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Abstract

We investigate oscillation and nonoscillation of certain second order neutral dynamic
equations with positive and negative coefficients. We apply the results from the
theory of lower and upper solutions for related dynamic equations along with some
additional estimates on positive solutions and use different techniques to obtain
some oscillatory theorems. Also, we apply Kranoselskii's fixed point theorem to obtain
nonoscillatory results and then give two sufficient and necessary conditions for the
equations to be oscillatory. Some interesting examples are given to illustrate the
versatility of our results.
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1 Introduction
In this paper, we investigate oscillation and nonoscillation of second order neutral func-

tional dynamic equations with positive and negative coefficients of the form

[p®)(x(8) + r(©)x(g(8)) *]* + h(t,2° (2), 2(n1(8)), 2(2 (), 2 (1(0)), 2(2(0)) = 0, (L1)
wheret € T, h € C(T x R¥*?**2,R), @, (u) = [u|"u, ¥ >0,

h(t, %0, %1,%2,%3,%4) = qo(£) D, (%0) + q1(£) Py, (x1) — g2 (£) D, ()

+51(8) Dy, (x3) — 52(£) Py (x4). (1.2)

Throughout this paper, we shall assume that T is a time scale satisfying infT = £, and
sup T = oo, and

(B1) p € Cu([to, 0)r, (0, 00)) satisfies ftzo I%As = 00;

(B2) there exists a constant rg, 0 < rg < 1 such that r € C,4(T, [0, 79]);

(B3) g€ Cua(T,T), g(2) <t lim;_, o0 g(£) = 00;

(B4) 11,72 € Cia(T, T) are injective, 11 (t) < 12(¢) < ¢, lim;— 71(¢) = 00 and

Im 71(T) 2 Im 7o(T);
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(B5) &1,& € Cy(T,T) are injective, & (¢) > &(t) > o (¢), and for sufficiently large Ty € T,
there exists Tj € T such that & (7o) = &(T}) and
Ay ={Im& () : t > To} D Ay = {Im& (1) : £ > T };

(B6) qo(2), q1(2), qa(2), s1(8), s2(¢) € Cra(T, R) are eventually positive, and satisfy

m(ffl(fz(t))) > qx(t), S1 (51_1 (‘52('3)) > 55(2),
q0(07(£(1))) = 52(0), qo(07(r1(0))) = q2(0).

A solution x(t) of (1.1) is said to be oscillatory if it is neither eventually positive nor even-
tually negative, otherwise it is nonoscillatory. The equation itself is called oscillatory if all
its solutions are oscillatory.

In recent years, there has been an increasing interest in studying the oscillation and
nonoscillation of solutions of dynamic equations on time scales since Hilger introduced
the theory of time scale which was excepted to unify continuous and discrete calculus. We
refer the readers to the monographs [1-4], the papers [3, 5-17] and the references cited
therein.

The results on oscillation of dynamic equations with positive and negative coefficients
are mainly concentrated on differential equations or difference equations. To the best of
our knowledge, there are few researches on dynamic equations with positive and negative
coefficients on time scales. In [13], Ozbekler and Zafer gave new oscillation criteria for su-
perlinear and sublinear forced dynamic equations with positive and negative coefficients
by means of nonprinciple solutions. Also, Ozbekler et al. [14] made use of the concept
of nonprinciple solutions to establish new oscillation criteria. However, in general, it is
difficult for us to find a nonprinciple solution of second order dynamic equations. As a
result, their approach may be difficult to apply to second order dynamic equations. Un-
der the convergence of double integral of negative coefficients, sufficient conditions for
oscillation was given in [12, 16-18]. The results on oscillation of difference equations with
positive and negative coefficients can be found in [8, 15] and references therein.

In this paper, to obtain oscillatory theorems, we shall apply results from the the-
ory of lower and upper solutions for related dynamic equations along with some addi-
tional estimates on positive solutions and use some different techniques. Also, we apply
Kranoselskii’s fixed point theorem to obtain nonoscillatory results and then give two suf-
ficient and necessary conditions for (1.1) being oscillatory. Our results cannot only be ap-
plied to differential equations and difference equations, but they can also be applied to
other dynamic equations with positive and negative coefficients.

In Section 2, we present some preliminaries and important estimates, especially the es-
timate z2(£) > 0 and the function % > 0 if the solution x(¢) > 0 of (1.1). In Section 3, we give
several oscillatory and nonoscillatory results. In Section 4, we illustrate the versatility of

our results by three examples.

2 Some preliminaries
In order to prove our main results, we establish some fundamental results in this section.
Now we introduce the auxiliary functions

_ P(u(t),a) P(&(2),a)

L As
P(t,a) = /a m, ni(t,a) = Pi(a(t),a)’ vi(t,a) = Po0.a) (2.1)
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where 1 <i<n,1<j<m,a € [ty,o0)r. For the convenience of discussion, let
z(t) = x(t) + r(t)x(g(t)).
Let m; =1 - ry. Furthermore, we need the following additional hypotheses:
qo(O)®y (m1) —q2()) 20, s1(6) Py (1) —52(£) = 0 (2.2)
or
51D, (m1) — qa(t) — 52(t) = 0. (2.3)
First of all, we give the following estimates.

Lemma 2.1 Assume that conditions (B1)-(B6) and one of (2.2)-(2.3) hold. Let x(t) be an
eventually positive solution of equation (1.1). Then there exists some T > ty such that
() forallt>T,z(t) >0, z%(t) > 0, x() > (1 — r(¢))z(t), and

h(t,x"(t),x(rl(t)),x(tg(t)),x(él(t)),x(&(t))) >0
(ii) foreach1<i<2,1<j<2andfor§(t)>o(t)>t>1t)> T, we have

Z('Ci(t)) >ni(t, T)2°(¢) and z(’;‘/(t)) <v;(t, T)z° (t);

(ili) if p(t) is nondecreasing, each 1 <i <2,1<j <2 and for
()=o) =t =&(T) > 1,(t) = T, we have

2w®) _ u(t) - (T und 2(5i(8) _ §(8) = §(T)
z2(@t) ~ o) -t(T) z7(t) o) -§(T)

Proof (i) Suppose that x(¢) is an eventually positive solution of (1.1). In view of conditions
(B2)-(B6), there exists T; € T such that x(£) > 0, x(g(¢)) > 0, x(z;(¢)) > 0,1 <i < 2, x(§(¢)) >
0,1<j<2,and 0 <r(t) <rg <1forall ¢ € [T}, 00)p. It is immediate to obtain z(t) > 0 by
z(t) = x(t) + r(t)x(g(t)).

Next, we show that z2(¢) is eventually positive. Otherwise there exists a sequence {,,}°%,
with lim;_,  ; = 00 such that z2(#;) < 0 and 7, (72(4)) > t; for some € N. Without loss of
generality, we may assume that/ = 1, i.e. 7, (12(#1)) > t1. For t > 771 (11 (8)) > &1 (&1(0)) > &
and t > £71(&2(2)), let

[ @0y (7 (N As + [L1(, ) A2() Py (x(72(s)) As

4 [EEO) 5 ()0, (x(E(6) As,
=~ i a®® (x(n(s))ms + [0 49D, (x(z2(5) As,
== [y 51D, KEENAS + [1( ) 2P, ((Ea(s)) As

We rewrite D, as follows:

) t
D, = _/ R (x(tl(S)))AS_,/—l( @) 21(5)®y (x(11(s))) As

RGIO))
+/ qz(s)CD,,(x(Tg(s)))As

2]
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By (B6), we see that ¢ (17 (t2(£))) > ¢2(¢) and then clearly D, < 0. Similarly, we also have
D; <0and D3 <0.

Then, for t > t;1(71(£)) > &1 (&1(1)) > t; and ¢ > &71(5,(¢)), integrating (1.1) from £ to ¢,
by (B1)-(B6) and the geometric sense of a definite integral, we obtain

p(0)z%(0) - p(t)z (1) = - / h(s, %7 (s), %(11(5)), 2(72(5)), 2 (&1 (5) ), %(£2(5)) ) As
=D +Dy;+ D3 <0.
It follows that

2(t) - z(t) < p(t)z" tl)/ — > 00 ast— 0o,

which contradicts z(£) = x(¢) + r(£)x(g(¢)) > 0
Since x(¢) is a solution of (1.1) satisfying x(¢) > 0 and z*(£) > 0, we see that

x(t) = z(t) - r(t)x(g(2)) = z(2) - r()z(g(2)) = 2(2) — r(D)z(t) = (1 - r(2))z(2).

Now, we claim that X(z,x7 (¢), x(t1(2)), x(72(2)), 2(&1(£)), x(£2(2))) > 0. By (2.2) or (2.3),
x(¢) > (1 - r(¢))z(¢) and z2(¢) > O for ¢t > T}, we have

h(t,x° (8), x(11(8)), 2(72(2)), (61 (2)), %(62(2)) )

= qo(£)®, (x” (2)) Z( D7 g(8)®, (x(x(0)) Z( D) s, (x(5(0)))

i=1 i=1
> qo(t)®, (m2° (1)) + ()P (miz(11(2))) — g2(6) P, (2(72(0)))
+51(8) D, (miz(£1(2))) - s2() Py (2(£2(2))) > 0

(i) It is clear that [p(£)z® (£)]* < 0 or p(t)z®(t) is nonincreasing since / > 0 for ¢ > T For
t>1(t)>T>tyand 1 <i<2,wehave

o(t) a(t)
#0)-2(x0) - | . P08 < p(s(0)2* (o) [ . A
Dividing both sides of above inequality by z(t;(¢)), we obtain
2°(t) p((t))z" (1))

Likewise, we also have

7;(t) A )
z(7i(t)) — 2(T) :/; e )p(s) (s)As > p(ui(t))z (Tl(t))/r EAS

and

pE) (@) _ 1
2w(t) T P(w®),T)
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Hence, (2.4) and (2.5) imply

P(o(t), T)

27 (¢) P(Ti(t))ZA(Tz)
P(z(t), T)

<1+

z(ti(t)) z(ti(t))

P(o(0),u(t) <
This gives the desired result
z(ri(t)) >ni(t, T)2°(8), 1<i<2.

For T <t <o(t) <§(),1<j<2,wealso get

&)
“() <1+ 2D pie ), o (1)),
z7(t) z(T)
0D = pemaen TP T).

Therefore, we obtain

2E®) ., plo ()22 (0 (1))

, PE@),0@)
z°(t) ~ z°(2)

P(o(t), T)

P(&(),0(t)) <1 vi(t, T),

which yields the desired result
z(&(1)) <27 (), 7).
(iii) It can be proved similar to [7, Lemma 2.1] and hence its proof is omitted here. [
In addition to the above lemmas, we need a method of studying separated boundary
value problems (SBVP) to prove our main results. Namely, we will define functions called

upper and lower solutions that not only imply the existence of a solution of a SBVP, but
that also provide bounds on the location of the solution. Consider the SBVP

—(p@Oy ) + gt =f(t,y°), telabl, (2.6)
y(a) = A, y(b) = B, (2.7)

where the functions f € C([a, b]"2 x R,R), p,q € C([a, b]Kz) with p(¢) > 0 and ¢(¢) > 0 on
la, b]"z. We define the set

Dy := {y € X:y* is continuous and (pyA)A is rd-continuous on [, 19]'(2 },
where the Banach space X = C([a, b]r) is equipped with the norm | e || defined by

[yl := max |y(t)| forally e X.
telably

A function y is called a solution of the equation —(p(£)y*(t))* + q(£)y° = 0, on [a,b]"2 if
y € Dy and the equation —(p(£)y® (£))® + q(£)y” = 0 holds for all £ € [a,5]<*. Next, we define
for any u,v € D; the sector [u,v]; by

[uvhi:={web |lu<w<v}

Page 5 of 22


http://www.advancesindifferenceequations.com/content/2014/1/115

Deng et al. Advances in Difference Equations 2014, 2014:115 Page 6 of 22
http://www.advancesindifferenceequations.com/content/2014/1/115

Definition 2.1 [3, Definition 6.1] We call o € ID; a lower solution of the SBVP (2.6)-(2.7)
on [a, b]t provided

—(p®Oa®(@®)? + qt)a’ (t) <f(t,a’(t)) forallte [a,b]’(z,
ala) <A, a(b) <B.

Similarly, 8 € D, is called an upper solution of the SBVP (2.6)-(2.7) on [a, b] provided

~(pOBA ()™ +q(O)B° (&) = f(t, 7 (1) forall t € [a, ],
Bla)=A,  B(b)=B.

The following theorem is an extension of [3, Theorem 6.5] to [a, 00)y.

Theorem 2.1 [10, Theorem 1.5] Assume that there exist a lower solution o and an upper
solution B of (2.6) with a(t) < B(¢t) for all t € [a,00)y. Then

~(py2 )" +q(e)y” =f(t.5°)
has a solution y with y(a) = A and y € [o, B]1 on [a, 00)y.

We end this section with time scale version of the Arzela-Ascoli theorem (see [7,
Lemma 2.2]) and Kranoselskii’s fixed point theorem (see [7]). These will be used in the
proof of Theorem 3.3.

For Ty, Ty € T, let [Ty, 00)p :={t € T:t > Ty} and [Ty, T1]r:={t € T: To <t < T1}.
Further, let C([To, 00)t,R) denote all continuous functions mapping [T, 00)t into R,

BC[Tp,00)y := {x:x € C([To,oo)T,R) and sup |x(t)’ < oo} (2.8)

te[To,oo).ﬂ,

Endowed on BC [T, 00)r with the norm ||x|| = sup,¢ 7, o), 1¥()], (BC [To,00)r, || @ ) is

a Banach space. Let X € BC [T}, 00)t, we say X is uniformly Cauchy if for any given ¢ > 0,

To,OO

there exists a T; € [Ty, 0o)r such that for any x € X,
|x(t1) - x(t2)| <e forallt,ty € [Ty, 00).

X is said to be equi-continuous on [a, b]y if for any given ¢ > 0, there exists a § > 0 such
that for any x € X and £, %, € [a, ] with | — £,] < §,

’x(tl) — x(t2)| <eé.

Lemma 2.2 [7, Lemma 2.2] Suppose that X € BC [Ty, 00)r is bounded and uniformly
Cauchy. Further, suppose that X is equi-continuous on [Ty, T1]T for any T; € [Ty, 00)r.
Then X is relatively compact.

Lemma 2.3 (Kranoselskii’s fixed point theorem) Suppose that X is a Banach space and Q
is a bounded, convex and closed subset of X. Suppose further that there exist two operators
U,S: Q2 — X such that
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(i) Ux+SyeQforallx,ye Q;
(i) U is a contraction mapping;
(iii) S is completely continuous.

Then U + S has a fixed point in Q.

3 Mainresults
In this section, we establish our main results.

Theorem 3.1 Assume conditions (B1)-(B6) and one of (2.2)-(2.3) hold. Then any bounded

solution x(t) of (1.1) is oscillatory in the case
oo
‘/ P(t,a)h(t, mo, mang, a, mao,a) At| = 00 (3.1)

for all « # 0 and some sufficiently large a € T, where my =1 —ro, ;m = m(t, a) is given in
(2.1).

Proof Assume this not to be the case and let «(¢) be a bounded nonoscillatory solution of

(1.1) which we may assume satisfies
u(t) >0, u(7i(t)) >0, u(g®) >0, t>=T>61<i<2,1<j<2.
For convenience, let z;(t) = u(t) + r(t)u(g(¢)). By Lemma 2.1, we have
2 (0)>=0,  u®)=1-r@®))z®),  z(u@®)=m ) (©).
Define the function H(¢,6;) as follows:
H{(t,6y) := h(t, m61, myn 61,01, m161,01). (3.2)

On one hand, by (2.2), Lemma 2.1, (B4)-(B6), the monotonicity of ®, (u), z{*(¢) > 0, and
m =m(¢, T), for t > T, we have

A

= [z @)]" + h(t, u” (@), u(11(0)), u(r2(0)), u(51(2)), u(£2(0)))
[P(t)z 0] + gD, (2 (1) + @O P, (mmz () - 2O, (£ (2))
(mz1(&1(2))) — 82(0) Py, (21 (£2(1)))
]

A

+51(6) Py
[p(t)z1 O] + qo®) @, (m2] (1)) + @ ()@, (mmz] (£)) — g2 (D, (27 (1))
+ [s1(0)®,, (1) — 52(8) | D, (21 (6:(2)))
= [Pz O]" + [0 (O, (m1) + @O, (m1m1) - qa(2) + 51 (P, (1) = 5(0)]
x @y (2 (£)
= [P0z 0] + H(t, 2 (8)). (3.3)

On the other hand, we can also obtain (3.3) if (2.2) is replaced by (2.3).
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Applying Theorem 2.1 with «(¢) = z1(T) < z1(t) = B(¢), the equation

(p0)z°®)" + H(t,2°(8) =0,  2(T)=z(T),

has a solution z(£) with z(T) < z(t) < z1(¢) on [T, 00).
It follows from Lemma 2.1 that p(t)z>(¢) is nonincreasing and lim;_, o, p(t)z>(t) := L > 0
exists (being finite). Integration for T < s < T’ implies

T/
P(T) (1) -p026) + [ (2 @) du =0,
Letting 7" — 00, we obtain

p(s)z™(s) = L + /OOH(u,z"(u))Au > /OOH(u,z”(u))Au

It follows that

Z8(s) > l% le(u,z”(u))Au.

Integrating again for T < #; < ¢ and by change of integration order [11, Lemma 1]

[[/ﬂtﬁ(n,é)Aé]An = /St[fsa(g)ﬁ(n,s)An]Ag,

we obtain
z(t)—z(tl)zft1 1%/ H(u,z"(u))AuAsZ/t; i WAL{AS
/ / H(up(z:(u AsAuzAtP(u,tl)H(u,z”(u))Au

Consequently, for ¢ > ¢; > T, we obtain

z(t) — z(t1) > /tP(u, tl)H(u, z”(u))Au

f

Since z(t) is bounded and f; P(u,t)H(u,z° (u)) Au is an increasing function of ¢, it follows
that

oo
/ P(u, t))H (u,2° (1)) Au < 00.
5]

Let o = z{ (T); by (3.3) and &, (2] (t)) being nondecreasing, we have

o0
/ P(u, T)h(u, mia, myma, o, myot, o) A < 00.

So we obtain a contradiction to (3.1). O

Page 8 of 22
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Under the assumptions of Theorem 3.1, noting that (3.3), it is easy to obtain the following

corollary.

Corollary 3.1 Assume conditions (B1)-(B6) and one of (2.2)-(2.3) hold. Then any bounded

solution of (1.1) is oscillatory in the case
oo
‘/ P(t,a)h(t, 0, min (¢, a)a, 0, 0,0)At‘ =00
or

|/ P(t,a)q: ()P, (mlm(t,a)oc)At’ = 00.

In order to extend Theorem 3.1 to unbounded solutions, we introduce the class ® of
functions ¢ such that ¢ (i) is a nondecreasing continuous function of u satisfying u¢(u) >
0, u # 0 with

o du 0 (3.4)
) W <00, Up # . .

We say that A(z, u, v1, v, v3, v4) satisfies condition (C;) provided for some ¢ € ® there exists
c¢#0suchthatforallt > T, n =, T),

. h(t, mu, mymu, u, M, u)

il )

> k|h(t, ¢, M1N1C, € MG, c)| (3.5)

for some positive constant k, m; =1 —ry.

Theorem 3.2 Suppose ¢ € © and y > 1. Assume (B1)-(B6), and one of (2.2)-(2.3) hold.
Furthermore, suppose that the function h satisfies condition (C,). If

oo
’/ P(t,a)h(t, mia, mmao, o, mo, ) At| = 0o (3.6)

holds for all « # 0 and some sufficiently large a € T, where my =1 —ry, m = n1(t, a) is given
in (2.1), then all solutions of (1.1) are oscillatory.

Proof Assume (3.6) holds for all @ # 0 and let u(¢) be an eventually positive solution of
(1.1) with

u(t) >0, u(7i()) >0, u(&®) >0, t=T>6,1<i<2,1=<j<2
As the proof of Theorem 3.1, we have
Z28(s) > 1 /OOH(u,z"(u))Au,
p(s) Js

where H(u,z% (1)) = h(u, m12° (u), mym z° (u), 2° (), m12° (), z2° (u)).
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Let ¢(u) = @, (u), then ¢(u) € . Now multiplying above inequality by [¢(z° (s))] ™, we
get

() o g ()
2E ) > pose ), T whe= | ®)

We next define the continuously differentiable real-valued function

“ ds

G(u) = o m.

Observe that G'(u) = 1/¢(u). By the Potzsche chain rule [2, Theorem 1.90],

A
(] o ([ -
¢(zn(2)) ¢(z () #(z° (1))

where z;,(¢) := z(£) + hu ()2 (£) < 2°(¢).
We claim that

‘A C 1% Hu 2 () C O Hu W)
. ¢(za<s>)“>/ﬁ : p(s)¢<zﬂ<s))A”A52/qP(”’“) o ()

for t > t; > T. By change of integration order [11, Lemma 1], we obtain
t H(u,z° (1)) t[ 1 ]H(u,z(’(u))
Plu, 1) L2 W) / / L g |2
/h Ve ) o Ly p6) 71 o (w)

/ /“W) 1 Hu,z° (u))AsAu
p(s) ¢(z7(u)

YH(u,z°(u) 1
/ () p(s)A

/ " H(u,z°
p(s)d)(Z" (s))

For sufficiently large t; = T, by condition (C,), it immediately follows that

tZ8s) ASZ/tP(M tl)H(u,Z"(u))

) Au> k/tP(u, t1)H(u,c)Au, (3.7)

¢(27 (u)) T Ja

where ¢:=u(T) + r(T)u(g(T)) > 0. Since lim;_, o #(£) = 00, we have

1 G((t))—l Z(t)ﬂ_/ooﬂ
S e ar ¢ ) pu) =

by assumption. Therefore,

t A b ZR(s) H(u,z° (1))
k - 77
fzm(G(”(s’)) AS?/ o) >/ R

However, letting ¢ — oo in above inequality, the left side is bounded whereas the right side

is unbounded by assumptions (3.6), (3.7). This contradiction shows that (3.6) is sufficient
for all solutions of (1.1) to be oscillatory. O

Page 10 of 22
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Next we will give two sufficient and necessary conditions for (1.1) being oscillatory un-
der the case y > 1. However, we need a sufficient condition for (1.1) having a bounded
nonoscillatory solution.

Theorem 3.3 Assume conditions (B1)-(B6) hold, and (2.2) or (2.3) holds. If
/ P(o(t),a)h(t, o, a,0,a,0)At < 00 (3.8)

for some o # 0 and some sufficiently large a € T, then (1.1) has a bounded nonoscillatory
solution.

Proof Let
h(t,a):=h(t,o,a,0,a,0).

Assume that (3.8) holds. Without loss of generality, we may assume « > 0. Since p(t) > 0
and /11(¢,) > 0 on T, by change of integration order [11, Lemma 1], we obtain

[ s am [ " hl“;"‘)mt
L
=/a [/ﬂ p()AS:|h1(ta)

= /OOP(G(t),a)hl(t,a)At < 00. (3.9)

By (B2) and (3.9), we can choose T € T large enough such that

hl(t oe) (l—ro)oe mia
/T O/S SRR (3.10)

According to (B3) and (B4), we see that there exists 77 € T with T; > T, such that g(t) > T,
and 7;(t) > Ty, 1 <i <2, fort € [T},00)r.
Define the Banach space BC [T}, c0)t as in (2.8), and let

Q= {x:x(t)eBC[To,oo) .% <x(t)<a}

It is easy to verify that €2 is a bounded, convex, and closed subset of BC [Ty, 00)r. For the
sake of convenience, set

H'(t) = h(t, 27 (t),2(1(0)), 2(2 (1)), %(&1.()), x(62(2)) ).
For any x € Q and ¢ € [Ty, 00)y, we have

0<h(t,a,a,a,0,00) < H' () < h(t, o, 0, ma/2, 0, myae/2) < hy(t, o). (3.11)
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Now we define two operators U and S : 2 — BC [Ty, 00)7 as follows:

W < | O, te(Ti00n,
(Ux)(T), t e [To, Tilr
and
_ _j;:oo ./:goo q te [Tboo)'ﬂw
(Sx)(t) - { le fsoo H (M Auls, te [TO, Tl]']l‘«

Next, we will show that U/ and S satisfy the conditions in Lemma 2.3.
(i) We first prove that Ux + Sy € Q for any x,y € Q. Note that for any x,y € Q, mj/2 <
x,7 <a.Foranyx,y € Q and ¢ € [T, 00), by (3.10)-(3.11), we have

U + (S)(B) = o - r()x f H'(”) Auts > ma - 5 2

and

() (6) + (9)(0) = o — r(Dx(g(0) / / H'(“)Amsq

Similarly, we can show that m;0/2 < Ux + Sy < « for any x,y € Q and t € [Ty, T1]7.

(ii) It is not difficult to check that U is a contraction mapping.

(iii) We will prove that S is a completely continuous mapping. It is easy to check that §
maps €2 into Q.

Again, for the sake of convenience, let

Hi(t) := h(t, 27 (6), 21 (12(8)), %1 (12()) 21 (£0(0)) 31 (£2(2))).-

Next, we show that the continuity of S. Let x; € Q and ||x; —x|| — 0 as [ — oo, thenx € Q
and x; — x as [ — oo. By the monotonicity and continuity of 4, as [ — 0o, we have

|H)(¢) - H'(5)] — 0,
|Hi(t) - H' ()] <2l (t, ).

For t € [T}, 00)y, we have
[ Soc; — Sx|| = |Sx; — Sx|

[

and |(Sx;)(2) — (Sx)(¢t)| = O for ¢ € [Ty, T1]r. Employing Lebesgue’s dominated convergence
theorem [3, Chapter 5], we get

[|1Sx; — Sx|| = |Sx; —Sx] - 0 as[— oo.

Thus S is continuous.

Page 12 of 22


http://www.advancesindifferenceequations.com/content/2014/1/115

Deng et al. Advances in Difference Equations 2014, 2014:115 Page 13 of 22
http://www.advancesindifferenceequations.com/content/2014/1/115

Third, we show S is relatively compact. According to Lemma 2.2, it suffices to show
that SQ2 is bounded, uniformly Cauchy, and equi-continuous. The boundedness is obvious.
For any x € €2, by (3.10)-(3.11), we have

/~oo oo H’(u)
Auls < oo.
TN Js p(S)

Then for any given ¢ > 0, there exists T, € [T, 00)t large enough such that

/OO (o] H/(u)
Auls<e/2.
T s p(s)

Hence, for any x € Q and £, t, € [T, 00)T, we have

|(Sx)(81) = (Sx)(&) || = |(S%)(t1) - (Sx)(8s)]

[od] H/(l/l) 00 00 H/(lzl)
Auls— Auls
ty s

n Js  pb) p(s)
H’(u)
- \/7:2 fs
<2X —=¢.
2

So SQ is uniformly Cauchy.
Finally, we will prove that SQ2 is equi-continuous. For 71 <t <t, < T + 1, we have

|(Sx)(81) = (Sx)(82) || = I(Sx)(tl) — (Sx)(t)]

H’(u) * [ H'(u)
) s—/t2 /S 06) Auls
H'(u )

5/,1 L e S

Fort < Ty <t, < T, +1, we have

00 H/(u)

[(5%)(8) = (S0)(®)] = | (S0)(8) - (S0)(8)| < /T i

For 1,15 € [Th, Ta]r, [I(Sx)(t1) - (Sx)(£2)]1 = 0

Therefore there exists 0 < § < 1 such that |(Sx)(t;) — (Sx)(£,)| < g if ty, 8, € [Ty, T2 +1) and
|t; — t1] < 8. This means that SQ2 is equi-continuous.

It follows from Lemma 2.2 that SQ2 is relatively compact, and then S is completely con-
tinuous.

By Lemma 2.3, there exists x € Q such that (U + S)x = x, which indicates that x(¢) is a

solution of (1.1). In particular, for ¢ € [T}, 00)t, we have
o0 o0 H/
x(t) =o - r(t)x(g(t)) —/ ®) Aul
t s P(S)

Let t = 00, we obtain the desired result. O



http://www.advancesindifferenceequations.com/content/2014/1/115

Deng et al. Advances in Difference Equations 2014, 2014:115 Page 14 of 22
http://www.advancesindifferenceequations.com/content/2014/1/115

Remark 3.1 Similar to the proof of Theorem 3.3, under the assumptions of Theorem 3.3,
if

fooP(U(t),a)h(t,a,a, a _;O)a,oz, a —270)0!>At <00

for some o # 0, then (1.1) has a bounded nonoscillatory solution.

Theorem 3.3 plays an important role in excluding (1.1) to have a unbounded nonoscil-
latory solution under that (3.8) holds.

Theorem 3.4 Suppose ¢ € ® and y > 1. Assume (B1)-(B6) and one of (2.2)-(2.3) hold, and

the function h satisfies condition (C,). Furthermore, suppose that there exists p; > 0 such
that

litm infni(t,a)>p foraeT (3.12)
—> 00
and

‘/ P(t, T)h(t,0,0,0,0,a)At| <00 forall o #0. (3.13)

Then a sufficient and necessary condition for (1.1) to be oscillatory is that
o0
’f P(t,a)h(t,a,am,O,a,O)At‘ =00 (3.14)

holds for all a # 0 and some sufficiently large a € T, where 01 = n1(¢t, a) is given in (2.1).

Proof Assume that (3.14) holds for all « # 0 and let u(£) > 0 be a nonoscillatory solution
of (1.1). Similar to the proof of Theorem 3.2, ¢ = u(T) + r(T)u(g(T)) > 0, we obtain (3.7):

t A t - .
4 (prG(Z)) ASEA P(M,tl)%AMZk/Ifl P(u,tl)H(u,C)Au

By (3.12)-(3.14), for sufficiently large t > #; > T, we have

t t
/P(u,tl)H(u,c)Auz / P(u, t))h(u, myc, mnic, c, myc,c) Au

t 5]

t
:/P(u,tl)h(u,mlc,mlmc,0,m1c,0)Au

5]

t
+ / P(u,t1)h(1,0,0,¢,0,c) Au

i

t
~/ P(u, t1)h(u, myc, minic, 0,mic,0)Au

5]

t
:/P(u,tl)h(u,oe,ocm,O,a,O)Au,

i
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where o = myc. The rest of the proof is the same as Theorem 3.2. So we leave details to
readers.

Conversely, assume that (3.12)-(3.13) hold and (3.14) does not hold for some « # 0, then
we have

’/ P(t,a)h(t,a,ozm(t,a),O,a,O)At < 00. (3.15)

Note that (3.12) implies that P(o (£), a)/P(¢, a) is bounded on T, and (3.15) holds if and only
if

< OQ.

'/wp(a(t),a)h(t,a,oml(t,a), 0,a,0)At

According to (3.12), it follows that for any ¢ > 0 with ¢ < %

that n1(t,a) > p1 — & =: p > 0 for ¢t > T7. It follows that |an;(¢,a)| > |ap| for t > T;. Then
by the monotonicity of / and the fact that 1;(¢,a) <1 for ¢t > T}, we have

min py, there exists T} > £, such

<00,

o0
/ P(a(t),a)h(t, ap,ap,0,a0,0)At
a

which gives (3.8). Therefore, by Theorem 3.3, equation (1.1) has a bounded nonoscillatory
solution. This contradiction shows that (3.14) is necessary. O

If (3.13) is false, (3.14) is not a necessary condition for (1.1) being oscillatory. Suppose
that there exist constants 8; > 1, 8, > 1, B3 > 1 such that

qo ()P, (m1) + qi(£)D,, (m11m1) > Pr1ga (), s1() D, (m1) > Basa(t) (3.16)

and

qo(O) Py (1) + qu () D, (mym) + s1(E) D, (m1) > B3[42() + 52(2) . (3.17)
We give another sufficient and necessary condition for (1.1) to be oscillatory.

Theorem 3.5 Suppose ¢ € ® and y > 1. Assume (B1)-(B6) and one of (2.2)-(2.3) hold, and
the function h satisfies condition (Cy). Furthermore, suppose that (3.12) and one of (3.16)-
(3.17) hold. Then a sufficient and necessary condition for the second order nonlinear neutral
dynamic equation (1.1) to be oscillatory is that

‘/ P(t,a)h(t,a,0my,0,0,0)At| = 00 (3.18)

holds for all a # 0 and some sufficiently large a € T, where 01 = n1(¢t, a) is given in (2.1).

Since the proof of Theorem 3.5 is similar to that of Theorem 3.4, we leave the details to
the readers.

For the case 0 < y <1, Theorems 3.2, 3.4, and 3.5 do not hold. We introduce another
class W of functions v such that /() is a nondecreasing continuous function of # satis-
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fying u¢(u) > 0, u # 0 with

+o00 dI/t +o00 du
- d " o 0. 3.19
R /i o, ) < 0 (3.19)

Theorem 3.6 Assume 0 <y <1, conditions (B1)-(B6) and one of (2.2)-(2.3) hold. Further-

more, suppose that there exists a function W € V which satisfies (3.19). Then any solution
x(t) of (1.1) is oscillatory in the case

‘/ [P(t,a)]yfgh(t,mla,mlam,a,mla,a)At =00 (3.20)

for all o #0, some sufficiently large a € T, and V0 < ¢ <y, where 01 = n1(t,a) is given in
(2.1).

Proof Assume not and let u(t) be a bounded nonoscillatory solution of (1.1) which we may
assume satisfies

u()>0,  u(t(®))>0,  u(§)>0, t=T>t,1<i<21<j<2.
Let
Q(£) = qo() Py (1) + qu(£) Py (m11m1) = o) + 51(£) Py (111) = 52(8).
As the proof of Theorem 3.1, we also get (3.3), i.e.
[Pz O] + [(20(®) + @)D, () + 51(8) @, (1) = 2(6) - 52(8)] @, (] (1))

= [p(z.‘)zf(t)]A +H(t,2] (1))

= [P0z 0] + Q)D, (2 () <. (3.21)

By Lemma 2.1,p(t)zlA(t) < p(Tl)zlA(Tl) =¢1 > 0 for ¢t > T. Integrating it from T to ¢, for
t> Ty > T, we have

z1(t) <z (Th) + 01/T 1% < [;(1;7;1)) + CI]P(t: T1)
z(Th) B
< I:m + Cl]P(t, Tl) =y P(t, T1). (322)

Let

’

Y (u) = P1yie(u), Qi) = Q)| ¥ (z1(t)/c2)
Hi(z1(2) = @, (21(2)) | (21(8)/2)

, Y1>¢e>0.

By (3.21) and (3.22), we obtain

[p0)z2 ()] + QOHi (21(0) < [p@)z2 ] + Q)®, (£ (1)) < 0.
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Integrating the above inequality from ¢ to T3, T; < ¢ < T3, we have

1 (5
40z / Qus)H: (a(5)) As

Then, similar to the proof of Theorem 3.2, we have

T3 ZA(0) At a(l3) A T3
1 1 ( ) = llm / u Z llm / P(O'(S), TI)QI(S)AS
T3—o0 Jp; Hi(z1(t)) T3>0 2(Ty) Hi(u) ~ T3-»o00 T

- / P(o(s), T)) Qi) As = / P(s, TH)Qi(s)As.
T T

1

According to (3.19), we have

<00, ug#0.

+o00 dl/l _inO du
wuy HI@)  Jiuy @)y w)

However, by (3.20) and (3.22), we have

S * p(s, T)Q(s) ~ P Ty) )
/Tl P(S’TI)QI(S)ASZ/H |w(zl<s>/c2)|“2/n @G, 1] A= 0

which contradicts [ P(s, T1)Qi(s)As < [, 74 H

We will show that Theorem 3.6 is also true if e = 0 in (3.20) for 0 < y < 1.
Letu,v,t,s € T with u,v,t,s > Tj. Suppose that x(¢) > 0 be a solution of (1.1). Integrating
(1.1) from v to s and dividing the resulting equation by p(s), we have

z%(s) = p)z® W) /p(s) - ﬂ hAGl-

Again, integrating the above mentioned inequality from # to ¢, by Lemma 2.1 and (3.3),
we have

2(t) = z(u) + p(v)z™ (v)P(t, u) + /tl% /VhAelAs

> /u 1% / H(61,2° (61)) A6, As.

Setu=Tyandv>t>s> Ty > Ty, using (3.22) and H(6,2(6,)) = %W(z(@l))”, we
find

Z(t)Z/I:I%/SVH(QLZU(%))A&ASZ/TZI%[H(QI,ZH(QI))A&AS

P(t, TO)/: H<91,Z(91))A91 =P(&, To) ¢ P61, To)]” (2(91))VA91’
and hence
) o (z(61))"
BT > Z(t), where Z(t) = (c3) y/; H(61, ¢2P(6), TO))MAQI 70

Page 17 of 22
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Thus, by [9, Lemma 2.1], we get

~Z%(61) = (c2) " H (61, c2P(61, To)) [ 2(81)]”

A )
= @y 215 0)

H(6h,¢2P(61, T)),

which implies

210 = L

2y H (61, ¢2P(61, Tp)).

Integrating it from T} to ¢ and letting ¢ — oo, we obtain

(2T = [20] + 16;)3; [T 0 H(0y,c2P(01, To)) AGy

1-y (¢
> () /To H(@l, cP(6,, To)) A6y,
which contradicts (3.20) for ¢ = 0.

So we have the following conclusion.

Theorem 3.7 Assume 0 <y <1, conditions (B1)-(B6) and one of (2.2)-(2.3) hold. Then any
solution x(t) of (1.1) is oscillatory in the case

o0
‘ / [P(t,@)]” h(t, mioe, iy, o, myat, o) At | = 00 (3.23)

for all o # 0 and some sufficiently large a € T, where n, = 11(t, a) is given in (2.1).

Is Theorem 3.7 also true if 0 < ¥ <1 is replaced by y > 1? In general, it is not true. It is
easy to see that (3.23) holds for y > 1, which does not imply (3.1) for all @ # 0. Then, if
(3.12)-(3.13) hold, by Theorem 3.3, all bounded solutions of (1.1) may be nonoscillatory.
But it is true for unbounded solutions of (1.1).

Theorem 3.8 Assume y > 1, conditions (B1)-(B6), and one of (2.2)-(2.3) hold. Then any
unbounded solution x(t) of (1.1) is oscillatory in the case

’/ [P(t,a)]” h(t, miot, miam, o, mat, o) At| = 00 (3.24)

for all a # 0 and some sufficiently large a € T, where 1 = m1(¢, a) is given in (2.1).

Proof Assume x(¢) > 0 be an unbounded solution of (1.1). Integrating (1.1) from T3 to ¢,
using ¢ > T; > Ty, and by (B1) and Lemma 2.1, we have

tzA(s)As = /t IMAS

A6)—=(Ty) = / 2

1
t

> P(t, Ty [p(0)2* (1)] - /T P, TP 6)] As
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which implies that

z(t) > P(t, T1)[p(0)z* (1)), =T > To.
By (3.3) and z2(¢) > O for t > Ty, we get

H(t,2°(¢)) = H(t,2(t)) > H(t, P(¢t, T1)[p(0)z* (1)]) = Q)®, (P(t, T))[p(t)z" (¥)]) > 0.
Let y(t) = p(t)z* (¢), then

-y2(6) = H(t,2° () > Q) @, (P(t, T1)y(t)) > 0.

Both sides divide @, (y(¢)); integrating it from T to T3, T3 > T > T, and noting that
0 < y(2) < y(To), t = To, we have

T3 T3 _,A
0< . Q(t)CDy(P(t,Tl))At</T2 cbyy(y((?))m

W) 1 W) 1
= / Au < f Au = oo.
yrs) Py (1) 0 @, (u)

Letting T5 — oo and a = T;, we obtain

o] o]
0< Q(t)q)y(P(t, Tl))At = f [P(t, Tl)]yh(t, mao, mlnla,a,mla,a)At <00,

Ty T
which contradicts (3.24). The proof is complete. g
4 Examples

We would like to illustrate the results by means of the following examples.

Example 4.1 Let ®,(x) = |u|* u, n e N, 0" (t) = o (6" 1(t)), p"(¢) = p"(t), h > 0 is a con-
stant, time scale T = #Z. Consider the dynamic equation

[p(6)(x(®) + rox(2())) ] + h(o (), x(n @), x(2 (), x(&1(8)), x(£2(0))) = O, (4.1)

where g(t) = p(t), 0 < ry < 11is a constant. 7;(£) = p(t), 72(£) = ¢, &(t) = 03(¢), &(£) = a%(8),
go®) =t, 1(t) = Vt, q2(t) = Int, s1(t) = 1, 55(¢) = t~2. We assume that p(¢) > 0 is nondecreas-
ing and satisfies (B1). For sufficiently large ¢ € T, it is not difficult to check that conditions
(B2)-(B6), (2.2), and (3.17) hold. By Lemma 2.1, for sufficiently large ¢ € T, we have

m~nu)ot)=t-h)/(t+h)~1 and P(ta)= /‘t ﬁ >1, t>»acT
a D)
and
‘/ ql(t)%(mmloe)At’ = ’/ q1(t)<1>y(mloe)At’ = 00. (4.2)

According to Corollary 3.1, any bounded solution of (4.1) is oscillatory.
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Let ¢(u) = @, (1) and y > 1, we obtain

. h(t, myu, mymu, u, M, u)

Wil D)

> k|h(t, myc, e, ¢, mc,c)|

for some positive constant k and k|®, (c)| < 1. Condition (C,) is satisfied. Since n; ~ 1,
(3.12) holds. Equations (4.2) and (3.17) imply (3.18) holds, so we give a sufficient and nec-
essary condition for all solutions of (4.1) being oscillatory.

Let ¥ () = ®1_y4.(1), 0 < & < y <1, then (3.19) holds. Hence, by Theorem 3.6, all solu-
tions of (1.1) are oscillatory because (4.2) and (3.17) imply (3.20).

In particular, (4.1) becomes the classical difference equation if /2 = 1.

Remark 4.1 Let T = ¢", g >1be a constant; T = N2 = {n? : n € No}; T = {H,, : n € Ny},
where H,, are the so-called harmonic numbers, Hy = 0, H,, = ZZ:I % for n € N. Then the
conclusion of Example 4.1 is also true under the same assumptions.

Example 4.2 Let ®,(u) = |u[*'u, the time scale T = P,;, = g, [k(a + b), k(a + b) + a],
a >0, b> 0 are constants. Consider the dynamic equation

[ (x(0) + (1/4 - e*)x(g(8)))*]"

+ @, (x7(1) + D, (¥(r1(9))) - 277 D, (x(12(8))) = 0, (4.3)

where m; =1 - (1/4 — ) > 3/4. We assume that g(¢) is rd-continuous on [¢, c0)y which
satisfies (B2). For ky,ky € N, and k; > ko, 11(¢), 12(¢) are defined as follows:

w-1° if t € \Jolk(a +b), ka + b) +al,
o= t—ki(a+Db) ifteU,fi,q[k(a+b),k(a+b)+a]

and

0 - 0 if t € U2, [k(a + b), k(a + b) +al,
P tmkata s by ifte U,k + b),ka+b) +al.

Theno(t)=t, t €[k(a+b),k(a+Db)+a),o(t)=t+b, t=k(a+b)+a, ke N.Itis easy to
check that conditions (B1)-(B6) and (2.2) hold,

’/ D, (3/4a) + ©,(3/4ma) — 277 @, () At| = 0.

According to Corollary 3.1, any bounded solution of (4.3) is oscillatory.

Similar to Example 4.1, for any y > 0, it is easy to check that condition (C;) (y > 1) and
(3.19)-(3.20) (0 < y <1) hold, respectively. Then we see that (4.3) is oscillatory.

In particular, (4.3) becomes the classical differential equations if b = 0.

Example 4.3 Let @, («) = |u|*u and time scale T = R. Consider the differential equation

(*(®) + rox(g())” + o2 (x() + 71 P2 (x(r:1 (1)) - 72 P2 (x(w2(2)))

+ 5102 (x(51(2))) — 522 (x(62(1))) = 0, (4.4)
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whererg =1/3,m =1-ry=2/3,g(t) =t —1Int, 7y(t) =t — 12, 7o (t) = t — 1 —sint/4, & (¢) = 2¢,
&) =t+3,90=10,q1 =8, g2 = 7,51 = 36, 55 = 5. It is not difficult to check that conditions
(B1)-(B6) hold. Since s;P,(m;) — g2 — 52 =4 > 0, it is easy to see that (2.3) and (3.17) hold.
Similar to Example 4.1, we see that the function

h(t, %0, %1, %2, %3,%3) = Go @2 (%(2)) + @1 P2 (x(11(£))) — g2 P2 (x(2(2)))
+ 51D (x(£1(2))) — 52 D2 (x(£2(2)))

satisfies condition (C;). Finally, we show that (3.12) holds. By Lemma 2.1(iii),

() -t(T) 7)) t-Int
=mT)= ——->--~—> = ~1, t>T,
m=m(,T) T ; p >

s0 (3.12) holds. For any @ #0,

‘/OOP(L‘, a)h(t,a,0m,0,a,0) dt' = '/oo(t - a)[10D, () + 8D, (cx) + 36D, ()] dt

= OoQ.

By Theorem 3.5, (4.4) is oscillatory.
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