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Abstract
This paper is devoted to the study of a Wright-type hypergeometric function
(Virchenko, Kalla and Al-Zamel in Integral Transforms Spec. Funct. 12(1):89-100, 2001)
by using a Riemann-Liouville type fractional integral, a differential operator and
Lebesgue measurable real or complex-valued functions. The results obtained are
useful in the theory of special functions where the Wright function occurs naturally.
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1 Introduction and preliminaries
Special functions, particularly the hypergeometric function, play a very important role
in solving numerous problems of mathematical physics, engineering and mathematical
sciences [–].
The Gauss hypergeometric function is defined [] as

F(a,b; c; z) =
∞∑
k=

(a)k(b)k
(c)kk!

zk
(|z| < , c �= ,–,–, . . .

)
. ()

The generalized hypergeometric function in a classical sense has been defined [] as

pFq

[
a, . . . ,ap; z
b, . . . ,bq

]
= pFq[a, . . . ,ap;b, . . . ,bq; z]

=
∞∑
k=

(a)k · · · (ap)k
(b)k · · · (bq)k

zk

k!
(
p = q + , |z| < 

)
, ()

where denominator parameters are neither zero nor negative integer.
Several generalizations of hypergeometric functions [–] etc.have beenmade and also

motivated us to further investigate the topic. Virchenko et al. [] defined the generalized
hypergeometric function (Rτ

 (z)) in a different manner (throughout the paper, we call this
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function the Wright-type generalized hypergeometric function) as follows:

Rτ
 (z) = R(a,b; c; τ ; z) =

�(c)
�(b)

∞∑
k=

(a)k�(b + τk)
�(c + τk)k!

zk ; τ > , |z| < . ()

If τ = , then () reduces to a Gauss hypergeometric function F(a,b; c; z).
Rao et al. [] obtained many properties for the function R(a,b; c; τ ; z) as defined in ()

including the following result. If a,b, c ∈C; Re(a) > , Re(b) > , Re(c) > , then

(
d
dz

)m[
zc–R

(
a,b; c; τ ;ωzτ

)]
= zc–m– �(c)

�(c –m) 
R

(
a,b; c –m; τ ;ωzτ

)
. ()

Prajapati et al. [], Prajapati and Shukla [] and Srivastava et al. [] used the fractional
calculus approach in the study of an integral operator and also generalized the Mittag-
Leffler function.
The subject of fractional calculus [–] deals with the investigations of integrals and

derivatives of any arbitrary real or complex order, which unify and extend the notions of
integer-order derivative and n-fold integral. It has gained importance and popularity dur-
ing the last four decades or so, mainly due to its vast potential of demonstrated applica-
tions in various seemingly diversified fields of science and engineering, such as fluid flow,
rheology, diffusion, relaxation, oscillation, anomalous diffusion, reaction-diffusion, turbu-
lence, diffusive transport, electric networks, polymer physics, chemical physics, electro-
chemistry of corrosion, relaxation processes in complex systems, propagation of seismic
waves, dynamical processes in self-similar and porous structures. Recently some interest-
ing results on fractional boundary value problems and fractional partial differential equa-
tions were also discussed by Nyamoradi et al. [] and Baleanu et al. [, ].
In continuation of the study on the significance of fractional calculus, we define the

integral operator as follows:

(
Rω;a,b

α+;τ ,c f
)
(x) = Rω;a,b

α+;τ ,c f (x) =
∫ x

α

(x – t)c–R
(
a,b; c; τ ;ω(x – t)τ

)
f (t)dt (x > α), ()

where, a,b, c,ω ∈ C; Re(a) > , Re(b) > , Re(c) > ; τ > .
Substituting τ = , () reduces to the operator

Fω;a,b
α+;c f (x) =

∫ x

α

(x – t)c–F
(
a,b; c;ω(x – t)τ

)
f (t)dt, x > α. ()

First, we give preliminaries, notations and definitions.
L(α,β) is the space of Lebesgue measurable real or complex-valued functions such that

L(α,β) =
{
f : ‖f ‖ ≡

∫ β

α

∣∣f (t)∣∣dt <∞
}
. ()

The Gauss multiplication formula [] is given as follows. If m is a positive integer and
z ∈C, then

m∏
k=

�

(
z +

k – 
m

)
= (π )(m–)/m


 –mz�(mz). ()
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The representation of a generalized factorial function in terms of the Pochhammer symbol
[] is given for

λ �= ,–,–, . . . ; (λ)n =
�(λ + n)

�(λ)
=

{
, if n = ,
λ(λ + ) · · · (λ + n – ), if n = , , , . . .

()

for

λ = ,–,–, . . . ; (λ)n =

{
(–)n(–λ)!
(–λ–n)! , if  ≤ n≤ (–λ),
, if n > (–λ).

()

Integration and differentiation of fractional order are traditionally defined by the left-
sided Riemann-Liouville fractional integral operator Iμα+ and the right-sided Riemann-
Liouville fractional integral operator Iμβ– f and the corresponding Riemann-Liouville
fractional derivative operators Dμ

α+ f and Dμ
α– f [, ], which are given as follows.

If f (x) ∈ L(α,β), μ ∈C, Re(μ) > , then

αD–μ
x f (x) = αIμx f (x) = Iμα+ f (x) =

(
Iμα+ f

)
(x) =


�(μ)

∫ x

α

f (t)
(x – t)–μ

dt (x > α) ()

is called the Riemann-Liouville left-sided fractional integral of order μ.
Analogously,

xD–μ
β f (x) = xIμβ f (x) = Iμβ– f (x) =

(
Iμβ– f

)
(x) =


�(μ)

∫ β

x

f (t)
(t – x)–μ

dt (x < β) ()

is called the Riemann-Liouville right-sided fractional integral of order μ.
For μ ∈ C, Re(μ) > ; n = [Re(μ)] + , the left-sided and right-sided Riemann-Liouville

fractional derivatives are defined as

(
Dμ

α+f
)
(x) =

(
d
dx

)n(
In–μ
α+ f

)
(x), ()

(
Dμ

α–f
)
(x) =

(
–
d
dx

)n(
In–μ
α– f

)
(x), ()

respectively. Here [x] denotes the maximal integer not exceeding real x.
A generalization of the Riemann-Liouville fractional derivative operator Dμ

α+ () has
been made by introducing the fractional derivative operator Dμ,ν

α+ of order  < μ <  and
type  ≤ ν ≤  with respect to x as follows []:

(
Dμ,ν

α+ f
)
(x) =

(
Iν(–μ)
α+

d
dx

(
I(–ν)(–μ)
α+ f

))
(x). ()

This equation () easily reduces to the classical Riemann-Liouville fractional derivative
operator Dμ

α+ when ν = . Moreover, in its special case when ν = , () reduces to the
Caputo fractional derivative operator.
The left- and right-sided Caputo fractional derivatives of order α ∈ C (Re(α)≥ ), de-

noted by (CDα
a+y)(x) and (CDα

b–y)(x) respectively, are defined on [a,b] via the Riemann-
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Liouville fractional derivatives as

(CDα
a+y

)
(x) :=

(
Dα

a+

[
y(t) –

n–∑
k=

yk(a)
k!

(t – a)k
])

(x) ()

and

(CDα
b–y

)
(x) :=

(
Dα

b–

[
y(t) –

n–∑
k=

yk(b)
k!

(b – t)k
])

(x), ()

where, n = [Re(α)] +  for α /∈ N; n = α for α ∈N.
The following facts are prepared for our study.

Theorem . (Mathai and Haubold []) If μ,β ∈C, Re(μ) > , Re(β) > , then

Iμα+(x – α)β– =
�(β)

�(μ + β)
(x – α)μ+β–. ()

Theorem . (Srivastava andManocha []) If a function f (z), analytic in the disc |z| < R,
has the power series expansion f (z) =

∑∞
n= anzn (|z| < R), then

D–μ
z

{
zλ–f (z)

}
=

�(λ)
�(λ +μ)

zλ+μ–
∞∑
n=

an(λ)n
(λ +μ)n

zn, ()

provided that Re(λ) > , Re(μ) >  and |z| < R.

Lemma . The following result (Srivastava and Tomovski []) holds true for the frac-
tional derivative operator Dμ,ν

α+ f defined by () as

(
Dμ,ν

α+
[
(t – α)λ–

])
(x) =

�(λ)
�(λ –μ)

(x – α)λ–μ–, ()

where x > α;  < μ < ;  ≤ ν ≤ ; Re(λ) > .

2 Main results
Theorem. If α ∈R+ = [,∞), a,b, c,μ,ω ∈C,Re(a) > ,Re(b) > ,Re(c) > ,Re(μ) > ,
τ > , then for x > α, ω ∈C and τ , |ω(x – α)τ | < ,

Iμα+
[
(x – α)c–R

(
a,b; c; τ ;ω(x – α)τ

)]
=
(x – α)μ+c–�(c)

�(c +μ) R
(
a,b; c +μ; τ ;ω(x – α)τ

)
, ()

Dμ
α+

[
(x – α)c–R

(
a,b; c; τ ;ω(x – α)τ

)]
= �(c)

{
(x – α)c–μ–

�(c –μ) R
(
a,b; c –μ; τ ;ω(x – α)τ

)}
. ()

If  < μ < ,  ≤ ν ≤ , then

(
Dμ,ν

α+
[
(t – α)c–R

(
a,b; c; τ ;ω(t – α)τ

)])
(x)

= (x – α)c–μ– �(c)
�(c –μ) 

R
(
a,b; c –μ; τ ;ω(x – α)τ

)
. ()
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Proof

Iμα+
[
(x – α)c–R

(
a,b; c; τ ;ω(x – α)τ

)]
=


�(μ)

∫ x

α

(t – α)c–R(a,b; c; τ ;ω(t – α)τ )
(x – t)–μ

dt

=


�(μ)
�(c)
�(b)

∞∑
k=

(a)k�(b + τk)
�(c + τk)k!

ωk
(∫ x

α

(t – α)c–

(x – t)–μ
(t – α)τk dt

)

=


�(μ)
�(c)
�(b)

∞∑
k=

(a)k�(b + τk)
�(c + τk)k!

ωk
(∫ x

α

(t – α)c–+τk

(x – t)–μ
dt

)

=
�(c)
�(b)

∞∑
k=

(a)k�(b + τk)
�(c + τk)k!

ωkIμα+
[
(x – α)c–+τk].

The use of () gives

Iμα+
[
(x – α)c–R

(
a,b; c; τ ;ω(x – α)τ

)]
=

�(c)
�(b)

∞∑
k=

(a)k�(b + τk)
�(c + τk)k!

ωk �(c + τk)
�(c +μ + τk)

(x – α)μ+c+τk–

=
(x – α)μ+c–�(c)

�(c +μ)

(
�(c +μ)

�(b)

∞∑
k=

(a)k�(b + τk)
�(c +μ + τk)

(ω(x – α)τ )k

k!

)

=
(x – α)μ+c–�(c)

�(c +μ) R
(
a,b; c +μ; τ ;ω(x – α)τ

)
.

This completes the proof of ().
From () and (), we get

Dμ
α+

[
(x – α)c–R

(
a,b; c; τ ;ω(x – α)τ

)]
=

(
d
dx

)n{
In–μ
α+

[
(x – α)c–R

(
a,b; c; τ ;ω(x – α)τ

)]}

and, using (), this takes the following form:

Dμ
α+

[
(x – α)c–R

(
a,b; c; τ ;ω(x – α)τ

)]
=

(
d
dx

)n[ (x – α)n–μ+c–�(c)
�(c + n –μ) R

(
a,b; c + n –μ; τ ;ω(x – α)τ

)]
.

Applying () gives

= �(c)
{
(x – α)c–μ–

�(c –μ) R
(
a,b; c –μ; τ ;ω(x – α)τ

)}
.

This is the proof of ().
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We have

(
Dμ,ν

α+
[
(t – α)c–R

(
a,b; c; τ ;ω(t – α)τ

)])
(x)

=

(
Dμ,ν

α+

[
�(c)
�(b)

∞∑
k=

(a)k�(b + τk)
�(c + τk)

ωk

k!
(t – α)c+τk–

])
(x)

=
�(c)
�(b)

∞∑
k=

(a)k�(b + τk)
�(c + τk)

ωk

k!
· (Dμ,ν

α+
[
(t – α)c+τk–])(x);

and using the identity () yields

(
Dμ,ν

α+
[
(t – α)c–R

(
a,b; c; τ ;ω(t – α)τ

)])
(x)

=
�(c)
�(b)

∞∑
k=

(a)k�(b + τk)
�(c + τk)

ωk

k!
·
(

�(c + τk)
�(c + τk –μ)

(x – α)c+τk–μ–
)

= (x – α)c–μ– �(c)
�(c –μ)

{
�(c –μ)

�(b)

∞∑
k=

(a)k�(b + τk)
�(c –μ + τk)

(ω(x – α)τ )k

k!

}

= (x – α)c–μ– �(c)
�(c –μ) 

R
(
a,b; c –μ; τ ;ω(x – α)τ

)
.

This completes proof of the required assertion (). �

Corollary If μ,a,λ ∈C and τ > , then

Iμx
[
λR

(
a, ; ; τ ,λxτ

)]
=

λxμ

�(μ + ) 
R

(
a, ;μ + ; τ ;λxτ

)
; ()

λ ∈C is such that for chosen x and τ , |λxτ | < .

Proof The result can be obtained directly by multiplying () by λ and taking α = , b = ,
c = , ω = λ. Remarks:

(i) This corollary can also be obtained from result () as given in [] and also from
result () as given in [], by putting k = .

(ii) We obtain the results () and () in a different manner. These can also be
obtained from results () and () as given in [] and also from () and () as
given in [].

(iii) Riemann-Liouville fractional integrals of order μ for R(a,b; c; τ ; z) and
F(a,b; c; z) can be easily got by using Theorem . as

Iμ+
{
R(a,b; c; τ ; z)

}
=

{ ∞∑
n=

(a)n(b)τn
(c)τn


�( +μ + n)

zn+μ

}

and

Iμ+
{
F(a,b; c; z)

}
=

{ ∞∑
n=

(a)n(b)n
(c)n


�( +μ + n)

zn+μ

}
.

�
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Theorem. For τ =m ∈N, the generalized hypergeometric function R(a,b; c; τ ; z) takes
the form

R(a,b; c;m; z) =
(π )(m–)/

mc– 


�(c)
�(b)

m–∏
k=

(


�( c+km )

∞∑
n=

(a)n�(b +mn)
( c+km )n

zn

n!mmn

)
()

a,b, c ∈C, Re(a) > , Re(b) > , Re(c) > , |z| < .

Proof Putting z = n + c
m in (), we obtain


�(mz)

=


�(c +mn)
=
(π )(m–)/

mmz– 


∏m
k= �(z +

k–
m )

=
(π )(m–)/

mc– 



mmn ∏m–

k= �(n + c+k
m )

.

Thus,


�(c +mn)

=
(π )(m–)/

mc– 



mmn ∏m–

k= �(n + c+k
m )

. ()

From () and () afterwards, τ =m ∈N, we get

R(a,b; c;m; z) =
�(c)
�(b)

∞∑
n=

(
(a)n�(b +mn)

mmn ∏m–
k= �(n + c+k

m )
(π )(m–)/

mc– 


zn

n!

)

=
(π )(m–)/

mc– 


�(c)
�(b)

m–∏
k=

(


�( c+km )

∞∑
n=

(a)n�(b +mn)
( c+km )n

zn

n!mmn

)
.

This is a proof of the result. �

On puttingm = , this reduces to F(a,b; c; z).

3 Some properties of the operator (Rω;a,b
α+;τ ,cf )(x)

Theorem . If a,b, c,μ,ω ∈C; Re(a) > , Re(b) > , Re(c) > ; Re(μ) > ; τ > , then

(
Rω;a,b

α+;τ ,c(t – α)μ–
)
(x)

= (x – α)c+μ–�(μ)
�(c)

�(c +μ) 
R

(
a,b; c +μ; τ ;ω(x – α)τ

)
. ()

Proof From ()

(
Rω;a,b

α+;τ ,c f
)
(x) =

∫ x

α

(x – t)c–R
(
a,b; c; τ ;ω(x – t)τ

)
f (t)dt (x > α).

Therefore,

(
Rω;a,b

α+;τ ,c(t – α)μ–
)
(x)

=
∫ x

α

(x – t)c–R
(
a,b; c; τ ;ω(x – t)τ

)
(t – α)μ– dt

http://www.advancesindifferenceequations.com/content/2014/1/119
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=
�(c)
�(b)

∞∑
k=

(a)k�(b + τk)
�(c + τk)k!

ωk
(∫ x

α

(t – α)μ–(x – t)τk+c– dt
)

=
�(c)
�(b)

∞∑
k=

(a)k�(b + τk)
�(c + τk)k!

ωk((x – α)c+τk+μ–β(c + τk,μ)
)

= (x – α)c+μ–�(μ)
�(c)

�(c +μ)

{
�(c +μ)

�(b)

∞∑
k=

(a)k�(b + τk)
�(c +μ + τk)

(ω(x – α)τ )k

k!

}

= (x – α)c+μ–�(μ)
�(c)

�(c +μ) 
R

(
a,b; c +μ; τ ;ω(x – α)τ

)
,

this leads to the proof. �

Theorem . If a,b, c,ω ∈ C; Re(a) > , Re(b) > , Re(c) > ; τ >  and β > α, then the
operator Rω;a,b

α+;τ ,c is bounded on L(α,β) and

∥∥Rω;a,b
α+;τ ,c f

∥∥
 ≤ B‖f ‖, ()

where

B = (β – α)Re(c)
∞∑
k=

|(a)k||(b)τk|
|(c)τk|[τk +Re(c)]

|ω(β – α)τ |k
k!

. ()

Proof From () and (), afterwards interchanging the order of integration by applying the
Dirichlet formula [], we obtain

∥∥Rω;a,b
α+;τ ,c f

∥∥
 =

∫ β

α

∣∣∣∣
∫ x

α

(x – t)c–R
(
a,b; c; τ ;ω(x – t)τ

)
f (t)dt

∣∣∣∣dx
≤

∫ β

α

[∫ β

t
(x – t)Re(c)–

∣∣R
(
a,b; c; τ ;ω(x – t)τ

)∣∣dx]∣∣f (t)∣∣dt
and substituting (x – t) = u, we have

=
∫ β

α

[∫ β–t


(u)Re(c)–

∣∣R
(
a,b; c; τ ;ω(u)τ

)∣∣du]∣∣f (t)∣∣dt.
Using () and further simplification gives

∥∥Rω;a,b
α+;τ ,c f

∥∥
 ≤

∫ β

α

[ ∞∑
k=

|(a)k||(b)τk|
|(c)τk|

|ωk|
k!

(
uτk+Re(c)

τk +Re(c)

)β–α



]∣∣f (t)∣∣dt.

This equation can also be written as

=

{
(β – α)Re(c)

[ ∞∑
k=

|(a)k||(b)τk|
|(c)τk|[τk +Re(c)]

|ω(β – α)τ |k
k!

]}
·
∫ β

α

∣∣f (t)∣∣dt
= B‖f ‖;

http://www.advancesindifferenceequations.com/content/2014/1/119
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where

B = (β – α)Re(c)
[ ∞∑

k=

|(a)k||(b)τk|
|(c)τk|[τk +Re(c)]

|ω(β – α)τ |k
k!

]
.

This completes the proof of (). �

Theorem . If a,b, c,μ,ω ∈C; Re(a) > , Re(b) > , Re(c) > ; τ >  and β > α, then

(
Iμα+

[
Rω;a,b

α+;τ ,c f
])
(x) =

�(c)
�(c +μ)

(
Rω;a,b

α+;τ ,c+μ f
)
(x) =

(
Rω;a,b

α+;τ ,c
[
Iμα+ f

])
(x) ()

holds for any summable function f ∈ L(α,β).

Proof From () and (), we have

(
Iμα+

[
Rω;a,b

α+;τ ,c f
])
(x)

=


�(μ)

∫ x

α

[(Rω;a,b
α+;τ ,c f )(t)]
(x – t)–μ

dt

=


�(μ)

∫ x

α

(x – t)μ–
(∫ t

α

(t – u)c–R
(
a,b; c; τ ;ω(t – u)τ

)
f (u)du

)
dt.

Interchanging the order of integration and using the Dirichlet formula [], we get

(
Iμα+

[
Rω;a,b

α+;τ ,c f
])
(x)

=
∫ x

α

[


�(μ)

∫ x

u
(x – t)μ–(t – u)c–R

(
a,b; c; τ ;ω(t – u)τ

)
dt

]
f (u)du.

Substituting (t – u) = λ, we get

(
Iμα+

[
Rω;a,b

α+;τ ,c f
])
(x)

=
∫ x

α

[


�(μ)

∫ x–u


(x – u – λ)μ–(λ)c–R

(
a,b; c; τ ;ω(λ)τ

)
dλ

]
f (u)du

=
∫ x

α

[


�(μ)

∫ x–u



(λ)c–R(a,b; c; τ ;ω(λ)τ )
((x – u) – λ)–μ

dλ

]
f (u)du. ()

Making the use of () and applying () yield

(
Iμα+

[
Rω;a,b

α+;τ ,c f
])
(x) =

�(c)
�(c +μ)

∫ x

α

[
(x – u)μ+c–R

(
a,b; c +μ; τ ;ω(x – u)τ

)]
f (u)du.

Thus, (Iμα+[Rω;a,b
α+;τ ,c f ])(x) =

�(c)
�(c+μ)R

ω;a,b
α+;τ ,c+μ f (x).

This is the proof of the first part of ().
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For proving the second part of the theorem, we start from the right-hand side of ()
and, using (), we get

(
Rω;a,b

α+;τ ,c
[
Iμα+ f

])
(x) =

∫ x

α

(x – t)c–R
(
a,b; c; τ ;ω(x – t)τ

)(
Iμα+ f

)
(t)dt

=
∫ x

α

(x – t)c–R
(
a,b; c; τ ;ω(x – t)τ

)( 
�(μ)

∫ t

α

f (u)
(t – u)–μ

du
)
dt.

Using the Dirichlet formula [] and interchanging the order of integration, we have

(
Rω;a,b

α+;τ ,c
[
Iμα+ f

])
(x)

=
∫ x

u=α


�(μ)

[∫ x

t=u
(x – t)c–(t – u)μ–R

(
a,b; c; τ ;ω(x – t)τ

)
dt

]
f (u)du.

Substituting (x – t) = λ in the above equation, we get

(
Rω;a,b

α+;τ ,c
[
Iμα+ f

])
(x)

=
∫ x

u=α


�(μ)

[∫ 

λ=x–u
(λ)c–(x – λ – u)μ–R

(
a,b; c; τ ;ω(λ)τ

)
(–dλ)

]
f (u)du

=
∫ x

u=α


�(μ)

[∫ x–u

λ=
(λ)c–(x – λ – u)μ–R

(
a,b; c; τ ;ω(λ)τ

)
dλ

]
f (u)du.

This is the proof of (), and using the same procedure leads to the second identity of
(). �
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