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1 Introduction
Nowadays, with the rapid development of science and technology, many people have
realized that the theory of impulsive differential equations is not only richer than the corre-
sponding theory of differential equations but it also represents a more natural framework
for mathematical modeling of real world phenomena. Hence, it has become an effective
tool to study some problems of biology, medicine, physics and so on [, ]. Significant
progress has been made in the theory of systems of impulsive differential equations in
recent twenty years (see [–] and the references cited therein). We generally consider
impulses in the position u and u′ for the second-order differential equation u′′ = f (t,u,u′).
However, it is well known that in the motion of spacecraft instantaneous impulses depend
on the position, which results in jump discontinuities in velocity, with no change in the
position. This motivates us to consider the following second-order impulsive differential
equation:

⎧⎪⎪⎨
⎪⎪⎩
–u′′(t) + g(t)u(t) = f (t,u(t)), t �= tj, t ∈ J = [,T],T > ,

–�u′(tj) = Ij(u(tj)), j = , , . . . ,m,

u() = , αu(T) + βu′(T) = ,

(.)

where f ∈ C(J × R,R), g ∈ L∞[,T], g(t) > , Ij ∈ C(R,R),  = t < t < t < · · · < tm < tm+ =
T , α, β are constants with α ≥ , β > , and the operator � is defined as �u′(tj) = u′(t+j ) –
u′(t–j ), where u′(t+j )(u′(t–j )) denotes the right-hand (left-hand) limit of u′ at tj.
In recent years, some classical tools such as some fixed point theorems in cones, topo-

logical degree theory and the upper and lower solutionsmethod combinedwith themono-
tone iterative technique [–] have been widely used to get solutions of impulsive differ-
ential equations. On the other hand, in the last few years, some researchers have studied
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the existence of solutions for impulsive differential equations with boundary conditions
via variational methods [–]. In this paper, we consider (.) by using critical point
theory and variational methods.
The rest of this paper is organized as follows. In Section  we present several important

lemmas. In Section , we present existence results of equation (.) by using critical point
theory and variational methods.

2 Preliminaries
In the following, we first introduce some notations and some necessary definitions.

Definition . [] Let X be a real reflexive Banach space. For any sequence {uk} ⊂ X, if
{ϕ(uk)} is bounded and ϕ′(uk) →  as k → ∞ possesses a convergent subsequence, then
we say that ϕ satisfies the Palais-Smale condition (PS condition).

Definition . [] Let ϕ : X → R be differentiable and c ∈ R. We say that ϕ satisfies the
(PS)c condition if the existence of a sequence {uk} in X, such that ϕ(uk) → c, ϕ′(uk) → 
as k → ∞, implies that c is a critical value of ϕ.

It is clear that the PS condition implies the (PS)c condition for each c ∈ R.

Lemma . [] Let H be a Hilbert space and a :H ×H → R be a bounded bilinear form.
If a is coercive, i.e., there exists α >  such that a(u;u) ≥ α‖u‖ for every u ∈H , then for any
σ ∈H ′ (the conjugate space of H), there exists a unique u ∈H such that

a(u, v) = (σ , v) for every v ∈H .

Moreover, if a is also symmetric, then the functional ϕ : H → R defined by ϕ = 
a(v, v) –

(σ , v) attains its minimum at u.

Lemma . [] If ϕ is weakly lower semi-continuous on a reflexive Banach space X and
has a bounded minimizing sequence, then ϕ has a minimum on X. The existence of a
bounded minimizing sequence will be in particular insured when ϕ is coercive, i.e., such
that ϕ(u) → +∞ if ‖u‖ → ∞.

Lemma . [] For the functional F : M ⊆ X → R with M not empty, minu∈M F(u) = a
has a solution in case the following hold:

(i) X is a real reflexive Banach space;
(ii) M is bounded and weakly sequentially closed;
(iii) F is weakly sequentially lower semi-continuous onM, i.e., by definition, for each

sequence {uk} inM such that uk ⇀ u as k → ∞, we have F(u) ≤ limk→∞F(uk).

Lemma . [] Let X be a Banach space and ϕ ∈ C(X,R). Assume that there exist u ∈
X, u ∈ X and a bounded open neighborhood � of u such that u ∈ X \ � and

inf
∂�

ϕ >max
{
ϕ(u),ϕ(u)

}
.

Let


 =
{
h ∈ C

(
[, ],X

)
: h() = u,h() = u

}
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and

c = inf
h∈


max
s∈[,]

ϕ
(
h(s)

)
.

If ϕ satisfies the (PS)c, then c is a critical value of ϕ and c >max{ϕ(u),ϕ(u)}.

Lemma . [] Let X be an infinite dimensional Banach space and let ϕ ∈ C(X,R) be
even, satisfying the (PS), and ϕ() = . If X = V ⊕W , where V is finite dimensional, and ϕ

satisfies the following conditions:
(i) There exist constants ρ,σ >  such that ϕ|∂Bρ∩W ≥ σ ;
(ii) For each finite dimensional subspace V ⊂ X , there is an R = R(V) such that

ϕ(u) ≤  for every u ∈ V with ‖u‖ > R;
then ϕ possesses an unbounded sequence of critical values.

Let

H([,T]) = {
u ∈ L

(
[,T]

)
: u′ ∈ L

(
[,T]

)}

and

H([,T]) = {
u ∈ L

(
[,T]

)
: u′,u′′ ∈ L

(
[,T]

)}
.

Take H = {u ∈H([,T]) : u() = }. Then H is a Hilbert space, and the inner product

(u, v) =
∫ T


u′(t)v′(t)dt +

∫ T


g(t)u(t)v(t)dt

induces the norm

‖u‖ =
(∫ T



(
u′(t)

) dt +
∫ T


g(t)u(t)dt

) 

.

For u ∈ H([,T]), we have that u and u′ are both absolutely continuous and u′′ ∈
L([,T]), hence �u′(tj) = u′(t+j ) – u′(t–j ) =  for any t ∈ J . If u ∈ H , then u is absolutely
continuous and u′ ∈ L([,T]). In this case, the one-side derivatives u′(t+j ) and u′(t–j ) may
not exist. So, by a classical solution of (.), we mean a function u ∈ C([,T]) satisfying
the following conditions: For every j = , , . . . ,m, uj = u|(tj ,tj+) ∈ H(tj, tj+); u satisfies the
boundary condition of (.) and the first equation of (.); u′(t+j ) and u′(t–j ), j = , , . . . ,m,
exist and the impulsive conditions of (.) hold.
Taking v ∈H and multiplying (.) by v and integrating from  to T , we have

–
∫ T


u′′(t)v(t)dt +

∫ T


g(t)u(t)v(t)dt =

∫ T


f
(
t,u(t)

)
v(t)dt.

This leads to

∫ T


u′(t)v′(t)dt +

∫ T


g(t)u(t)v(t)dt –

m∑
j=

Ij
(
u(tj)

)
v(tj) +

α

β
u(T)v(T)

=
∫ T


f
(
t,u(t)

)
v(t)dt. (.)
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Thus, a weak solution of (.) is a function u ∈H such that (.) holds for any v ∈H . By the
regularity theory, the weak solution is a classical solution. Now, we define ϕ :H → R by

ϕ(u) =



∫ T



[(
u′(t)

) + g(t)u(t)
]
dt –

∫ T


F
(
t,u(t)

)
dt –

m∑
j=

∫ u(tj)


Ij(t)dt

+
α

β
u(T), (.)

where F(t,u(t)) =
∫ u
 f (t, s)ds. Clearly, ϕ is Fréchet differentiable at any u ∈ H and

ϕ′(u)(v) = lim
h→

ϕ(u + hv) – ϕ(u)
h

=
∫ T



[
u′(t)v′(t) + g(t)u(t)v(t)

]
dt –

∫ T


f
(
t,u(t)

)
v(t)dt

–
m∑
j=

Ij
(
u(tj)

)
v(tj) +

α

β
u(T)v(T) (.)

for any v ∈ H . Obviously, ϕ′ is continuous, and a critical point of ϕ gives a weak solution
of (.).

Lemma . If the function u ∈ H is a critical point of the functional ϕ, then u is a solution
of system (.).

Proof Suppose that u ∈ H is a critical point of the functional ϕ. Then, for any v ∈ H , one
has

ϕ′(u)(v) = . (.)

From (.), one has

∫ T



[
u′(t)v′(t) + g(t)u(t)v(t)

]
dt –

∫ T


f
(
t,u(t)

)
v(t)dt –

m∑
j=

Ij
(
u(tj)

)
v(tj) +

α

β
u(T)v(T)

= –
m∑
j=

(
�u′(tj) + Ij

(
u(tj)

))
v(tj) +

∫ T



(
–u′′(t) + g(t)u(t)

)
v(t)dt

–
∫ T


f
(
t,u(t)

)
v(t)dt +

(
u′(T) +

α

β
u(T)

)
v(T). (.)

Combining (.) and (.), one has

–
m∑
j=

(
�u′(tj) + Ij

(
u(tj)

))
v(tj) +

∫ T



(
–u′′(t) + g(t)u(t)

)
v(t)dt

–
∫ T


f
(
t,u(t)

)
v(t)dt +

(
u′(T) +

α

β
u(T)

)
v(T) = , ∀v ∈ H . (.)

For j ∈ {, , . . . ,m}, we choose v ∈H with v(t) =  for every t ∈ [, tj]∪ [tj+,T], then

∫ tj+

tj

(
–u′′(t) + g(t)u(t) – f

(
t,u(t)

))
v(t)dt = .
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We get

–u′′(t) + g(t)u(t) = f
(
t,u(t)

)
a.e. t ∈ (tj, tj+).

Thus, u satisfies the equation in (.).
Therefore, by (.) we have

–
m∑
j=

(
�u′(tj) + Ij

(
u(tj)

))
v(tj) +

(
u′(T) +

α

β
u(T)

)
v(T) = , ∀v ∈ H . (.)

Next we prove that u satisfies the impulsive and the boundary condition in (.). If the
impulsive condition in (.) does not hold, then there exist some j ∈ {, , . . . ,m} such that

�u′(tj) + Ij
(
u(tj)

) �= . (.)

Pick v(t) =
∏m+

i=,i�=j(t – ti), then

–
m∑
j=

(
�u′(tj) + Ij

(
u(tj)

))
v(tj) +

(
u′(T) +

α

β
u(T)

)
v(T)

= –
m∑
j=

(
�u′(tj) + Ij

(
u(tj)

)) m+∏
i=,i�=j

(tj – ti) +
(
u′(T) +

α

β
u(T)

) m+∏
i=,i�=j

(tm+ – ti)

= –
(
�u′(tj) + Ij

(
u(tj)

)) m+∏
i=,i�=j

(tj – ti) �= . (.)

This is a contradiction. So u satisfies the impulsive condition in (.) and (.) implies

(
u′(T) +

α

β
u(T)

)
v(T) = , ∀v ∈H . (.)

If αu(T) + βu′(T) �= , then α
β
u(T) + u′(T) �= .

Pick v(t) =
∏m

i=(t – ti). One has

(
u′(T) +

α

β
u(T)

) m∏
i=

(tm+ – ti) �= . (.)

This contradicts (.), so u satisfies the boundary condition. Therefore, u is a solution of
system (.). �

Lemma . If u ∈H , then ‖u‖∞ ≤ T 
 ‖u‖, where ‖u‖∞ =maxt∈[,T] |u(t)|.

Proof The proof follows easily from the Hölder inequality. The detailed argument is sim-
ilar to the proof of Lemma . in [], and we thus omit it here. �

3 Main results
3.1 Existence of a unique solution
In this section we derive conditions under which system (.) admits a unique solution.

http://www.advancesindifferenceequations.com/content/2014/1/118
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Theorem . Assume that dj (j = , , . . . ,m) are fixed constants, f (t,u) = σ (t) ∈ L(,T)
and Ij(t) = dj (j = , , . . . ,m), then system (.) has a unique solution u, and uminimizes the
functional (.).

Proof We define the bilinear form

a :H ×H → R, a(u, v) =
∫ T



(
u′(t)v′(t) + g(t)u(t)v(t)

)
dt +

α

β
u(T)v(T)

and the linear operator

l :H → R, l(v) =
∫ T


σ (t)v(t)dt –

m∑
j=

djv(tj).

It is evident that a is continuous and symmetric and l is bounded. Moreover, a is coercive.
By Lemma ., system (.) has a unique solution u, and uminimizes the functional (.).

�

Example . Consider the following boundary value problem:

⎧⎪⎪⎨
⎪⎪⎩
–u′′(t) + u(t) = , t �= t, t ∈ J = [, ],

–�u′(t) = , t = 
 ,

u() = , u() + u′() = .

(.)

Here g(t) = , f (t,u) = , Ij(u) = , T = , j = , α = , β = . Applying Theorem ., problem
(.) has a unique solution. By simple calculations, we obtain u(t) = 

e
– 
 (et–e–t), t ∈ [,  ],

u(t) = 
 (e


 – e– 

 )e–t , t ∈ [  , ].

3.2 Existence of at least one solution
In this section we derive conditions under which system (.) admits at least one solution.
For this purpose, we introduce the following assumption.
(H) There exist a,b,aj,bj > , γ ,γj ∈ [, ), j = , , . . . ,m, such that

∣∣f (t,u)∣∣ ≤ a + b|u|γ , ∣∣Ij(u)∣∣ ≤ aj + bj|u|γj

for t ∈ J .

Theorem . Assume that (H) is satisfied, then system (.) has at least one solution u,
and u minimizes the functional (.).

Proof According to (H), we have

ϕ(u) =


‖u‖ –

∫ T


F
(
t,u(t)

)
dt –

m∑
j=

∫ u(tj)


Ij(t)dt +

α

β
u(T)

≥ 

‖u‖ – T

(
a‖u‖∞ +

b
γ + 

‖u‖γ+
∞

)
–

m∑
j=

(
aj‖u‖∞ +

bj
γj + 

‖u‖γj+
∞

)

http://www.advancesindifferenceequations.com/content/2014/1/118
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≥ 

‖u‖ – T

(
aT


 ‖u‖ + b

γ + 
T

γ+
 ‖u‖γ+

)

–
m∑
j=

(
ajT


 ‖u‖ + bj

γj + 
T

γj+
 ‖u‖γj+

)

for all u ∈H . This implies that ϕ is coercive.
Let {un} be a weakly convergent sequence to u in H , then {un} converges uniformly to u

in C[,T].
Set

ϕ(u) = –
∫ T


F
(
t,u(t)

)
dt –

m∑
j=

∫ u(tj)


Ij(t)dt +

α

β
u(T),

ϕ(u) =



∫ T



[(
u′(t)

) + g(t)u(t)
]
dt,

then ϕ(u) = ϕ(u)+ϕ(u). So ϕ is weakly sequentially continuous. Clearly, ϕ is continuous
and convex, which implies that ϕ is weakly sequentially lower semi-continuous. There-
fore, ϕ is weakly sequentially lower semi-continuous on H .
By Lemma ., the functional ϕ has a minimum which is a critical point of ϕ. Hence,

system (.) has at least one solution. �

Example . Consider the following boundary value problem:

⎧⎪⎪⎨
⎪⎪⎩
–u′′(t) + u(t) =  + u(t)  , t �= t, t ∈ J = [, ],

–�u′(t) =  + u(t)

 , t = 

 ,

u() = , u() + u′() = .

(.)

Here g(t) = , f (t,u) =  + u(t)  , Ij(u) =  + u(t)

 , T = , j = , α = , β = . Clearly, (H) is

satisfied. Applying Theorem ., problem (.) has at least one solution.

3.3 Existence of at least two distinct solutions
In this section, we derive some sufficient conditions under which the functional ϕ admits
at least two distinct critical points; consequently, (.) admits at least two distinct solu-
tions. We first introduce some assumptions.
(H) limu→

f (t,u)
u =  uniformly for t ∈ J , limu→

Ij(u)
u = .

(H) There exist constants μ >  and r ≥  such that for every t ∈ J and u ∈ R with
|u| ≥ r,

 < μF(t,u)≤ uf (t,u),  < μ

∫ u


Ij(s)ds≤ uIj(u), j = , , . . . ,m,

where F(t,u) =
∫ u
 f (t, s)ds.

Theorem . Assume that (H) and (H) are satisfied. Then system (.) has at least two
solutions.

http://www.advancesindifferenceequations.com/content/2014/1/118
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Proof The proof will be given in three steps.
Step . The functional ϕ satisfies the PS condition.
Let {un} ⊂H such that {ϕ(un)} is a bounded sequence and limn→∞ ϕ′(un) = . We com-

pute

ϕ(un) –

μ

ϕ′(un)(un) =
(


–


μ

)
‖un‖ +

(


–


μ

)
α

β
un(T)

–
m∑
j=

∫ u(tj)


Ij(s)ds +


μ

m∑
j=

Ij
(
un(tj)

)
un(tj)

–
∫ T


F
(
t,un(t)

)
dt +


μ

∫ T


f
(
t,un(t)

)
un(t)dt

≥
(


–


μ

)
‖un‖ +

m∑
j=

(

μ
Ij
(
un(tj)

)
un(tj) –

∫ u(tj)


Ij(s)ds

)

+
∫ T



(

μ
f
(
t,un(t)

)
un(t) – F

(
t,un(t)

))
dt. (.)

By (H), one has

ϕ(un) –

μ

ϕ′(un)(un)

≥
(


–


μ

)
‖un‖ –

m∑
j=

max
un(t)∈[–r,r]

∣∣∣∣ μ Ij
(
un(tj)

)
un(tj) –

∫ u(tj)


Ij(s)ds

∣∣∣∣

–
∫ T


max

t∈J ,un(t)∈[–r,r]

∣∣∣∣ μ f
(
t,un(t)

)
un(t) – F

(
t,un(t)

)∣∣∣∣dt. (.)

Hence, {un} is bounded in H .
From the reflexivity ofH , we may extract a weakly convergent subsequence; for simplic-

ity, we also note again by {un}, un ⇀ u in H . Next we prove that {un} strongly converges
to u in H . By (.) we have

(
ϕ′(un) – ϕ′(u)

)
(un – u)

= ‖un – u‖ + α

β

(
un(T) – u(T)

)

–
m∑
j=

(
Ij
(
un(tj)

)
– Ij

(
u(tj)

))(
un(tj) – u(tj)

)

–
∫ T



(
f
(
t,un(t)

)
– f

(
t,u(t)

))(
un(t) – u(t)

)
dt. (.)

un ⇀ u in H implies that {un} uniformly converges to u in C[,T]. So

m∑
j=

(
Ij
(
un(tj)

)
– Ij

(
u(tj)

))(
un(tj) – u(tj)

) → ,

∫ T



(
f
(
t,un(t)

)
– f

(
t,u(t)

))(
un(t) – u(t)

)
dt → ,

un(T) – u(T) →  as n→ ∞.

(.)

http://www.advancesindifferenceequations.com/content/2014/1/118


Luo et al. Advances in Difference Equations 2014, 2014:118 Page 9 of 12
http://www.advancesindifferenceequations.com/content/2014/1/118

By ϕ′(un) →  and un ⇀ u as n→ +∞, we have

(
ϕ′(un) – ϕ′(u)

)
(un – u) →  as n → ∞. (.)

So (.), (.) and (.) yield ‖un – u‖ →  in H , i.e., {un} strongly converges to u in H .
Therefore, the functional ϕ satisfies the PS condition.
Step . We show that there exists ρ >  such that the functional ϕ has a local minimum

u ∈ Bρ = {u ∈ H : ‖u‖ < ρ}.
Firstly, we claim that Bρ is bounded and weakly sequentially closed.
In fact, let {un} ⊆ Bρ and {un} ⇀ u as n → ∞. By the Mazur theorem [], there exists

a sequence of convex combinations

vn =
n∑
j=

αnjuj,
n∑
j=

αnj = , αnj ≥ , j ∈N

such that vn → u in H . {vn} ⊂ Bρ and u ∈ Bρ , since Bρ is a closed convex set.
Secondly, we claim that the functional ϕ is weakly sequentially lower semi-continuous

on Bρ .
Let

ϕ(u) = –
∫ T


F
(
t,u(t)

)
dt –

m∑
j=

∫ u(tj)


Ij(t)dt +

α

β
u(T),

ϕ(u) =



∫ T



[(
u′(t)

) + g(t)u(t)
]
dt,

then ϕ(u) = ϕ(u) + ϕ(u). By {un} ⇀ u on H , we see that {un} uniformly converges to u
in C[,T]. So ϕ is weakly sequentially continuous. Clearly, ϕ is continuous and convex,
which implies that ϕ is weakly sequentially lower semi-continuous. Therefore, ϕ is weakly
sequentially lower semi-continuous on Bρ .
Thirdly, we claim that ϕ has a minimum u ∈ Bρ .
In fact, H is a reflexive Banach space, Bρ is bounded and weakly sequentially closed

and ϕ is weakly sequentially lower semi-continuous on Bρ . So, by Lemma ., there exists
u ∈ Bρ such that ϕ(u) =min{ϕ(u) : u ∈ Bρ}.
Finally, we claim that ϕ(u) < infu∈∂Bρ ϕ(u).
By (H), let ε = 

mT > , there exists δ >  such that |u| < δ implies

∣∣F(t,u)∣∣ ≤ ε


|u|,

∫ u


Ij(t)dt ≤ ε


|u| for t ∈ J . (.)

Consequently, by Lemma ., for ‖u‖ ≤ δ√
T
, we have

ϕ(u) =


‖u‖ –

∫ T


F
(
t,u(t)

)
dt –

m∑
j=

∫ u(tj)


Ij(t)dt +

α

β
u(T)

≥ 

‖u‖ –

∫ T



ε


∣∣u(t)∣∣ dt –

m∑
j=

ε


∣∣u(tj)∣∣ + α

β
u(T)
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≥ 

‖u‖ – εT


‖u‖ – εmT


‖u‖

≥ 

‖u‖ – 


‖u‖ – 


‖u‖

≥ 


‖u‖.

Choose C = δ

T , ρ = δ√
T
, then ϕ(u) ≥ C >  for any u ∈ ∂Bρ . Besides, ϕ(u) ≤ ϕ() =  <

C ≤ ϕ(u) for any u ∈ ∂Bρ . So ϕ(u) < infu∈∂Bρ ϕ(u). Hence, ϕ has a local minimum u ∈
Bρ = {u ∈H : ‖u‖ < ρ}.
Step . We prove that there exists u with ‖u‖ > ρ such that ϕ(u) < infu∈∂Bρ ϕ(u).
Condition (H) implies that there exist b,b, cj,dj > , j = , , . . . ,m, such that

F(t,u) ≥ b|u|μ – b,
∫ u


Ij(t)dt ≥ cj|u|μ – dj (.)

for t ∈ J , u ∈ R (see []). Then we have

ϕ(u) =


‖u‖ –

∫ T


F
(
t,u(t)

)
dt –

m∑
j=

∫ u(tj)


Ij(t)dt +

α

β
u(T)

≤ 

‖u‖ – (

bT
μ
 ‖u‖μ – b

)
T –

m∑
j=

(
cjT

μ
 ‖T‖μ – dj

)
+

α

β
u(T). (.)

Sinceμ > , (.) implies lim‖u‖→∞ ϕ(u) = –∞. Therefore, we can choose u with ‖u‖ > ρ

sufficiently large such that ϕ(u) < infu∈∂Bρ ϕ(u).
Let

c = inf
h∈


max
t∈[,]

ϕ
(
h(t)

)
,

where


 =
{
h ∈ C

(
[, ],H

)
: h() = u,h() = u

}
.

By Lemma ., c is a critical value of ϕ, that is, there exists a critical point u∗. Therefore,
u, u∗ are two critical points of ϕ, and they are solutions of (.). �

Example . Consider the following boundary value problem:

⎧⎪⎪⎨
⎪⎪⎩
–u′′(t) + u(t) = 

 (u(t))

 sin t, t �= tj, t ∈ J = [, ],

–�u′(tj) = 
u

(tj), j = ,

u() = , u() + u′() = .

(.)

Here g(t) = , f (t,u) = 
 (u(t))


 sin t, Ij(u) = 

u
, T = , j = , α = , β = . Let μ = , r = .

Clearly, (H) and (H) are satisfied. By Theorem ., problem (.) has at least two solu-
tions.
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3.4 Existence of infinitely many solutions
In this section, we derive some conditions under which system (.) admits infinitelymany
distinct solutions. To this end, we need the following assumption.
(H) f (t,u) and Ij, j = , , . . . ,m, are odd about u.

Theorem . Assume that (H), (H) and (H) are satisfied. Then system (.) has in-
finitely many solutions.

Proof We apply Lemma . to finish the proof. Clearly, ϕ ∈ C(H ,R) is even since f (t,u)
and Ij(u) are odd about u, and ϕ() = . The arguments of Theorem . show that the
functional ϕ satisfies the PS condition. In the same way as in Theorem ., we can easily
verify that conditions (i) and (ii) of Lemma . are satisfied. According to Lemma ., ϕ
possesses infinitely many critical points, i.e., system (.) has infinitely many solutions.

�

Example . Consider the following boundary value problem:

⎧⎪⎪⎨
⎪⎪⎩
–u′′(t) + u(t) = tu(t), t �= tj, t ∈ J = [, ],

–�u′(tj) = 
u

(tj), j = ,

u() = , u() + u′() = .

(.)

Here g(t) = , f (t,u) = tu, Ij(u) = 
u

, T = , j = , α = , β = . Obviously, f (t,u), Ij(u) are
odd about u. Let μ = , r = . Clearly, (H) and (H) are satisfied. Applying Theorem .,
problem (.) has infinitely many solutions.
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