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Abstract
In this paper, we shall investigate the problem of exponential synchronization for
complex dynamical network with mixed time-varying and hybrid coupling delays,
which is composed of state coupling, interval time-varying delay coupling and
distributed time-varying delay coupling. The designed controller ensures that the
synchronization of delayed complex dynamical network are proposed via either
feedback control or intermittent feedback control. The constraint on the derivative of
the time-varying delay is not required which allows the time-delay to be a fast
time-varying function. We use common unitary matrices, and the problem of
synchronization is transformed into the stability analysis of some linear time-varying
delay systems. This is based on the construction of an improved Lyapunov-Krasovskii
functional combined with the Leibniz-Newton formula and the technique of dealing
with some integral terms. New synchronization criteria are derived in terms of LMIs
which can be solved efficiently by standard convex optimization algorithms. Two
numerical examples are included to show the effectiveness of the proposed feedback
control and intermittent feedback control scheme.

Keywords: exponential synchronization; complex dynamical network; mixed
time-varying delays; hybrid coupling; intermittent control

1 Introduction
Complex dynamical network, as an interesting subject, has been thoroughly investigated
for decades. These networks show very complicated behavior and can be used to model
and explain many complex systems in nature such as computer networks [], the world
wide web [], food webs [], cellular andmetabolic networks [], social networks [], elec-
trical power grids [] etc. In general, a complex network is a large set of interconnected
nodes, in which a node is a fundamental unit with specific contents. As an implicit as-
sumption, these networks are described by the mathematical term graph. In such graphs,
each vertex represents an individual element in the system, while edges represent the re-
lations between them. Two nodes are joined by an edge if and only if they interact.
In the last decade, the synchronization of complex dynamic networks has attracted

much attention of researchers in this field [–]. Because the synchronization of complex
dynamical networks can well explain many natural phenomena observed and is one of the
important dynamical mechanisms for creating order in complex dynamical networks, the
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synchronization of coupled dynamical networks has come be a focal point in the study
of nonlinear science. Wang and Chen introduced a uniform dynamical network model
and also investigated its synchronization [–]. They have shown that the synchroniz-
ability of a scale-free dynamical network is robust against random removal of nodes, and
yet it is fragile to specific removal of the most highly connected nodes []. The authors
in [, ] investigated synchronization of general complex dynamical network models
with coupling delays. Li and Chen [] considered the synchronization stability of com-
plex dynamical network models with coupling delays for both continuous- and discrete-
time, and they derived some synchronization conditions for both delay-independent and
delay-dependent asymptotical stabilities. By utilizing Lyapunov functional method.Wang
et al. [] introduced several synchronization criteria for both delay-independent and
delay-dependent asymptotical stability. Li andYi [] investigated synchronization of com-
plex networks with time-varying couplings, the stability criteria were obtained by using
Lyapunov-Krasovskii function method and subspace projection method. Yue and Li []
studied the synchronization stability of continuous and discrete complex dynamical net-
works with interval time-varying delays in the dynamical nodes and the coupling term
simultaneously, delay-dependent synchronization stability are derived in the form of lin-
ear matrix inequalities.
It is well known that the existence of time-delay in a systemmay cause instability and an

example of oscillations can be found in systems such as chemical engineering systems,
biological modeling, electrical networks, physical networks, and many others [–].
The stability criteria for a system with time-delays can be classified into two categories:
delay-independent and delay-dependent. Delay-independent criteria do not employ any
information on the size of the delay; while delay-dependent criteria make use of such in-
formation at different levels. Delay-dependent stability conditions are generally less con-
servative than delay-independent ones especially when the delay is small []. Recently,
the delay-dependent stability for interval time-varying delay was investigated in [, ,
–]. Interval time-varying delay is a time-delay that varies in an interval in which the
lower bound is not restricted to be . Jiang and Han [] considered the problem of ro-
bust H∞ control for uncertain linear systems with interval time-varying delay based on
Lyapunov functional approach in which restriction on the differentiability of the interval
time-varying delay was removed. Shao [] presented a new delay-dependent stability cri-
terion for linear systems with interval time-varying delay, and stability criteria are derived
in terms of linear matrix inequalities without introducing any free-weighting matrices. In
order to reduce further the conservatism introduced by the descriptor model transforma-
tion and bounding techniques, a free-weightingmatrixmethod is proposed in [, –].
In [], the synchronization problem has been investigated for continuous/discrete com-
plex dynamical networks with interval time-varying delays. Based on a piecewise analysis
method and the Lyapunov functional method, some new delay-dependent synchroniza-
tion criteria are derived in the form of LMIs by introducing free-weighting matrices. It
will be pointed out later that some existing results require more free-weighting matrix
variables than our result.
Intermittent control is one of discontinuous control and has a nonzero control width. It

is an engineering approach that has been widely used in engineering fields, such as man-
ufacturing, air-quality control, transportation, and communication in practice. However,
results using intermittent control to study exponential synchronization are few. In recent
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years, several synchronization criteria for complex dynamical networks with or without
time-delays via feedback control or intermittent control have been presented; see [–]
and the references therein. Synchronization of a complex dynamical network with de-
layed nodes by pinning periodically intermittent control was also reported in []. A pe-
riodically intermittent control was applied to the complex dynamical networks with both
time-varying delays dynamical nodes and time-varying delays coupling in [, ]. In [],
the authors investigated exponential synchronization of a complex networkwith noniden-
tical time-delayed dynamical nodes by applying open-loop control to all nodes and adding
some intermittent controllers to partial nodes. The authors in [] investigated synchro-
nization of a general model of complex delayed dynamical networks. The periodically in-
termittent control scheme is introduced to drive the network to achieve synchronization.
Based on the Lyapunov stability theory and pinning control method, some novel synchro-
nization criteria for such dynamical network are derived. To the best of the authors’ knowl-
edge, the problem of exponential synchronization for a complex dynamical network with
mixed time-varying delays in the network hybrid coupling and time-varying delays in the
dynamical nodes has not been fully investigated yet and remains open.
In this paper, inspired by the above discussions, we shall investigate the problemof expo-

nential synchronization for a complex dynamical network with mixed time-varying and
hybrid coupling delays, which is composed of constant coupling, interval time-varying
delay coupling, and distributed time-varying delay coupling. The designed controller en-
sures that the synchronization of a delayed complex dynamical network is proposed via
either feedback control or intermittent feedback control. The constraint on the derivative
of the time-varying delay is not required, which allows the time-delay to be a fast time-
varying function. We use common unitary matrices, and the problem of synchronization
is transformed into the stability analysis of some linear time-varying delay systems. Based
on the construction of an improved Lyapunov-Krasovskii functional is combined with the
Leibniz-Newton formula and the technique of dealing with some integral terms. New syn-
chronization criteria are derived in terms of LMIs which can be solved efficiently by stan-
dard convex optimization algorithms. Two numerical examples are included to show the
effectiveness of the proposed feedback control and intermittent feedback control scheme.
The organization of the remaining part is as follows. In Section , a class of general com-

plex dynamical network model with mixed time-varying and hybrid coupling delays and
some useful lemmas are given. In Section , synchronization stability in complex dynam-
ical network with mixed time-varying and hybrid coupling delays via feedback control
and intermittent feedback control are investigated. Numerical examples illustrated the
obtained results are given in Section . The paper ends with conclusions in Section .

2 Networkmodel andmathematic preliminaries
Consider a complex dynamical network consisting ofN identical coupled nodes, with each
node being an n-dimensional dynamical system

ẋi(t) = f
(
xi(t),xi

(
t – h(t)

)
,
∫ t

t–k(t)
xi(s)ds

)
+ c

N∑
j=

aijGxj(t) + c
N∑
j=

bijGxj
(
t – h(t)

)

+ c
N∑
j=

cijG

∫ t

t–k(t)
xj(s)ds + Ui(t), t ≥ , i = , , . . . ,N , ()

xi(t) = φi(t), t ∈ [–τmax, ], τmax =max{h,d,k,k},
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where xi(t) = (xi(t),xi(t), . . . ,xin(t))T ∈ R
n is the state vector of ith node; Ui(t) ∈ R

m are
the control input of the node i; the constants c, c, c >  are the coupling strength; G =
(gij)n×n,G = (gij)n×n,G = (gij)n×n ∈R

n×n are constant inner-coupling matrices, if some
pairs (i, j),  ≤ i, j ≤ n, with gij �= , gij �= , and gij �= , which means two coupled nodes
are linked through their ith and jth state variables, otherwise gij = , gij = , gij = ;
A = (aij)N×N , B = (bij)N×N , and C = (cij)N×N ∈ R

N×N are the outer-coupling matrices of
the network, in which aij, bij are defined as follows: if there are a connection between
node i and node j (j �= i), then aij = aji = , bij = bji = , cij = cji = ; otherwise, aij = aji = ,
bij = bji = , cij = cji =  (j �= i), and the diagonal elements ofmatricesA,B, andC are defined
by

aii = –
N∑

j=,i�=j
aij = –

N∑
j=,i�=j

aji,

bii = –
N∑

j=,i�=j
bij = –

N∑
j=,i�=j

bji, ()

cii = –
N∑

j=,i�=j
cij = –

N∑
j=,i�=j

cji, i = , , . . . ,N .

It is assumed that network () is connected in the sense that there are no isolated clusters,
that is, A, B, C are irreducible matrices.

Definition . [] The delayed dynamical network () is said to achieve asymptotical
synchronization if

x(t) = x(t) = · · · = s(t) as t → ∞, ()

where s(t) is a solution of an isolated node, satisfying

ṡ(t) = f
(
s(t), s

(
t – h(t)

)
,
∫ t

t–k(t)
s(θ )dθ

)
.

In order to stabilize the origin of dynamical network () by means of the state feedback
controller Ui(t) satisfying either (H) or (H), for i = , , . . . ,n,

(H): Ui(t) =Diui(t) +Diui
(
t – d(t)

)
+Di

∫ t

t–k(t)
ui(s)ds, ∀t ≥ t,

(H): Ui(t) =

⎧⎪⎨
⎪⎩
Diui(t) +Diui(t – d(t))

+Di
∫ t
t–k(t) ui(s)ds, nω ≤ t ≤ nω + δ,

, nω + δ < t ≤ (n + )ω,

whereDji, j = , , . . . ,  are givenmatrices of appropriate dimensions, ui(t) = Ki(xi(t)– s(t))
and Ki is a constant matrix control gain, ω >  is the control period and δ >  is called the
control width (control duration) and n is a non-negative integer. Then substituting it into
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dynamical network (), it is easy to get the following:

ẋi(t) = f
(
xi(t),xi

(
t – h(t)

)
,
∫ t

t–k(t)
xi(s)ds

)
+ c

N∑
j=

aijGxj(t)

+ c
N∑
j=

bijGxj
(
t – h(t)

)
+ c

N∑
j=

cijG

∫ t

t–k(t)
xj(s)ds

+DiKi
(
xi(t) – s(t)

)
+Diui

(
t – d(t)

)
+Di

∫ t

t–k(t)
ui(s)ds. ()

Namely, the dynamical network () is governed by the following system:

ẋi(t) = f
(
xi(t),xi

(
t – h(t)

)
,
∫ t

t–k(t)
xi(s)ds

)
+ c

N∑
j=

aijGxj(t)

+ c
N∑
j=

bijGxj
(
t – h(t)

)
+ c

N∑
j=

cijG

∫ t

t–k(t)
xj(s)ds

+DiKi
(
xi(t) – s(t)

)
+Diui

(
t – d(t)

)
+Di

∫ t

t–k(t)
ui(s)ds,

nω ≤ t ≤ nω + δ, ()

ẋi(t) = f
(
xi(t),xi

(
t – h(t)

)
,
∫ t

t–k(t)
xi(s)ds

)
+ c

N∑
j=

aijGxj(t)

+ c
N∑
j=

bijGxj
(
t – h(t)

)
+ c

N∑
j=

cijG

∫ t

t–k(t)
xj(s)ds,

nω + δ < t ≤ (n + )ω, i = , , . . . ,N .

It is clear that, if the zero solutions of the dynamical network () and () are globally ex-
ponentially stable, then exponential synchronization of the controlled dynamical network
() is achieved. The time-varying delay functions h(t), d(t), k(t), and k(t) satisfy the con-
ditions

 ≤ h ≤ h(t)≤ h,  ≤ d(t) ≤ d,  ≤ k(t)≤ k,  ≤ k(t) ≤ k. ()

The initial condition function φi(t) denotes a continuous vector-valued initial function of
t ∈ [–τmax, ].
In this paper, we assume that s(t) is an orbitally stable solution of the above system.

Clearly, the stability of the synchronized states () of network () is determined by the dy-
namics of the isolate node, the coupling strength c, c, and c, the inner-couplingmatrices
G, G, and G, and the outer-coupling matrices A, B, and C.
The following lemmas are used in the proof of the main result.

Lemma. [] Let A, B be a family of diagonalizablematrices.Then A, B is a commuting
family (under multiplication) if and only if it is a simultaneously diagonalizable family.
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Lemma . [] For any constant symmetric matrix M ∈ Rn×n, M = MT > ,  ≤ h ≤
h(t) ≤ h, t ≥ , and any differentiable vector function x(t) ∈ Rn, we have

(a)
[∫ t

t–h
ẋ(s)ds

]T

M
[∫ t

t–h
ẋ(s)ds

]
≤ h

∫ t

t–h
ẋT (s)Mẋ(s)ds,

(b)
[∫ t–h

t–h(t)
ẋ(s)ds

]T

M
[∫ t–h

t–h(t)
ẋ(s)ds

]
≤ (

h(t) – h
)∫ t–h

t–h(t)
ẋT (s)Mẋ(s)ds

≤ (h – h)
∫ t–h

t–h(t)
ẋT (s)Mẋ(s)ds.

Lemma. (Cauchy inequality []) For any symmetric positive definitematrix N ∈Mn×n

and x, y ∈R
n we have

±xTy ≤ xTNx + yTN–y.

3 Synchronization of delayed complex dynamical network via delayed
feedback control and intermittent control

In this section, we shall obtain somedelay-dependent exponential synchronization criteria
for general complex dynamical network with discrete and distributed time-varying delays
and hybrid coupling delays () by strict LMI approaches. Let us set

Ãi = J(t) + cλiG, B̃i = Jh(t) + cλiG, C̃i = Jk (t) + cλiG

and
. J(t) = f ′(s(t), s(t – h(t)),

∫ t
t–k(t)

s(ξ )dξ ) ∈ Rn×n is the Jacobian of
f (x(t),x(t – h(t)),

∫ t
t–k(t) x(s)ds) at s(t) with the derivative of

f (x(t),x(t – h(t)),
∫ t
t–k(t)

x(s)ds) respect to x(t),
. Jh(t) = f ′(s(t), s(t – h(t)),

∫ t
t–k(t)

s(ξ )dξ ) ∈ Rn×n is the Jacobian of
f (x(t),x(t – h(t)),

∫ t
t–k(t) x(s)ds) at s(t – h(t)) with the derivative of

f (x(t),x(t – h(t)),
∫ t
t–k(t)

x(s)ds) respect to x(t – h(t)),
. Jk (t) = f ′(s(t), s(t – h(t)),

∫ t
t–k(t)

s(ξ )dξ ) ∈ Rn×n is the Jacobian of
f (x(t),x(t – h(t)),

∫ t
t–k(t) x(s)ds) at

∫ t
t–k(t) s(ξ )dξ with the derivative of

f (x(t),x(t – h(t)),
∫ t
t–k(t)

x(s)ds) respect to
∫ t
t–k(t)

x(s)ds.

Lemma . Consider the hybrid coupling delays dynamical network in (). Let  = λj >
λj ≥ λj ≥ · · · ≥ λjN , j = {, , }, be the eigenvalues of the outer-couplingmatrices A, B, and
C, respectively. If the N –  following n-dimensional linear time-varying delays differential
equations are delay-dependent exponentially stable about their zero solutions:

żi(t) = (Ãi +DiKi)zi(t) + B̃izi
(
t – h(t)

)
+ C̃i

∫ t

t–k(t)
zi(s)ds

+DiKizi
(
t – d(t)

)
+DiKi

∫ t

t–k(t)
zi(s)ds, nω ≤ t ≤ nω + δ, i = , . . . ,N , ()

żi(t) = Ãizi(t) + B̃izi
(
t – h(t)

)
+ C̃i

∫ t

t–k(t)
zi(s)ds, nω + δ < t ≤ (n + )ω, i = , . . . ,N ,
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then the dynamical networks () is exponentially stable, and then exponential synchroniza-
tion of the controlled dynamical networks () is achieved.

Proof To investigate the stability of the synchronized states (), set

ei(t) = xi(t) – s(t), i = , , . . . ,N . ()

Substituting () into (), for  ≤ i≤N , we have

ėi(t) = f
(
xi(t),xi

(
t – h(t)

)
,
∫ t

t–k(t)
xi(s)ds

)
– f

(
s(t), s

(
t – h(t)

)
,
∫ t

t–k(t)
si(ξ )dξ

)

+ c
N∑
j=

aijGej(t) + c
N∑
j=

bijGej
(
t – h(t)

)

+ c
N∑
j=

cijG

∫ t

t–k(t)
ej(s)ds +DiKi

(
ei(t)

)
+DiKi

(
ei

(
t – d(t)

))

+DiKi

∫ t

t–k(t)
ej(s)ds, nω ≤ t ≤ nω + δ, ()

ėi(t) = f
(
xi(t),xi

(
t – h(t)

)
,
∫ t

t–k(t)
xi(s)ds

)
– f

(
s(t), s

(
t – h(t)

)
,
∫ t

t–k(t)
si(ξ )dξ

)

+ c
N∑
j=

aijGej(t) + c
N∑
j=

bijGej
(
t – h(t)

)

+ c
N∑
j=

cijG

∫ t

t–k(t)
ej(s)ds, nω + δ < t ≤ (n + )ω, i = , , . . . ,N .

Since f (·) is continuous differentiable, it is easy to know that the origin of the nonlinear
system () is an asymptotically stable equilibrium point if it is an asymptotically stable
equilibrium point of the following linear time-varying delays systems:

ėi(t) = J(t)ei(t) + Jh(t)ei
(
t – h(t)

)
+ Jk (t)

∫ t

t–k(t)
ei(s)ds

+ cG
(
e(t), e(t), . . . , eN (t)

)
(ai, . . . ,aiN )T

+ cG
(
e

(
t – h(t)

)
, . . . , eN

(
t – h(t)

))
(bi, . . . ,biN )T

+ cG

∫ t

t–k(t)

(
e(s), e(s), . . . , eN (s)

)
(ci, . . . , ciN )T ds

+DiKiei(t) +DiKiei
(
t – d(t)

)
+DiKi

∫ t

t–k(t)
ej(s)ds,

nω ≤ t ≤ nω + δ,

ėi(t) = J(t)ei(t) + Jh(t)ei
(
t – h(t)

)
+ Jk (t)

∫ t

t–k(t)
ei(s)ds

+ cG
(
e(t), e(t), . . . , eN (t)

)
(ai, . . . ,aiN )T

+ cG
(
e

(
t – h(t)

)
, . . . , eN

(
t – h(t)

))
(bi, . . . ,biN )T

http://www.advancesindifferenceequations.com/content/2014/1/116
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+ cG

∫ t

t–k(t)

(
e(s), e(s), . . . , eN (s)

)
(ci, . . . , ciN )T ds,

nω + δ < t ≤ (n + )ω.

Letting e(t) = (e(t), . . . , eN (t)) ∈ Rn×N , e(t – h(t)) = (e(t – h(t)), . . . , eN (t – h(t))) ∈ Rn×N ,∫ t
t–k(t)

e(s)ds =
∫ t
t–k(t)

(e(s), e(s), . . . , eN (s))ds ∈ Rn×N , K = diag{K,K, . . . ,KN }, and Dj =
diag{Dj,Dj, . . . ,DjN }, j = {, , }, we have

ė(t) =
(
J(t) +DK

)
e(t) + Jh(t)e

(
t – h(t)

)
+ Jk (t)

∫ t

t–k(t)
e(s)ds + cGe(t)AT

+ cGe
(
t – h(t)

)
BT + cG

∫ t

t–k(t)
e(s)CT ds +DKe

(
t – d(t)

)

+DK
∫ t

t–k(t)
e(s)ds, nω ≤ t ≤ nω + δ, ()

ė(t) = J(t)e(t) + Jh(t)e
(
t – h(t)

)
+ Jk (t)

∫ t

t–k(t)
e(s)ds + cGe(t)AT

+ cGe
(
t – h(t)

)
BT + cG

∫ t

t–k(t)
e(s)CT ds, nω + δ < t ≤ (n + )ω.

Obviously, A, B, C are diagonalizable. IfA, B, and C commute pairwise, i.e.,AB = BA, then
based on Lemma ., one can get a common unitary matrix Û ∈ RN×N with ûi ∈ R

n such
that

ÛTAÛ = 	, ÛTBÛ = 	, ÛTCÛ = 	,

where ÛTÛ = I , 	j = diag{λj, . . . ,λNj}, j = {, , }. In addition, with () and the irreducible
feature of A, B, and C we can select with û = √

N (, , . . . , )
T such that λj = , j = {, , }.

Using the nonsingular transform e(t)Û = z(t) = (z(t), . . . , zN (t)) ∈ RN×N , from (), we
have the following matrix equation:

ż(t) =
(
J(t) +DK

)
z(t) + Jh(t)z

(
t – h(t)

)
+ Jk (t)

∫ t

t–k(t)
z(s)ds + cGz(t)	

+ cGz
(
t – h(t)

)
	 + cG

∫ t

t–k(t)
z(s)	 ds +DKz

(
t – d(t)

)

+DK
∫ t

t–k(t)
z(s)ds, nω ≤ t ≤ nω + δ,

ż(t) = J(t)z(t) + Jh(t)z
(
t – h(t)

)
+ Jk (t)

∫ t

t–k(t)
z(s)ds + cGz(t)	

+ cGz
(
t – h(t)

)
	 + cG

∫ t

t–k(t)
z(s)	 ds, nω + δ < t ≤ (n + )ω,

that is,

żi(t) = (Ãi +DiKi)zi(t) + B̃izi
(
t – h(t)

)
+ C̃i

∫ t

t–k(t)
zi(s)ds

+DiKizi
(
t – d(t)

)
+DiKi

∫ t

t–k(t)
zi(s)ds, nω ≤ t ≤ nω + δ,

http://www.advancesindifferenceequations.com/content/2014/1/116
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żi(t) = Ãizi(t) + B̃izi
(
t – h(t)

)
+ C̃i

∫ t

t–k(t)
zi(s)ds,

nω + δ < t ≤ (n + )ω, i = , . . . ,N .

Thus, we have transformed the stability problem of the dynamical networks () to the
stability problem of the N pieces of n-dimensional linear time-varying delays differential
equations. Note that λk =  corresponding to the synchronization of the dynamical net-
works (), where the state s(t) is an orbitally stable solution of the isolate node as assumed
above in (). If the following N –  pieces of n-dimensional linear switched time-varying
delays systems:

żi(t) = (Ãi +DiKi)zi(t) + B̃izi
(
t – h(t)

)
+ C̃i

∫ t

t–k(t)
zi(s)ds

+DiKizi
(
t – d(t)

)
+DiKi

∫ t

t–k(t)
zi(s)ds, nω ≤ t ≤ nω + δ,

żi(t) = Ãizi(t) + B̃izi
(
t – h(t)

)
+ C̃i

∫ t

t–k(t)
zi(s)ds,

nω + δ < t ≤ (n + )ω, i = , . . . ,N ,

are exponentially stable, then e(t) will tend to the origin exponentially, which is equiva-
lent to the synchronization of the dynamical networks () being exponentially stable. This
completes the proof. �

Lemma . Consider the hybrid coupling delays dynamical network in (). Let  = λj >
λj ≥ λj ≥ · · · ≥ λjN , j = {, , }, be the eigenvalues of the outer-couplingmatrices A, B, and
C, respectively. If the N –  following n-dimensional linear time-varying delays differential
equations are delay-dependent exponentially stable about their zero solutions:

żi(t) = (Ãi +DiKi)zi(t) + B̃izi
(
t – h(t)

)
+ C̃i

∫ t

t–k(t)
zi(s)ds

+DiKizi
(
t – d(t)

)
+DiKi

∫ t

t–k(t)
zi(s)ds, i = , . . . ,N , ()

then the dynamical networks () is exponentially stable, then exponential synchronization
of the controlled dynamical networks () is achieved.

3.1 Linear delayed feedback control
Let us denote

‖φi‖ =
∥∥zi()∥∥, ‖ϕi‖ = sup

–τmax≤s≤

∥∥zi(s)∥∥, Ki = –LiP–
i ,

γi = λmin
(
P–
i

)
,

�i = λmax
(
P–
i

)
+

[
hλmax

(
P–
i RiP–

i
)
+ hλmax

(
P–
i UiP–

i
)] – e–αh

α

+ dλmax
(
P–
i LTi T

–
i LiP–

i
) – e–αd

α
,
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ξi =
[
λmax

(
P–
i QiP–

i
)
+ hλmax

(
P–
i RiP–

i
)
+ hλmax

(
P–
i UiP–

i
)]

×  – e–αh
α

+ kλmax
(
P–
i SiP–

i
) – e–αk

α

+ dλmax
(
P–
i LTi T

–
i LiP–

i
) – e–αh

α

+ kλmax
(
P–
i LTi W

–
i LiP–

i
) – e–αd

α
,

Ni = �i‖φi‖ + ξi‖ϕi‖,
γ =min{γi, i = , , . . . ,N}, N =max{Ni, i = , , . . . ,N}.

Theorem. For some given scalars  < α, the dynamical networks ()with time-varying
delay satisfying () are exponentially stable if there exist symmetric positive definite ma-
trices Pi > , Qi > , Ri > , Si > , Ui > , Ti > , Wi > , and a matrix Li appropriately
dimensioned such that the following symmetric linear matrix inequality holds:

�i =�i – [  I –I ]Te–αhUi[  I –I ] < , ()

�i =�i – [   I –I]Te–αhUi[   I –I] < , ()

�i =

⎡
⎢⎢⎢⎣
–.(e–αh + e–αh )Ri kC̃iPi kLTi LTi

∗ –ke–αkSi  
∗ ∗ –kWi 
∗ ∗ ∗ –e–αdTi

⎤
⎥⎥⎥⎦ < , ()

�i =

⎡
⎢⎢⎢⎢⎢⎢⎣

–.Pi kC̃iPi dLTi DT
i kDT

i

∗ –ke–αkSi   
∗ ∗ –dTi  
∗ ∗ ∗ –e–αdTi 
∗ ∗ ∗ ∗ –ke–αkWi

⎤
⎥⎥⎥⎥⎥⎥⎦
< , ()

i = , . . . ,N , where

�i =

⎡
⎢⎢⎢⎢⎢⎢⎣

�i �i �i �i �i

∗ �i  �i 
∗ ∗ �i �i 
∗ ∗ ∗ �i �i

∗ ∗ ∗ ∗ �i

⎤
⎥⎥⎥⎥⎥⎥⎦
,

�i = PT
i (Ãi + αI) + (Ãi + αI)TPi –DiLi – LTi D

T
i + eαdDT

iTiDi

+ keαkDT
iWiDi + Qi + kSi – .e–αhRi – .e–αhRi,

�i = PiÃT
i ,

�i = e–αhRi,

�i = B̃iPi,

�i = e–αhRi,

�i = hRi + hRi + ηUi – .Pi,
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�i = B̃iPi,

�i = –e–αhQi – e–αhRi – e–αhUi,

�i = e–αhUi,

�i = –e–αhUi,

�i = e–αhUi,

�i = –e–αhUi – e–αhQi – e–αhRi,

then the dynamical networks ()have exponential synchronization.Moreover, the feedback
control is

ui(t) = –LiP–
i zi(t). ()

Proof Let Yi = P–
i , yi(t) = Yizi(t). Using the feedback control ()we consider the following

Lyapunov-Krasovskii functional:

Vi
(
zi(t)

)
= Vi(t) +Vi(t) +Vi(t) +Vi(t) +Vi(t) +Vi(t) +Vi(t)

+Vi(t) +Vi(t), ()

where

Vi(t) = zTi (t)Yizi(t),

Vi(t) =
∫ t

t–h
eα(s–t)zTi (s)YiQiYizi(s)ds,

Vi(t) =
∫ t

t–h
eα(s–t)zTi (s)YiQiYizi(s)ds,

Vi(t) = h
∫ 

–h

∫ t

t+s
eα(τ–t)żTi (τ )YiRiYiżi(τ )dτ ds,

Vi(t) = h
∫ 

–h

∫ t

t+s
eα(τ–t)żTi (τ )YiRiYiżi(τ )dτ ds,

Vi(t) = (h – h)
∫ t–h

t–h

∫ t

t+s
eα(τ–t)żTi (τ )YiUiYiżi(τ )dτ ds,

Vi(t) =
∫ 

–k

∫ t

t+s
eα(τ–t)zTi (τ )YiSiYzi(τ )dτ ds,

Vi(t) = d
∫ 

–d

∫ t

t+s
eα(τ–t)żTi (τ )K

T
i T

–
i Kiżi(τ )dτ ds,

Vi(t) =
∫ 

–k

∫ t

t+s
eα(τ–t)zTi (τ )K

T
i W

–
i Kizi(τ )dτ ds.

It easy to check that

γ
∥∥zi(t)∥∥ ≤ Vi

(
zi(t)

)
, ∀t ≥ . ()
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By taking the derivative ofVi(t) along the trajectories of system (), we have the following:

V̇i(t) = zTi (t)Yiżi(t)

= yTi (t)
[
(Ãi +DiKi)zi(t) + B̃izi

(
t – h(t)

)
+ C̃i

∫ t

t–k(t)
zi(s)ds

+DiKizi
(
t – d(t)

)
+DiKi

∫ t

t–k(t)
zi(s)ds

]

= yTi (t)
[
PiÃi + ÃT

i Pi
]
yi(t) + yTi (t)B̃iPiyi

(
t – h(t)

)
+ yTi (t)C̃iPi

∫ t

t–k(t)
yi(s)ds – yTi (t)DiLTi yi(t) + yTi (t)Diui

(
t – d(t)

)

+ yTi (t)Di

∫ t

t–k(t)
ui(s)ds + yTi (t)αPiyi(t) – yTi (t)αPiyi(t).

Applying Lemma . and Lemma . gives

yTi (t)C̃iPi

∫ t

t–k(t)
yi(s)ds≤ keαkyTi (t)C̃iPiS–i PiC̃T

i yi(t)

+
e–αk
k

(∫ t

t–k(t)
yi(s)ds

)T

Si
(∫ t

t–k(t)
yi(s)ds

)

≤ keαkyTi (t)C̃iPiS–i PiC̃T
i yi(t)

+


e–αk

∫ t

t–k(t)
yTi (s)Siyi(s)ds,

yTi (t)Diui
(
t – d(t)

) ≤ eαdyTi (t)DiTiDT
iyi(t)

+
e–αd


uTi

(
t – d(t)

)
T–
i ui

(
t – d(t)

)
,

yTi (t)Di

∫ t

t–k(t)
ui(s)ds≤ keαkyTi (t)DiWiDT

iyi(t)

+
eαk
k

(∫ t

t–k(t)
ui(s)ds

)T

W–
i

(∫ t

t–k(t)
ui(s)ds

)

≤ keαkyTi (t)DiWiDT
iyi(t)

+
eαk


∫ t

t–k(t)
uTi (s)W

–
i ui(s)ds.

Therefore

V̇i(t) + αVi(t) ≤ yTi (t)
[
PiÃi + ÃT

i Pi
]
yi(t) + yTi (t)αPiyi(t)

+ yTi (t)B̃iPiyi
(
t – h(t)

)
– yTi (t)DiLTi yi(t)

+ keαkyTi (t)C̃iPiS–i PiC̃T
i yi(t)

+


e–αk

∫ t

t–k(t)
yTi (s)Siyi(s)ds

+ eαdyTi (t)DiTiDT
iyi(t)

+
e–αd


uTi

(
t – d(t)

)
T–
i ui

(
t – d(t)

)
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+ keαkyTi (t)DiWiDT
iyi(t)

+
eαk


∫ t

t–k(t)
uTi (s)W

–
i ui(s)ds. ()

Next, by taking the derivative of Vij(t), j = , , . . . ,  along the trajectories of system (),
we have the following:

V̇i(t)≤ yTi (t)Qiyi(t) – e–αhyTi (t – h)Qiyi(t – h) – αVi(t),

V̇i(t)≤ yTi (t)Qiyi(t) – e–αhyTi (t – h)Qiyi(t – h) – αVi(t),

V̇i(t)≤ h ẏ
T
i (t)Riẏi(t) – he–αh

∫ t

t–h
ẏTi (s)Riẏi(s)ds – αVi(t),

V̇i(t) ≤ hẏ
T
i (t)Riẏi(t) – he–αh

∫ t

t–h
ẏTi (s)Riẏi(s)ds – αVi(t),

V̇i(t)≤ ηẏTi (t)Uiẏi(t) – ηe–αh
∫ t–h

t–h
ẏTi (s)Uiẏi(s)ds – αVi(t),

V̇i(t)≤ kyTi (t)Siyi(t) – e–αk
∫ t

t–k(t)
yTi (s)Siyi(s)ds – αVi(t),

V̇i(t)≤ dżTi (t)K
T
i T

–
i KiżTi (t) – de–αd

∫ t

t–d
żTi (s)K

T
i T

–
i KiżTi (s)ds – αVi(t)

≤ dẏTi (t)PiKT
i T

–
i KiPiẏTi (t) – d(t)e–αd

∫ t

t–d(t)
u̇Ti (s)T

–
i u̇i(s)ds – αVi(t)

= dẏTi (t)L
T
i T

–
i LiẏTi (t) – d(t)e–αd

∫ t

t–d(t)
u̇Ti (s)T

–
i u̇i(s)ds – αVi(t),

V̇i(t)≤ kzTi (t)K
T
i W

–
i KizTi (t) – e–αk

∫ t

t–k
zTi (s)K

T
i W

–
i KizTi (s)ds – αVi(t)

≤ kyTi (t)PiKT
i W

–
i KiPiyTi (t) – e–αk

∫ t

t–k(t)
uTi (s)W

–
i uTi (s)ds – αVi(t)

≤ kyTi (t)L
T
i W

–
i LiyTi (t) – e–αk

∫ t

t–k(t)
uTi (s)W

–
i uTi (s)ds – αVi(t).

()

Applying Lemma . and the Leibniz-Newton formula, we have

–h
∫ t

t–h
ẏTi (s)Riẏi(s)ds ≤ –

[∫ t

t–h
ẏi(s)ds

]T

Ri

[∫ t

t–h
ẏi(s)ds

]

≤ –
[
yi(t) – yi(t – h)

]TRi
[
yi(t) – yi(t – h)

]
= –yTi (t)Riyi(t) + yTi (t)Riyi(t – h)

– yTi (t – h)Riyi(t – h) ()

and

–h
∫ t

t–h
ẏTi (s)Riẏi(s)ds ≤ –

[∫ t

t–h
ẏi(s)ds

]T

Ri

[∫ t

t–h
ẏi(s)ds

]

≤ –
[
yi(t) – yi(t – h)

]TRi
[
yi(t) – yi(t – h)

]
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= –yTi (t)Riyi(t) + yTi (t)Riyi(t – h)

– yTi (t – h)Riyi(t – h). ()

On the other hand,

–(h – h)
∫ t–h

t–h
ẏTi (s)Uiẏi(s)ds = –(h – h)

∫ t–h(t)

t–h
ẏTi (s)Uiẏi(s)ds

– (h – h)
∫ t–h

t–h(t)
ẏTi (s)Uiẏi(s)ds

= –
(
h – h(t)

)∫ t–h(t)

t–h
ẏTi (s)Uiẏi(s)ds

–
(
h(t) – h

)∫ t–h(t)

t–h
ẏTi (s)Uiẏi(s)ds

–
(
h(t) – h

)∫ t–h

t–h(t)
ẏTi (s)Uiẏi(s)ds

–
(
h – h(t)

)∫ t–h

t–h(t)
ẏTi (s)Uiẏi(s)ds.

Using Lemma . gives

–
(
h – h(t)

)∫ t–h(t)

t–h
ẏTi (s)Uiẏi(s)ds ≤ –

[∫ t–h(t)

t–h
ẏi(s)ds

]T

Ui

[∫ t–h(t)

t–h
ẏi(s)ds

]

≤ –
[
yi

(
t – h(t)

)
– yi(t – h)

]TUi

× [
yi

(
t – h(t)

)
– yi(t – h)

]
= –yTi

(
t – h(t)

)
Uiyi

(
t – h(t)

)
+ yTi

(
t – h(t)

)
Uiyi(t – h)

– yTi (t – h)Uiyi(t – h) ()

and

–
(
h(t) – h

)∫ t–h

t–h(t)
ẏTi (s)Uiẏi(s)ds ≤ –

[∫ t–h

t–h(t)
ẏi(s)ds

]T

Ui

[∫ t–h

t–h(t)
ẏi(s)ds

]

≤ –
[
yi(t – h) – yi

(
t – h(t)

)]TUi

× [
yi(t – h) – yi

(
t – h(t)

)]
= –yTi (t – h)Uiyi(t – h) + yTi (t – h)Uiyi

(
t – h(t)

)
– yTi

(
t – h(t)

)
Uiyi

(
t – h(t)

)
. ()

Let β = h–h(t)
h–h

≤ . Then

–
(
h – h(t)

)∫ t–h

t–h(t)
ẏTi (s)Uiẏi(s)ds = –β

∫ t–h

t–h(t)
(h – h)ẏTi (s)Uiẏi(s)ds

≤ –β

∫ t–h

t–h(t)

(
h(t) – h

)
ẏTi (s)Uiẏi(s)ds
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≤ –β
[
yi(t – h) – yi

(
t – h(t)

)]TUi

× [
yi(t – h) – yi

(
t – h(t)

)]
()

and

–
(
h(t) – h

)∫ t–h(t)

t–h
ẏTi (s)Uiẏi(s)ds = –( – β)

∫ t–h(t)

t–h
(h – h)ẏTi (s)Uiẏi(s)ds

≤ –( – β)
∫ t–h(t)

t–h

(
h – h(t)

)
ẏTi (s)Uiẏi(s)ds

≤ –( – β)
[
yi

(
t – h(t)

)
– yi(t – h)

]TUi

× [
yi

(
t – h(t)

)
– yi(t – h)

]
. ()

Therefore from ()-(), we obtain

–(h – h)
∫ t–h

t–h
ẏTi (s)Uiẏi(s)ds ≤ –

[
yi

(
t – h(t)

)
– yi(t – h)

]TUi

× [
yi

(
t – h(t)

)
– yi(t – h)

]
–

[
yi(t – h) – yi

(
t – h(t)

)]TUi

× [
yi(t – h) – yi

(
t – h(t)

)]
– β

[
yi(t – h) – yi

(
t – h(t)

)]TUi

× [
yi(t – h) – yi

(
t – h(t)

)]
– ( – β)

[
yi

(
t – h(t)

)
– yi(t – h)

]TUi

× [
yi

(
t – h(t)

)
– yi(t – h)

]
. ()

From V̇i(t), applying Lemma . and the Leibniz-Newton formula gives

–d(t)e–αd
∫ t

t–d(t)
u̇Ti (s)T

–
i u̇i(s)ds ≤ –e–αd

(∫ t

t–d(t)
u̇i(s)ds

)T

T–
i

(∫ t

t–d(t)
u̇i(s)ds

)

≤ –e–αduTi (t)T
–
i ui(t)

+ e–αduTi (t)iT
–
i ui

(
t – d(t)

)
– e–αduTi

(
t – d(t)

)
T–
i ui

(
t – d(t)

)
≤ –e–αduTi (t)T

–
i ui(t) + e–αduTi (t)T

–
i ui(t)

+
e–αd


uTi

(
t – d(t)

)
T–
i TiT–

i ui
(
t – d(t)

)
– e–αduTi

(
t – d(t)

)
T–
i ui

(
t – d(t)

)
= e–αdzTi (t)K

T
i T

–
i Kizi(t)

+
e–αd


uTi

(
t – d(t)

)
T–
i TiT–

i ui
(
t – d(t)

)
– e–αduTi

(
t – d(t)

)
T–
i ui

(
t – d(t)

)
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= e–αdyTi (t)L
T
i T

–
i Liyi(t)

+
e–αd


uTi

(
t – d(t)

)
T–
i ui

(
t – d(t)

)
– e–αduTi

(
t – d(t)

)
T–
i ui

(
t – d(t)

)
. ()

By using the following identity relation:

–żi(t) + (Ãi +DiKi)zi(t) + B̃izi
(
t – h(t)

)
+ C̃i

∫ t

t–k(t)
zi(s)ds

+DiKizi
(
t – d(t)

)
+DiKi

∫ t

t–k(t)
zi(s)ds = ,

we have

–ẏTi (t)Piẏi(t) + ẏTi (t)ÃiPiyi(t) – ẏTi (t)DiLiyi(t) + ẏTi (t)B̃iPiyi
(
t – h(t)

)
+ ẏTi (t)C̃iPi

∫ t

t–k(t)
yi(s)ds + ẏTi (t)Diui

(
t – d(t)

)

+ ẏTi (t)Di

∫ t

t–k(t)
ui(s)ds = . ()

Applying Lemma . and Lemma . gives

ẏTi (t)C̃iPi

∫ t

t–k(t)
yi(s)ds≤ keαk ẏTi (t)C̃iPiS–i PiC̃T

i ẏi(t)

+

k

e–αk
(∫ t

t–k(t)
yi(s)ds

)T

Si

×
(∫ t

t–k(t)
yi(s)ds

)

≤ keαk ẏTi (t)C̃iPiS–i PiC̃T
i ẏi(t)

+


e–αk

∫ t

t–k(t)
yTi (s)Siyi(s)ds, ()

ẏTi (t)Diui
(
t – d(t)

) ≤ eαdẏTi (t)D
T
iT

–
i Diẏi(t)

+
e–αd


uTi

(
t – d(t)

)
T–
i ui

(
t – d(t)

)
, ()

ẏTi (t)Di

∫ t

t–k(t)
ui(s)ds≤ keαkyTi (t)D

T
iW

–
i Diyi(t)

+

k

e–αk
(∫ t

t–k(t)
ui(s)ds

)T

Wi

×
(∫ t

t–k(t)
ui(s)ds

)

≤ keαkyTi (t)D
T
iW

–
i Diyi(t)

+
eαk


∫ t

t–k(t)
uTi (s)W

–
i ui(s)ds. ()
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Hence, according to ()-(), ()-(), and adding the zero items of () we have

V̇i
(
zi(t)

)
+ αVi

(
zi(t)

) ≤ ξT
i (t)

[
( – β)�i + β�i

]
ξi(t) + yTi (t)Miyi(t)

+ ẏTi (t)Miẏi(t), ()

where �i and �i are defined as in () and (), respectively, and

ξT
i (t) =

[
yTi (t) ẏTi (t) yTi (t – h) yTi

(
t – h(t)

)
yTi (t – h)

]
,

Mi = –.
(
e–αh + e–αh

)
Ri + keαk C̃iPiS–i PiC̃T

i + kLTi W
–
i Li

+ e–αdLTi T
–
i Li,

Mi = –.Pi + keαk C̃iPiS–i PiC̃T
i + dLTi T

–
i Li + eαdDT

iT
–
i Di

+ keαkDT
iW

–
i Di.

By (–β)�i+β�i <  holds if and only if�i <  and�i < . Applying the Schur comple-
ment lemma, the inequalities Mi <  and Mi <  are equivalent to �i <  and �i < ,
respectively. Therefore, it follows from ()-(), and (), we obtain

V̇i
(
zi(t)

)
+ αVi

(
zi(t)

) ≤ , ∀t ≥ . ()

Integrating both sides of () from  to t, we have

Vi
(
zi(t)

) ≤ Vi
(
zi()

)
e–αt , ∀t ≥ .

On the other hand, using the condition (), we have

∥∥zi(t)∥∥ ≤
√
Vi(zi())

γ
e–αt , ∀t ≥ .

Estimating Vi(zi()) gives

Vi
(
zi()

)
= zTi ()P

–
i zi()≤ λmax

(
P–
i

)‖φi‖,

Vi
(
zi()

)
=

∫ 

–h
eαszTi (s)YiQiYizi(s)ds≤ λmax

(
P–
i QiP–

i
)∫ 

–h
eαs ds‖ϕi‖

= λmax
(
P–
i QiP–

i
) – e–αh

α
‖ϕi‖ ≤ λmax

(
P–
i QiP–

i
) – e–αh

α
‖ϕi‖,

Vi
(
zi()

) ≤ λmax
(
P–
i QiP–

i
) – e–αh

α
‖ϕi‖,

Vi
(
zi()

)
= h

∫ 

–h

∫ 

s
eατ żTi (τ )YiRiYiżi(τ )dτ ds

= h
∫ 

–h
eαs

[
zTi ()YiRiYizi() – zTi (s)YiRiYizi(s)

]
ds

≤ hλmax(YiRiYi)
∫ 

–h
eαs ds‖φi‖ – hλmax(YiRiYi)

∫ 

–h
eαs ds‖ϕi‖
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= hλmax(YiRiYi)
 – e–αh

α
‖φi‖ – hλmax(YiRiYi)

 – e–αh
α

‖ϕi‖

≤ hλmax
(
P–
i RiP–

i
) – e–αh

α
‖φi‖ + hλmax

(
P–
i RiP–

i
)

×  – e–αh
α

‖ϕi‖,

Vi
(
zi()

) ≤ hλmax
(
P–
i RiP–

i
) – e–αh

α
‖φi‖ + hλmax

(
P–
i RiP–

i
)

×  – e–αh
α

‖ϕi‖,

Vi
(
zi()

) ≤ hλmax
(
P–
i UiP–

i
) – e–αh

α
‖φi‖ + hλmax

(
P–
i UiP–

i
)

×  – e–αh
α

‖ϕi‖,

Vi
(
zi()

)
=

∫ 

–k

∫ 

s
eατ zTi (τ )YiSiYizi(τ )dτ ds

≤
∫ 

–k

∫ 

–k
eαszTi (τ )YiSiYizi(τ )dτ ds

≤ λmax(YiSiYi)
∫ 

–k

∫ 

–k
eατ dτ ds‖ϕi‖

= kλmax
(
P–
i SiP–

i
) – e–αk

α
‖ϕi‖,

Vi
(
zi()

) ≤ dλmax
(
P–
i LTi T

–
i LiP–

i
) – e–αd

α
‖φi‖

+ dλmax
(
P–
i LTi T

–
i LiP–

i
) – e–αd

α
‖ϕi‖,

Vi
(
zi()

) ≤ kλmax
(
P–
i LTi W

–
i LiP–

i
) – e–αk

α
‖ϕi‖,

we have

∥∥zi(t)∥∥ ≤
√
N
γ
e–αt , ∀t ≥ ,

which implies the dynamical networks () is globally exponentially stable under the con-
troller H, then exponential synchronization of the controlled dynamical networks () is
achieved. The proof is thus completed. �

3.2 Intermittent delayed feedback control
Theorem . For some given scalars  < α < ε, the dynamical networks () with time-
varying delay satisfying () are exponentially stable if there exist symmetric positive definite
matrices Pi > ,Qi > , Ri > , Si > ,Ui > , Ti > ,Wi > , and a matrix Li with appropri-
ately dimensioned such that the following symmetric linear matrix inequality holds:

�i =�i – [  I –I ]Te–αhUi[  I –I ] < , ()

�i = �i – [   I –I]Te–αhUi[   I –I] < , ()
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�i = �̃i – [  I –I ]Te–αhUi[  I –I ] < , ()

�i = �̃i – [   I –I]Te–αhUi[   I –I] < , ()

�i =

⎡
⎢⎢⎢⎣
–.(e–αh + e–αh )Ri kC̃iPi kLTi LTi

∗ –ke–αkSi  
∗ ∗ –kWi 
∗ ∗ ∗ –e–αdTi

⎤
⎥⎥⎥⎦ < , ()

�i =

⎡
⎢⎢⎢⎢⎢⎢⎣

–.Pi kC̃iPi dLTi DT
i kDT

i
∗ –ke–αkSi   
∗ ∗ –dTi  
∗ ∗ ∗ –e–αdTi 
∗ ∗ ∗ ∗ –ke–αkWi

⎤
⎥⎥⎥⎥⎥⎥⎦
< , ()

�i =

[
–.(e–αh + e–αh )Ri – εPi kC̃iPi

∗ –ke–αkSi

]
< , ()

�i =

[
–.Pi kC̃iPi

∗ –ke–αkSi

]
<  ()

and

–αδ + (ε – α)(ω – δ) < , ()

i = , . . . ,N , where

�i =

⎡
⎢⎢⎢⎢⎢⎢⎣

�i �i �i �i �i

∗ �i  �i 
∗ ∗ �i �i 
∗ ∗ ∗ �i �i

∗ ∗ ∗ ∗ �i

⎤
⎥⎥⎥⎥⎥⎥⎦
,

�̃i =

⎡
⎢⎢⎢⎢⎢⎢⎣

�̃i �i �i �i �i

∗ �i  �i 
∗ ∗ �i �i 
∗ ∗ ∗ �i �i

∗ ∗ ∗ ∗ �i

⎤
⎥⎥⎥⎥⎥⎥⎦
,

�i = PT
i (Ãi + αI) + (Ãi + αI)TPi –DiLi – LTi D

T
i + eαdDT

iTiDi

+ keαkDT
iWiDi + Qi + kSi – .e–αhRi – .e–αhRi,

�̃i = PT
i (Ãi + αI) + (Ãi + αI)TPi + Qi + kSi – .e–αhRi – .e–αhRi,

�i = PiÃT
i ,

�i = e–αhRi,

�i = B̃iPi,

�i = e–αhRi,

�i = hRi + hRi + ηUi – .Pi,
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�i = B̃iPi,

�i = –e–αhQi – e–αhRi – e–αhUi,

�i = e–αhUi,

�i = –e–αhUi,

�i = e–αhUi,

�i = –e–αhUi – e–αhQi – e–αhRi,

then the dynamical networks () have exponential synchronization.Moreover, the feedback
control is

ui(t) =

{
–LiP–

i zi(t), nω ≤ t ≤ nω + δ,
, nω + δ < t ≤ (n + )ω.

()

Proof Case I: for nω ≤ t ≤ nω+δ, we choose the Lyapunov-Krasovskii functional as in ()
and using the feedback control (), we may proof this case by using a similar argument
as in the proof of Theorem .. By replacingDi, Di and Di in ()-() with Di,Di, and
Di, respectively. We have

V̇i
(
zi(t)

)
+ αVi

(
zi(t)

) ≤ ξT
i (t)

[
( – β)�i + β�i

]
ξi(t) + yTi (t)Niyi(t)

+ ẏTi (t)Niẏi(t), ()

where �i and �i are defined as in () and (), respectively, and

ξT
i (t) =

[
yTi (t) ẏTi (t) yTi (t – h) yTi

(
t – h(t)

)
yTi (t – h)

]
,

Ni = –.
(
e–αh + e–αh

)
Ri + keαk C̃iPiS–i PiC̃T

i

+ kLTi W
–
i Li + e–αdLTi T

–
i Li,

Ni = –.Pi + keαk C̃iPiS–i PiC̃T
i + dLTi T

–
i Li + eαdDT

iT
–
i Di

+ keαkDT
iW

–
i Di.

By ( – β)�i + β�i <  holds if and only if �i <  and �i < . Applying the Schur com-
plement lemma, the inequalitiesNi <  andNi <  are equivalent to �i <  and �i < ,
respectively. Therefore, it follows from ()-(), ()-(), and (), we obtain

V̇i
(
zi(t)

)
+ αVi

(
zi(t)

) ≤  for nω ≤ t ≤ nω + δ. ()

Thus, by the above differential inequality (), we have

Vi
(
zi(t)

) ≤ Vi
(
zi(nω)

)
e–α(t–nω) for nω ≤ t ≤ nω + δ. ()

Case II: for nω + δ ≤ t ≤ (n+ )ω, we choose the Lyapunov-Krasovskii functional having
the following form:

Vi
(
zi(t)

)
= Vi(t) +Vi(t) +Vi(t) +Vi(t) +Vi(t) +Vi(t) +Vi(t),
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where Vij(t), j = , , . . . ,  are defined similar in (). We are able to do a similar estimation
as we did for Theorem ., and we have the following:

V̇i
(
zi(t)

)
+ αVi

(
zi(t)

) ≤ ξT
i (t)

[
( – β)�i + β�i

]
ξi(t) + yTi (t)Niyi(t) + ẏTi (t)Niẏi(t)

≤ ξT
i (t)

[
( – β)�i + β�i

]
ξi(t) + yTi (t)Niyi(t)

+ ẏTi (t)Niẏi(t) + εVi
(
zi(t)

)
– εVi(t)

= ξT
i (t)

[
( – β)�i + β�i

]
ξi(t) + yTi (t)Niyi(t) ()

+ ẏTi (t)Niẏi(t) + εVi
(
zi(t)

)
– εyTi (t)Piyi(t),

V̇i
(
zi(t)

)
– (ε – α)Vi

(
zi(t)

) ≤ ξT
i (t)

[
( – β)�i + β�i

]
ξi(t)

+ yTi (t)(Ni – εPi)yi(t) + ẏTi (t)Niẏi(t),

where �i and �i are defined as in () and (), respectively, and

ξT
i (t) =

[
yTi (t) ẏTi (t) yTi (t – h) yTi

(
t – h(t)

)
yTi (t – h)

]
,

Ni = –.
(
e–αh + e–αh

)
Ri + keαk C̃iPiS–i PiC̃T

i ,

Ni = –.Pi + keαk C̃iPiS–i PiC̃T
i .

Now ( – β)�i + β�i <  holds if and only if �i <  and �i < . Applying the Schur
complement lemma, the inequalities (Ni –εPi) <  andNi <  are equivalent to �i < 
and �i < , respectively. Therefore, it follows from ()-(), ()-(), and (), that we
obtain

V̇i
(
zi(t)

)
– (ε – α)Vi

(
zi(t)

) ≤  for nω + δ < t ≤ (n + )ω. ()

From the above differential inequality (), we have

Vi
(
zi(t)

) ≤ Vi
(
zi(nω + δ)

)
e(ε–α)(t–nω–δ) for nω + δ < t ≤ (n + )ω. ()

By () and (), we have

Vi
(
zi

(
(n + )ω

)) ≤ Vi
(
zi(nω + δ)

)
e(ε–α)(ω–δ)

≤ Vi
(
zi(nω)

)
e–αδe(ε–α)(ω–δ)

= Vi
(
zi(nω)

)
e–αδ+(ε–α)(ω–δ)

≤ Vi
(
zi

(
(n – )ω + δ

))
eρ(ω–δ)e–αδ+(ε–α)(ω–δ)

≤ Vi
(
zi

(
(n – )ω

))
e–αδ+(ε–α)(ω–δ)e–αδ+(ε–α)(ω–δ)

= Vi
(
zi

(
(n – )ω

))
e(–αδ+(ε–α)(ω–δ))

...

≤ Vi
(
zi()

)
e(–αδ+(ε–α)(ω–δ))(n+).

For any t > , there is a n ≥ , such that nω ≤ t ≤ (n + )ω.
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Case . For nω + δ ≤ t ≤ (n + )ω, using condition (), we have

Vi
(
zi(t)

) ≤ Vi
(
zi(nω + δ)

)
e(ε–α)(t–(nω+δ))

≤ Vi
(
zi(nω)

)
e–αδe(ε–α)(t–(nω+δ))

≤ Vi
(
zi()

)
e(–αδ+(ε–α)(ω–δ))ne–αδe(ε–α)(t–(nω+δ))

≤ Vi
(
zi()

)
e(–αδ+(ε–α)(ω–δ))ne–αδe(ε–α)((n+)ω–(nω+δ))

= Vi
(
zi()

)
e(–αδ+(ε–α)(ω–δ))(n+)

= Vi
(
zi()

)
e
(–αδ+(ε–α)(ω–δ))(n+)ω

ω

≤ Vi
(
zi()

)
e
(–αδ+(ε–α)(ω–δ))t

ω . ()

Case . For nω ≤ t ≤ nω + δ, using condition (), we have

Vi
(
zi(t)

) ≤ Vi
(
zi(nω)

)
e–α(t–nω)

≤ Vi
(
zi()

)
e(–αδ+(ε–α)(ω–δ))ne–α(t–nω)

≤ Vi
(
zi()

)
e(–αδ+(ε–α)(ω–δ))n

= Vi
(
zi()

)
e–(–αδ+(ε–α)(ω–δ))e(–αδ+(ε–α)(ω–δ))(n+)

= Vi
(
zi()

)
e–(–αδ+(ε–α)(ω–δ))e

(–αδ+(ε–α)(ω–δ))(n+)ω
ω

≤ Vi
(
zi()

)
e–(–αδ+(ε–α)(ω–δ))e

(–αδ+(ε–α)(ω–δ))t
ω . ()

Let ξ = e–(–αδ+(ε–α)(ω–δ)). By () and (), we have

Vi
(
zi(t)

) ≤ ξVi
(
zi()

)
e
(–αδ+(ε–α)(ω–δ))t

ω , ∀t ≥ .

On the other hand, using the condition (), we have obtained the following:

∥∥zi(t)∥∥ ≤
√
N ξ

γ
e
(–αδ+(ε–α)(ω–δ))t

ω , ∀t ≥ .

which implies the dynamical networks () is exponentially stable under the controller H,
then exponential synchronization of the controlled dynamical networks () is achieved.
The proof is thus completed. �

Remark . It is clear that as δ → ω the intermittent feedback control will reduce to a
continuous feedback. In this case, presented in Theorem ..

Remark . In [–], the authors investigated synchronization of complex dynamical
network with coupling time-delay, but the time-delay considered in these three works are
assumed to be constants delay. In [], Li et al. presented synchronization in complex dy-
namical networks with time-varying delays in the network couplings and time-varying
delays in the dynamical nodes, but the time-varying delays are required to be differen-
tiable, which is a very strict condition. Obviously, we do not need these limit condition in
this paper.
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Remark . If k(t) = , c = , c = , and Ui(t) = , then system () reduces to the follow-
ing system presented in [, ]:

ẋi(t) = f
(
xi(t)

)
+ c

N∑
j=

bijGxj
(
t – h(t)

)
, t > , i = , , . . . ,N . ()

According to Theorem ., we obtain the following corollary for the synchronization of
network ().

Corollary . For some given scalars  < α, the dynamical networks ()with time-varying
delay h(t) satisfying () are exponentially synchronization if there exist symmetric positive
definite matrices Pi > , Qi > , Ri > , Ui > , such that the following symmetric linear
matrix inequality holds:

	i = 	i – [  I –I ]Te–αhUi[  I –I ] < , ()

	i = 	i – [   I –I]Te–αhUi[   I –I] < , ()

where

	i = PT
i
(
J(t) + αI

)
+

(
J(t) + αI

)TPi + Qi – e–αhRi – e–αhRi,

	i = PiJT (t),

	i = e–αhRi,

	i = cλiGPi,

	i = e–αhRi,

	i = hRi + hRi + ηUi – Pi,

	i = cλiGPi,

	i = –e–αhQi – e–αhRi – e–αhUi,

	i = e–αhUi,

	i = –e–αhUi,

	i = e–αhUi,

	i = –e–αhUi – e–αhQi – e–αhRi.

Proof Similar to proof of Theorem .. Indeed, by setting Si = , Ti = , andWi =  in (),
one may easily derive the result and hence the proof is omitted. �

Remark . In [–], the authors investigated synchronization of complex dynami-
cal network with coupling time-delay based on intermittent control, but the controller is
presented in terms of nominal state-delayed systems. On the other hands, we have consid-
ered more complicated problem, namely, synchronization of complex dynamical network
with hybrid coupling delay andmixed time-varying delay (interval time-varying delay and
distributed time-varying delay), which time-varying delay using both state-delayed feed-
back control as well as intermittent state-delayed feedback control. It should be pointed
out that the synchronization problem for complex dynamical networks with both interval
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and distributed time-varying delays has not received much attention in the literature, not
to mention the case when the coupling and controller are also involved.

4 Numerical examples
In this section, we now provide an example to show the effectiveness of the result in The-
orem . and Theorem ..

Example . We first consider the perturbed Chua circuit system with mixed time-
varying delays is used as uncoupled node in the network () to show the effectiveness
of the proposed control scheme. The perturbed Chua circuit system with mixed time-
varying delays is given by []

ẋ(t) = p
(
x

(
t – h(t)

)
–


(
x (t) – x(t)

))
,

ẋ(t) = x(t) – sx(t) + x
(
t – h(t)

)
, ()

ẋ(t) = qx(t) + r
∫ t

t–k(t)
x (s)ds,

where p, q, r, and s are real positive constants. It is well known that the system () exhibits
chaotic behavior with the parameters p, q, r, and s are chosen as p = , q = –

 , r = .,
and s = ., the initial condition function φ(t) = [. cos t, sin t, sin t]T , the time-varying
delay functions h(t) = .+.| sin t| and k(t) = .| cos t| is shown in Figure . The solution
of the system () is denoted by s(t) = (s(t), s(t), s(t))T , which is shown in Figure . It is
stable at the equilibrium point s(t) = , s(t – h(t)) = ,

∫ t
t–k(t)

s(θ )dθ = , and the Jacobian
matrices are

J(t) =

⎡
⎢⎣
  
 –. 
 –

 

⎤
⎥⎦ , Jh(t) =

⎡
⎢⎣
  
  
  

⎤
⎥⎦ , Jk (t) =

⎡
⎢⎣
  
  
  

⎤
⎥⎦ .

Figure 1 Chaotic behavior of the perturbed Chua circuit systemwith mixed time-varying delays (56).
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Figure 2 Solution s(t) of the perturbed Chua circuit systemwith mixed time-varying delays (56).

Consider a network consisting of five identical perturbed Chua circuit system with
mixed time-varying and hybrid coupling delays. The corresponding controlled dynami-
cal network () can be described as

ẋi(t) = f
(
xi(t),xi

(
t – h(t)

)
,
∫ t

t–k(t)
xi(s)ds

)
+ c

N∑
j=

aijGxj(t)

+ c
N∑
j=

bijGxj
(
t – h(t)

)
+ c

N∑
j=

cijG

∫ t

t–k(t)
xj(s)ds

+DiKi
(
xi(t) – s(t)

)
+DiKi

(
xi

(
t – d(t)

)
– s

(
t – d(t)

))
+DiKi

(∫ t

t–k(t)
xi(s)ds –

∫ t

t–k(t)
s(θ )dθ

)
, i = , , . . . , .

Assume that Di = diag{, , }, Di = diag{., ., .}, Di = diag{., ., .}, i = , ,
. . . , , the coupling strength c = ., c = ., c = ., the inner-coupling matrices are

G =

⎡
⎢⎣
  
  
  

⎤
⎥⎦ , G =

⎡
⎢⎣
  
  
  

⎤
⎥⎦ ,

G =

⎡
⎢⎣
.  
 . 
  .

⎤
⎥⎦ ,
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Figure 3 The topology structure of complex networks with N = 5.

and the outer-couplingmatrices are given by the following irreducible symmetricmatrices
satisfying condition ():

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

–    
 –   
  –  
   – 
    –

⎤
⎥⎥⎥⎥⎥⎥⎦
, B = C =

⎡
⎢⎢⎢⎢⎢⎢⎣

–    
 –   
  –  
   – 
    –

⎤
⎥⎥⎥⎥⎥⎥⎦
,

and the topology structure of complex networks is shown in Figure .
The eigenvalues of A, B, and C are λ = {,–.,–.,–.,–.}, λ = {,–,

–,–,–}, and λ = {,–,–,–,–}, respectively.
Solution: From the conditions ()-() ofTheorem.,we letα = ., h = ., h = .,

k = ., k = ., d = ., the gain matrices of the desired controllers can be obtained as
follows:

K =

⎡
⎢⎣
–. –. –.
–. –. .
–. . –.

⎤
⎥⎦ , K =

⎡
⎢⎣
–. –. –.
–. –. .
–. . –.

⎤
⎥⎦ ,

K =

⎡
⎢⎣
–. . –.
. –. .
–. . –.

⎤
⎥⎦ , K =

⎡
⎢⎣
–. . –.
. –. .
–. . –.

⎤
⎥⎦ ,

K =

⎡
⎢⎣
–. . –.
. –. .
–. . –.

⎤
⎥⎦ .

The numerical simulations are carried out using the explicit Runge-Kutta-like method
(dde), interpolation and extrapolation by spline of the third order. Figure  shows the
synchronization between the states of isolate node s(t) and node xi(t), i = , , . . . , . Fig-
ure  shows the synchronization errors between the states of isolate node s(t) and node
xi(t), where eij(t) = xij(t) – si(t), for i = , . . . , , j = , , , without feedback control. Figure 
shows the synchronization errors between the states of isolated node s(t) and node xi(t),
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Figure 4 Synchronization curves for the states of the isolated node s(t) and node xi(t), i = 1,2, . . . , 5.

Figure 5 Synchronization error curves for the isolated node s(t) and node xi(t), where
eij(t) = xij(t) – si(t), for i = 1, . . . , 5, j = 1,2, 3, without feedback control.
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Figure 6 Synchronization error curves for the isolated node s(t) and node xi(t), where
eij(t) = xij(t) – si(t), for i = 1, . . . , 5, j = 1,2, 3, with feedback control.

where eij(t) = xij(t) – si(t), for i = , . . . , , j = , , , with feedback control. We see that the
synchronization errors converge to zero under the above conditions.

Example . We consider the nonlinear network model with five nodes, in which each
node is a Lorenz system with mixed time-varying delay described by []

ẋi(t) = a
(
xi(t) – xi(t)

)
,

ẋi(t) = cxi
(
t – h(t)

)
– xi(t) – xi(t)xi

(
t – h(t)

)
, ()

ẋi(t) = xi(t)
∫ t

t–k(t)
xi(s)ds – bxi

(
t – h(t)

)
,

where a = ., b = ., and c = –. For the initial function φ(t) = [–. cos t,  cos t,  cos t]
the solution of system () is denoted by s(t) = (s(t), s(t), s(t))T , which is shown in
Figure . It is asymptotically stable at the equilibrium point s(t) = , s(t – h(t)) = ,∫ t
t–k(t) s(θ )dθ =  and its Jacobian matrices are

J(t) =

⎡
⎢⎣
–. . 
 – 
  

⎤
⎥⎦ , Jh(t) =

⎡
⎢⎣
–  
  
  –.

⎤
⎥⎦ , Jk (t) =

⎡
⎢⎣
  
  
  

⎤
⎥⎦ .

Assume that Di = diag{, , }, Di = diag{., ., .}, Di = diag{., ., .}, i =
, , . . . , , the coupling strength c = ., c = ., c = ., the inner-coupling matrices
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Figure 7 Solution of the Lorenz systemwith mixed time-varying delays (57).

are

G =

⎡
⎢⎣
.  
 . 
  .

⎤
⎥⎦ , G =

⎡
⎢⎣
.  
 . 
  .

⎤
⎥⎦ , G =

⎡
⎢⎣
.  
 . 
  .

⎤
⎥⎦ ,

and the outer-couplingmatrices are given by the following irreducible symmetricmatrices
satisfying condition ():

A = C =

⎡
⎢⎢⎢⎢⎢⎢⎣

–    
 –   
  –  
   – 
    –

⎤
⎥⎥⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

–    
 –   
  –  
   – 
    –

⎤
⎥⎥⎥⎥⎥⎥⎦
,

and the topology structure of complex networks is shown in Figure .
The eigenvalues of A, B, and C are λ = {,–., ,–.,–}, λ = {,–,–,–,

–}, and λ = {,–., ,–.,–}, respectively.
Solution: From the conditions ()-() of Theorem ., we let ε = ., α = ., ω =

, δ = ., h = ., h = ., k = ., k = ., d = .; the gain matrices of the desired
controllers can be obtained as follows:

K =

⎡
⎢⎣
–. –. 
–. –. 

  –.

⎤
⎥⎦ , K =

⎡
⎢⎣
–. –. 
–. –. 

  –.

⎤
⎥⎦ ,
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Figure 8 The topology structure of complex networks with N = 5.

Figure 9 Synchronization error curves for the isolated node s(t) and node xi(t), where
eij(t) = xij(t) – si(t), for i = 1, . . . , 5, j = 1,2, 3, without intermittent feedback control.

K =

⎡
⎢⎣
–. –. 
–. –. 

  –.

⎤
⎥⎦ , K =

⎡
⎢⎣
–. –. 
–. –. 

  –.

⎤
⎥⎦ ,

K =

⎡
⎢⎣
–. –. 
–. –. 

  –.

⎤
⎥⎦ .

Figure  shows the synchronization errors between the states of the isolated node s(t)
and node xi(t), where eij(t) = xij(t) – si(t), for i = , . . . , , j = , , , without intermittent
feedback control. Figure  shows the synchronization errors between the states of the
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Figure 10 Synchronization error curves for the isolated node s(t) and node xi(t), where
eij(t) = xij(t) – si(t), for i = 1, . . . , 5, j = 1,2, 3, with intermittent feedback control.

isolated node s(t) and node xi(t), where eij(t) = xij(t) – si(t), for i = , . . . , , j = , , , with
intermittent feedback control. We see that the synchronization errors converge to zero
under the above conditions.

Remark . In Example . and Example ., each of them to consider general complex
networks in which every dynamical node has mixed time-varying delays (interval time-
varying delay and distributed time-varying delay), and the complex networks have state
coupling, interval time-varying delay coupling and distributed time-varying delay cou-
pling.

Example . Consider a network model with five nodes, where each node is a three-
dimensional stable linear system described by [, ]

ẋi(t) = –xi(t),

ẋi(t) = –xi(t), ()

ẋi(t) = –xi(t),

which is asymptotically stable at the equilibrium point s(t) = , and its Jacobian matrix
is J(t) = diag{–,–,–}. Assume that the network coupling is the same as that in Exam-
ple .. The upper bounds on the time-delay obtained from Corollary . are listed in
Table . We see that Corollary . provides a less conservative result than those obtained
via the methods of [, ]. When hm �=  especially, the result in [] is not discussed while
Corollary . in this paper also considers the case hm �= .
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Table 1 Comparison of the maximum value hM (hm = 0) for difference c2

c2 0.3 0.4 0.5 0.6

Li et al. [9] 0.960 0.710 0.562 0.464
Yue and Li [18] 1.345 0.950 0.731 0.587
Corollary 3.8 1.9707 1.2848 0.8712 0.5941

Remark . In [] presented the synchronization problem of general complex dynamical
networks with time-varying delays in the network couplings and time-varying delays in
the dynamical nodes, respectively. But the time-varying delays are required to be differ-
entiable, however, in most cases, these conditions are difficult to satisfy. Therefore, in this
paper we will employ some new techniques so that the above conditions can be removed.

5 Conclusions
This paper has investigated synchronization for complex dynamical network with mixed
time-varying and hybrid coupling delays, which is composed of state coupling, inter-
val time-varying delay coupling, and distributed time-varying delay coupling. The time-
varying delay function is not necessary to be differentiable which allows the time-delay
function to be a fast time-varying function. We transformed the synchronization prob-
lem of the complex network into the stability analysis of linear systems. A new class of
Lyapunov-Krasovskii functionals is constructed; new delay-dependent sufficient condi-
tions for the exponential synchronization of complex dynamical network have been de-
rived by a set of LMIs without introducing any free-weighting matrices. The delay feed-
back controllers H and H designed can guarantee exponential synchronization of the
complex dynamical network. Simulation results have been given to illustrate the effec-
tiveness of the proposed method.
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