4 det(]).

(b) tr®(J) < 4det(J) and det(J) At < —tr(J]).

In order to find conditions for when (x,,y,) rotates finitely or infinitely many times
around @, we need the following theorem about a hyperbolic point: A point p of X4,1 =
T'(xi) is called hyperbolic if all of the eigenvalues of DT}, have nonzero real parts.
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Theorem 3.4 (Hartman-Grobman theorem for maps) Let p be a hyperbolic fixed point of
Xri1 = H(xx), where H is a continuously differentiable function defined on a neighborhood
of 0 € R” for n > 1. Then there exist neighborhoods U of p, V of the hyperbolic fixed point
0 of Xiy1 = DHy(xk), and a homeomorphism h: V — U such that H(h(x)) = h(DH,(x)) for
allxeV.

Theorem 3.4 (see [3] for the proof) states that the nonlinear system x4,1 = H(X) is topo-
logically equivalent to the linearized system X1 = DH}(xx) of the nonlinear system at p.

Theorem 3.5 Let the assumptions of Theorem 2.1 hold and let ] =
ray —ryan >0 and (x0,%0) € Uy <j<4 Si-

(@) Ifur2(J) > 4 det(]), then (xx, yx) rotates finitely many times around 0 in the
counterclockwise direction and finally stays in one of S; for 1 < i <4 with
limk_,oo(xk,yk) =0.

(b) Ifthe four inequalities tr(J) < 4 det(J), det(J) At < —tr(J),

(DTy - I). Suppose

1
At

At 111<11?1<X2{ﬂi1(91 +X1) +ai(0y + x2)} < 0.5, (3.4)
4At{ax(an + ap) + an(ax + ax)} max, dj < min{ay ai, d12a»}, (3.5)

are satisfied, then (xx, yx) rotates infinitely many times around 0 in the

counterclockwise direction with limg_, oo (xk, yx) = 0.

Proof (a) Since all of the eigenvalues of DT} in equation (3.3) are positive numbers less
than 1, the fixed point @ of (xx.1, Yk+1) = T (%k+1, Yk+1) is hyperbolic and the solutions of the
linearized system of equation (2.1) at @ rotate finitely many times around (0, 0), converging
to (0,0). Hence Theorem 3.4 with Theorem 2.4 gives the proof of (a) without showing
limy_, oo (X4, Y1) = 0.

For obtaining the limit of (x, yx) consider the case (xx, yx) € S; for i = 1 and all sufficiently
large k. Then equation (2.7) yields the result that x; is increasing with the upper bound 6;
less than a%, and hence 0 < limy_, o X < a% Consequently limy_, o yx > 0, since otherwise

ﬂ%, which is a contradiction. Therefore we obtain equation (3.1).

In the case (xx, yx) € S; for i = 2 and all sufficiently large k, it follows from equation (2.7)

limk_, coXk =

that x and y, are both increasing and bounded, which gives equation (3.1).

Similarly, the other two cases for i = 3 and 4 can be proved by using equation (3.1), equa-
tion (2.7), and the method of proof by contradiction.

(b) Since all of the eigenvalues of DTy in equation (3.3) have positive real parts and mag-
nitude less than 1 by det(J) At < —tr(J), the fixed point 8 is hyperbolic and the solutions of
the linearized system of equation (2.1) at @ rotate infinitely many times around (0, 0), con-
verging to (0,0). Hence (b) is proved by using Theorem 3.4 and Theorem 2.4. It remains
to show that limk_, oo (%, yx) = 0. Consider a function Vi defined by

Vi = an(xx — 61 Inxg) + arn(yx — 62 Inyg) (3.6)

for all the solutions (xk, k). Letting 01 = 6; — xk, ok = 02 — ¥k, and Axy = xg,1 — Xk, we have
Axy = (anbix + a12621)xx and Ayg = (—ad2161x + @2262x)yxk by equation (2.1). Then the Mean
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Value Theorem gives for some «, B with O <, 8 <1

Alnxy Alnyg
Vk+1 — Vk =dn A?Ck 1- 091 + dyo Ayk 1- 92
Axy Ay

N ~ Xk
= an(anbi + a26u) | %k — 6 ———

aAxX; + X
N ~ Yk
+ a1 (—a1 6k + a2202k) (J/k — 6 4) (3.7)
BAYK + yk
Note that
0 Oox) At
Xk _1_ o(anbik + a1262) =1 (Ci0y + Cob) At
a Axy + xp o(an ik + anbor) At +1
—a9,0 O ) At
Yk —1- B(—anbik + azbax) =1—(Cs + Cabop) At
BAYK + yi B(=axnbix + aby) At +1

where equation (3.4) gives
max |C;| <2 max a;. (3.8)
1<i<4 1<ij<4

Then equation (3.7) becomes

Vi = Vi < —(azan — Cs A0, — (arndn — CoAt)0y, (3.9)

where Cs = ani{an(|Ci| +|Cal) + aa| Cil} + a12{a21(|C3| + | Cal) + @22 |Cs 1}, Cs = an{an|Co| +
an(|Cil +1Ca)} + ara{dan|Cal + ax(1Csl + |Cal)}, and

max{Cs, Ce} < 4At{as (an + ai) + ar(an + ax)} max aj
==

by equation (3.8). Hence equation (3.9) together with equation (3.5) becomes
Vi = Vi < =G (65 + 03) At
for a positive constant C;.

Now assume, to the contrary, that (x,yx) does not converge to 6. Since 6 is locally
asymptotically stable by the linearization method (see [4]), the assumption implies that
02 + 0% has a positive lower bound. Then there exists a positive constant C such that for
all k with k>0

Visi— Vi <—C and hence Vi < Vp—-kC.

This is a contradiction, since limy_, o (Vo — kC) = —oo and V is bounded by Theorem 2.1.
a

Example 3.6 Consider the discrete system

Kkl = Xk + x5 (2.75 — 20 — yr) At, Vi1 = Yk + V(=1 + x6 — yr) At

Page 8 of 17
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and the four initial conditions

(0.9,0.15) € Sy, (1.25,0.12) € S,, (1.4,0.2) € S3, (1.3,0.35) € S,
with At = 0.001 and (x1, x2) = (100,100). Then riay — raan > 0, max{r,7,} < 1, and
0 = (1.25,0.25). Since tr(J) = —=2.75 and det(J) = 0.938, the condition tr?(J) > 4-det(J) in
Theorem 3.5(a) is satisfied. Figure 1(b) shows the dynamics in Theorem 3.5(a) with the
limit 6.
Example 3.7 Consider the discrete system

Krs1 = Xk + Xk (30 —xx — yi) AL, Yis1 = Yk + V(=1 + x — 0.01yx) At,
and the four initial conditions (xo, yo)

(0.5,15) € Sy, (5,15) € S,, (7,30) € S3, (0.5,0.45) € S,
with Af =0.0001 and (x1, x2) = (100,100). Then rias — ryay; > 0, max{7y,7,} <1,and 0 =
(1.287,28.713). Since tr(J) = —1.574 and det(J) = 37.327, the conditions in Theorem 3.5(b)

are satisfied. Figure 1(c) shows the dynamics in Theorem 3.5(b) with the limit 6.

In the remainder of this section we consider the Euler difference scheme for equation
(1.1) with 7 = 2 and (07, 05) = (1,1)

Kier1 = X1 + 71 — anxe — a1y, Yierr = Yk + o + aoixi — A22i), (3.10)

which has the three nonzero equilibrium points

151 r ray —radin nan + ran
(_ ’ 0) ’ (0’ ) ' ’l} B ( ’ ’
an an) appd +adndzy apd + dindg
. . : —rp+anix . ro+an1x
Replace ry in Section 2 with —r,. For example, g(x) = =222 is replaced with g(x) = Z=221=

az) azy
Then Theorem 2.1, equation (2.7), and Theorem 2.4 remain true. In the case ridgy —rya;y <

0, the set S; is empty, and hence we can prove the following theorem, which corresponds
to Theorem 3.1.

Theorem 3.8 Let the assumptions of Theorem 2.1 hold with ry replaced by —r, and let
glx) = =2,
isfies the following dynamics with the limit (0, u%).

(@) If (x0,Y0) € Sa, then (xk, yr) € Sy for all k.

(b) If (x0,¥0) € Ss, then (xx,yx) € S3 for all k or [xn,,yn,] € Sa for some Nj.

(¢) If (x0,0) € Sa, then [xn,, YN, ]| € S for some Ny.

Suppose riaz; — ryaiy < 0. Then the solution (xi, yi) of equation (3.10) sat-

Remark 3.9 The Jacobian matrix of equation (3.10) at # equals DT}y as defined in equation
(3.2), and then Theorem 3.5 remains true if r1ay; — roaq; > 0, 15, and @ in Theorem 3.5 are
replaced with ras, —rya;3 > 0, —r;, and @, respectively. Therefore only the two equilibrium
points (0, ﬂ%) and ¥ of equation (3.10) are globally asymptotically stable.
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Example 3.10 Let E = (1, a1, a12, 12, a1, azz). Consider the Euler difference scheme for
equation (3.10) with A¢ =0.001.

(a) E=(1,1,1,2,1,1) with the three initial conditions (0.2,0.5) € S,, (2,1) € S3, and
(0.2,3) € S4. Then the conditions in Theorem 3.8 are satisfied. Figure 2(a) shows
that the three trajectories converge to (0, u%) =(0,2) as in Theorem 3.8. Replacing
the values r; =1 in E with r; = 0.0000001 and letting (xo, y0) = (0.0001,1.5), we
have y; < i;1 <yx=2-0.75%1073¢ <2 for 0 < i < 125,000 and
50,000 < k < 125,000, which imply (¥, yx) € S5 for all k.

(b) E=(1.5,1,0.1,1,0.1,0.1) with the four initial conditions (0.41,10.8) € S,

(0.41,10.1) € S5, (0.58,10.2) € S5, and (0.58,10.9) € S,. Then # = (0.455,10.455)
and riayy — ryaip = 0.05 > 0. Since tr(J) = —1.5 and det(J) = 0.523, the condition
tr2(J) > 4 det(J) in Theorem 3.5(a) is satisfied. Figure 2(b) shows that solutions rotate
finitely many times around the limit #.

(¢) E=(30,1,1,0.1,2,0.05) with the four initial conditions (0.1,15) € S1, (5,15) € S,,
(5,30) € S3, and (0.5,43) € S4. Then # = (0.683,29.317) and riasy — raayp = 1.4 > 0.
Since tr(J) = —2.149 and det(J) = 41.044, the conditions in Theorem 3.5(b) are
satisfied. Figure 2(c) shows that the spiral trajectories rotate infinitely many times

around the limit 9.

4 n-Dimensional predator-prey models
In this section, we consider the Euler difference scheme for equation (1.1)

xiﬂ = Fx;( (xz) forl<kl<i<n, (4.1)

where xi denotes x,1<, s ,x}:l,x;:’l, ...,%; and

Fx;'( (xz) = x}( (1 + O',';'l‘ + Z &,]x]k - Z le]xlk) (42)

1s5j=i-1 isj<n

withoy =1lando; € {-1,1} for2 <i<n.
Let ¢! denote 1, ..., i1, Cists - . -, {n- Note that if &1, ..., £, are positive constants such that

forl<i<n

; L+oi7; + Zlgjsi—l aytj— Zi+1§j§n aytj
u(¢’) = ~ >0,
26ll‘l‘

then
F,i(g;) is increasing on 0 < ¢; < U;(¢). (4.3)
Assume that there exist positive constants x; such thatfor1 <i<n
L+ o7 - Zi+1§j§n &17)(/
24;;

oiri + 215;'51‘—1 aijXj

ajj

) (4.4)

Xi<

< Xiy (4.5)
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O'i?i + Z Zli]'Xj <1, (46)

1gj<i-1
which is the generalization of equation (2.4).

Theorem 4.1 Let At and x; satisfy equations (4.4)-(4.6). If (x},...,x5) € [Ti<i<n(0, i),
then (..., %) € [1,2,2,(0, x:) for all k.

Proof 1t follows from equation (4.4) and the definition of U; thatfor 1 <i<n

1+oiri - Zi+1§j§n aijXj
<

221,‘,'

0<xb<xi< L[,-(xg).

Then equation (4.3) with ¢/ = X}, gives
%) = Fyi (%) > F (0) = 0.

If oir; + Z1§/§i—1 a,-;x’é - Zisjsn aijx{) <0forl<i<n,then
x < xh < X,

Oiri+ ) 1<j<i-1 “ij"/o‘Znggn “t‘i"]o
ajj :

and otherwise, we have 0 < xé < ﬁ(xf)) with ﬁ(xf)) =

Since 0 < fi(x}) < U;(x)) by equation (4.6), it follows from equation (4.3) with ¢ = x,
that

; : . . o;r; + i1 Aii Xj
= By () < Fy () = o) < T A O

aij

where the last inequality is obtained by equation (4.5). Therefore we find that if (x},...,
xg) € ngign(or Xi); then

(@ 2) e [T ©x),

1<i<m
and hence mathematical induction completes the proof. d

From now on, we consider the global asymptotic stability of the equilibrium point of
equation (4.1) whose components are all positive. Let 0j; = 1if 1 < i <j < n, and otherwise,
0;; = —1. Assume that

the inverse matrix of the # x n matrix (oja;) exists and
’ (4.7)
(ojag) (o1 oara -+ our,) isapositive matrix,

where (0171 0aFy -+ 0,7,)7 is the transpose of 1 x 7 matrix (o171, 027y -+ O,7y).
Let

T _ T
0 =(O’i1ﬂ[j) 1((717‘1 o1y - a,,r,,) ’
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which gives for1 <i<mn

o;r; + Z ai,@/ — Z ﬂljej =0. (48)

1<j<i-1 i<j<nm

Then equation (4.7) is the generalization of the condition r1as; — rea11 > 0 in both Lem-
ma 3.3 and Theorem 3.5.

In order to use the linearized system of equation (4.1) at 8, consider the Jacobian matrix
of T(xy,...,x}) = (in (%), - o Fan(x)) at 0

1- OlﬂuAIf —916112 At s —01611,, At
926121At 1- 92ﬂ22 At .- —92612,1 At
DTy =
0,1 At Ona, At s 1-6ha,, At

Since the global stability of # implies that @ is locally stable, we need to assume the condi-
tion for the local stability of 6:

All of the eigenvalues of DTy have magnitude less than 1. (4.9)

Let] = ﬁ(DTg —I) for the n x n identity matrix I and let P(X) be the characteristic poly-
nomial of the matrix /. Note that 1 + A; At are the eigenvalues of DTy for the roots A; of
P(}). Thus equation (4.9) is equivalent to the condition

all of the roots of P()) are negative or have negative real parts, (4.10)

At
and [Re())| > - IA/]1% if Re(A;) < 0 and Im(A;) # 0, (4.11)

where ||A;]|> = Re?(})) + Im?(})), Re(};) and Im(},) are the real and imaginary parts of A;,
respectively. Hence equation (4.10) together with equation (4.11) is the generalization of
Lemma 3.3.

Remark 4.2 The condition equation (4.9) with 1 + A;At # 0 implies that 6 of equation
(4.1) is asymptotically stable by using Theorem 3.4 with the following two facts: first, 6
is a hyperbolic point since all of the eigenvalues of DT} are of the form 1 + X;At, which
is nonzero. Second, equation (4.9) is equivalent to the fact that the linearized system of
equation (4.1) is asymptotically stable (see Theorem 3.3.20 in [5]).

Remark 4.3 Using Routh-Hurwitz criteria, we can find conditions for both r; and a;; to
satisfy equation (4.10). Let P(A) = A" + ;A" + --- + a,,_1 A + a,, with real constants a; for
1 < i < n. Define the n Hurwitz matrices H; for1 <i<mn

aq 1 0 O 0

a3 a, a; O 0
1

Hy = (@), Hy = <a1 ) , , H,=|49 as a3z a 0
as dp
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Then equation (4.10) is equivalent to det(H;) > 0 for 1 < i < n. Thus Routh-Hurwitz crite-
ria for n = 2 and 3 are

n=2 a;>0anda, >0,

n=3: a;>0,a3>0,and a1a; > as. (4.12)

If we assume equation (4.9) with 1 + A;At # 0, then 6 is asymptotically stable (see Re-
mark 4.2). Hence the following lemma can be proved.

Lemma 4.4 Letr;, a;, At satisfy equations (4.4)-(4.7), (4.10), and (4.11) with 1 + A; At # 0.
If limk_,oo(x}(, ..., xy) 70, then there exists a positive constant C such that

max (6; —x}'()z >C>0 forallk.

1<i<n

We need to find constants «; that play the same role as a1, and ay; in equations (3.6),
(3.7), and (3.9): If x = ay; and y = ajo, then

—x (ﬂ11912,, +ab1n0) —y (_“2191}192}1 + ﬂ22922,,)

1 —
= —(eln 92;4) 1 i 2 (xalz J’ﬂ21) (91;1 92n)T < 0.
3 (ka1 — yann) Jyaza

Hence we choose positive constants «; such that the matrices

-1

Aidii 1 ya: — oidi

A=, 7 (i - o) forl<i<j<n (4.13)
7 (i - eya) oy

are positive definite. Note that all of the eigenvalues of A; are positive if and only if

n-1\> 9
a;a;didj > T (O{lﬂij - Otl'(lji) )
which is equivalent to
(n— l)zajzl. (j) -2{(n-1aya; + 2a;a;} j +(n- l)za?j <0.
1 1

Hence consider the quadratic equation in the variable ¢
(n— l)zozlrzl.t2 - 2{(n - I)Zaijaji + Zaﬁajj}t +(m-1)>? 3 =0, (4.14)

which has two different solutions denoted by m;; and M;; with m; < M for1 <i<j<n.
Therefore in order that the eigenvalues of A;; are positive, assume that there exist positive
constants «; such thatfor1 <i<j<n

a
My < < M. (4.15)
a

4

Lemma 4.5 Suppose that there exist positive constants a; (1 < i < n) satisfying equation
(4.15). Let Ay be the minimum of the two positive eigenvalues of Ajj for 1 <i<j<mnin
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equation (4.13). Then for all (x,y) € R?

(@ DA )" =102 +57). (4.16)

Assume that

1
At max a0+ x)) < = (4.17)
1<i<n - 2
1<j<n
2At E o s{(rgax u5l>n + ( E asj> } lrg?iina,,
1<s<n 1<j<n
. }“lj
< min , (4.18)
1<i<n n-1
i+1<j<n

which are the generalization of equations (3.4) and (3.5), respectively.

Theorem 4.6 Let the assumptions in Lemma 4.4 hold and let equations (4.15), (4.17), and
(4.18) be satisfied. If (xy, ..., x5) € [ 11<;2,(0, xi), then limy_, oo (%}, ..., %7) = 6.

Proof Consider a function

Vi = Z ai(x}; -6 lnx};)

1<i<nm

for all the solutions x,l(, ..., % of equation (4.1). The Mean Value Theorem with 6 = 6; —x};
and equation (4.8) shows that there exist constants ¢; € (0,1) such that

. , Inxi , —Inx!
Vi = Vi = Z i (%1 — %) (1 - 9!‘%)

1<i<n Xre1 ~ Kk

. %L
= Z ai®ik(x}(—9i%> (4:19)

l<i<n Cilp g — %) + %

with
Lk = Z al] ik + 61” ik + Z ﬂz} jk (4-20)
1<j<i-1 i+1<j<n
Note that
i
k
n . CleegkAt (421)
Ci(Xh, — ) + xk c,(),kAt + 1 1<¢Z<n
where c;; = —Ci@clf:g‘m forl<€<i-1,cy= Ci(;lf:g@m fori < ¢ <mn,and
cie] < 2max{a;|1 <i,j < n} (4.22)

by equation (4.17). Then equation (4.19) with (4.21) becomes

Vien = Vi =— Z ;Oubi + At( Z ;O Z 9i0ie9ek). (4.23)

1<i<n 1<i<n 1<t<n
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It follows from equations (4.20) and (4.13) that

Z ;O 0y = — Z Z o6 O + Z i + Z Z a0,k Ok

1<i<nm 1<i<nl<j<i 1<i<nmn 1<i<mi<j<m
~ A~ 1 A A2 )
= Z (aiﬂij - a,-a,»,-)@ikejk + Z m (aiaiiGik + aja,'jéjk)
1<i<j<nm 1<i<j<n
At T
= n-1 Z (Gik 9}' )Ai/‘(eik 9/' ) (424)
1<i<j<n

and
Z WACH Z OicioOp < At Z Cib (4.25)
l<i<n 1<t<n l<i<n
where
Ci= Z otsOS{asl( Z |Csz|) + (Z as,»>|csi|}. (4.26)
1<s<n 1<¢<n 1<j<n

Hence substituting equations (4.24), (4.25), and Lemma 4.5 into equation (4.23) yields

1
Vk+1 - Vk < At Z {(m Z )\ij) - CiAt}Gii. (427)

1<i<n i<j<nm

Using equations (4.26), (4.22), and (4.18), we obtain ﬁ >
equation (4.27) becomes

Aj— CiAt > 0, and then

i+1<j<n
Vi - Vi <-CIAL Y 0 (4.28)
1<i<n

for some positive constant C;. Now assume, to the contrary, that (xi, ...,x;) does not con-
verge to 6 as k goes to infinity. Then combining equation (4.28) with Lemma 4.4, we see
that there exists a positive constant C, such that

Viii=Vi<-Cy, forallk=>0,
and hence
Vi< Vo—-kCy forallk>0.

This is a contradiction, since limy_, o (Vo — kC5) = —00 and V4 is lower bounded for all k
by using the boundedness of the solutions xj( forl<i<n. O

Example 4.7 Consider the three-dimensional scheme

11,1 1 2 3
Ko = X + X (2 — X —2x; — 2x,()At,

2 2, .2 1 2 3
X1 =X+ xk(—2 + 3% — 2x7 — Zxk)At,

X = xp + (=2 + 20 + X — x7) AL, (4.29)

Page 15 0f 17
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which is equation (4.1) with n = 3, 07 = 1, 03 = 03 = =1, and A¢ = 0.0001. The initial condi-
tion (xd,x2,x3) is (1.5,1.5,1.0).
(a) Let x1 = % +1=3, 2= % =4,5,and x3 = % =10.5. Then equations
(4.4), (4.5), and (4.6) are satisfied.
(b) The condition (4.7) is satisfied and 6 = (1,0.25,0.25).
(c) The conditions (4.10), (4.11), and (4.12) are satisfied, since
P(L) = A3 + A% + axh + as = A3 + 1.751% + 3.5 + 1 with the three roots
-0.710 + 1.590i, —0.330, and —0.710 — 1.509i.
(d) The values a1 = ay = a3 = 1 satisfy equation (4.15), since the three equations
ajzl.tz - Qaja; + aya;)t + aizj =0 (1 <i<j < 3)have solutions {0.378,1.178},
{0.610,1.64.0}, and {0.764,5.236}, respectively.
(e) The inequalities (4.17) and (4.18) are satisfied, since A;2 = 0.382, 13 =1, and
A3 = 0.382.
Hence the conditions in Theorem 4.6 are satisfied. Therefore the solutions of equation
(4.29) are positive and the equilibrium point  is globally asymptotically stable, which are

demonstrated in Figure 3(a).

Example 4.8 Let E = (r, a1, a1, d13, 12, do1, Aoz, d23, 13, d31, A3, dsz). Consider the follow-
ing three difference schemes for equation (1.1) with n =3, At =0.0001, and o7 = 1.
(@) oo =-1,03=1,and E = (3.5,1,0.5,0.5,0.5,3,0.5,0.5,1,1,0.5,1) with the initial
condition (4, 3,2) (see Figure 3(b)).
(b) 0o =1,03=-1,and E =(3.5,1,0.5,0.5,4,1,1,1,2,1,2,1) with the initial condition
(3,1,1) (see Figure 3(c)).
(¢) 09=1,03=1,and E =(3.5,1,0.5,0.5,4,11,1,1,1, 0.5,1) with the initial condition
(1.5,1,1) (see Figure 3(d)).

Figure 3 Three-dimensional models with o1 =1 and 03,03 € {-1, 1}. The four thicker curves denote the
trajectories of the solutions of equation (4.1) with n = 3 and the other curves are the projections of the
trajectories in two planes among xx, X1x3, and x,x3 planes. The four larger stars denote the limits @ (see
Examples 4.7 and 4.8). (@) (03,03) = (-1,-1) and @ = (1,0.25,0.25). (b) (02,03) = (-1,1) and 0 = (1,2,3).

(c) (02,03)=(1,-1)and @ =(1,2,3).(d) (03,03)=(1,1) and @ =(1,2,3).

Page 16 of 17
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Set x1 =15, x2 = 25, x3 = 65, 0 = (1,2,3), and (o, o0, @3) = (1,0.99,0.792) for the three
difference schemes. The points (A2, A13,A23) in (a), (b), and (c) are (0.403,0.467,0.058),
(0.505,0.586,0.289), and (0.505,0.586, 0.289), respectively. Hence the conditions in The-
orem 4.6 are satisfied. Consequently, the solutions of the three difference schemes are pos-
itive and the equilibrium point @ is globally asymptotically stable, which are demonstrated
in Figure 3(b), (c), and (d).

Remark 4.9 In the n-dimensional cases, we only consider the equilibrium point which
components are all positive. Thus a future study is to investigate dynamics on the other

equilibrium points with some zero components.
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